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MODELLING VOLATILITY Example
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MODELLING VOLATILITY Example

S&P500 series

Consider the time plot and correlogram of the daily returns of the
S&P500 Index (January 2, 1990 to December 31, 1999):
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MODELLING VOLATILITY Example

S&P500 series

Although many financial time series appear to be stationary, they often
exhibit periods of increased variability (volatility)

::::
If a series exhibits a changing variance, so that the variance is correlated
in time, the series has a non-constant volatility that is called conditional
heteroscedastic

::::
The correlogram of a volatile series does not differ significantly from
white noise but if the variance is non-constant the correlogram of the
squared values (provided the series is adjusted to have zero mean) will
do
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MODELLING VOLATILITY Example

S&P500 series

The mean of the S&P500 returns between January 2, 1990 and
December 31, 1999 is 0.0458. The correlogram of the squared
mean-adjusted values of the S&P500 index is given below:
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Figure 1: Returns of the Standard and Poors S&P500 Index: correlogram of the
squared mean-adjusted values (rt − r̄)2
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MODELLING VOLATILITY Example

Conditional volatility

ARMA models were used to model the conditional mean of a process
when the conditional variance was constant.

::::
For instance, an AR(1) model for the log returns rt implies that, condi-
tional on the past return rt−1, we have

E(rt|rt−1) = ϕ0 + ϕ1rt−1

Var(rt|rt−1) = Var(at) = σ2
a (constant)

where the error series {at} is assumed to be a white noise series with
zero mean and variance σ2

a .

We focus on modelling the conditional variance of an asset return se-
ries by using models in the (Generalized) Autoregressive Conditionally
Heteroscedastic–(G)ARCH–class
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MODELLING VOLATILITY Example

Volatility models

Volatility is not directly observable, although very often we observe that
the volatility is high for certain time periods and low for other
periods (volatility clusters)
volatility varies within some fixed range
volatility seems to react differently to a big price increase and a big
price drop with the latter having a greater impact (leverage effect)

Such properties are important in the development of volatility models:
ARCH models (Engle, 1982), later extended to generalized ARCH, or
GARCH models (Bollerslev, 1986), and further varieties of ARCH
models.

The manner under which the conditional variance

σ2
t = Var(rt|Ft−1)

evolves over time distinguishes one volatility model from another.
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MODELLING VOLATILITY The ARCH(1) model
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MODELLING VOLATILITY The ARCH(1) model

The ARCH(1) model

Let {xt} be an observed series. Let {yt} be a series derived from {xt},
by removing any trend and seasonal effects, or linear (short-term
correlation) effects. Thus {yt} could, for example, be

the series of residuals from a regression, an AR, or ARMA model
the first differences of a financial time series such as the log of a
share price (returns) for which a random walk model has been
adopted

We may represent all such derived series having mean zero in the form

Yt = σt Zt

where {Zt} denotes a sequence of iid random variables with zero
mean and unit variance, i.e., an iid WN (or SWN). We will further
assume that the square of σt depends on the most recent value of {yt}.
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MODELLING VOLATILITY The ARCH(1) model

The ARCH(1) model

We start considering an autoregressive model for the variance process.

The first-order autoregressive conditionally heteroscedastic model,
ARCH(1), for Yt is

Yt = σt Zt (1)

σ2
t = ω + αY2

t−1 (2)

where we assume that
• σ2

t is the conditional variance of Yt given past values
• {Yt} has zero mean
• Zt ∼ iid WN(0, 1) (zero mean and unit variance)
• ω > 0, 0 ≤ α < 1 are model parameters.
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MODELLING VOLATILITY The ARCH(1) model

The ARCH(1) model: Remarks

From Eq.(1) and Eq.(2) we see that
If yt−1 has an unusually large absolute value, then σt is larger than
usual and so yt is also expected to have an unusually large
magnitude.

Because of this behaviour, unusual volatility in yt tends to persist,
though not forever.

the ARCH(1) models returns as a white noise process with
nonconstant conditional variance σ2

t :
ACF of Yt is that of a (weak) white noise
if Yt is ARCH(1), then it can be shown that {Y2

t } has the same form
of ACF as an AR(1) model
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MODELLING VOLATILITY The ARCH(1) model

The ARCH(1) model: Properties

To see how the ARCH(1) model introduces volatility, square Eq.(1) to
calculate the unconditional variance

Var(Yt) = E(Y2
t ) = E[(ω + αY2

t−1)Z
2
t ]

= E(Z2
t )E(ω + αY2

t−1)

= E(ω + αY2
t−1)

= ω + αE(Y2
t−1)

= ω + αVar(Yt−1) (3)

where we used the fact that Since Zt is independent of Yt−1, {Zt} has
unit variance (E(Z2

t ) = 1) and {Yt} has zero mean (E(Y2
t ) = Var(Yt)).

▶ The variance of an ARCH(1) process behaves just like an AR(1)
model. Hence, a decay in the autocorrelations of the squared
residuals {a2

t } should indicate whether an ARCH model is
appropriate or not for modeling {at}
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MODELLING VOLATILITY The ARCH(1) model

The ARCH model: Properties

From Eq.(3) the (unconditional) variance can be obtained by
assuming Yt stationary (Var(Yt−1) = Var(Yt) = σ2)

σ2 =
ω

1 − α
, 0 < α < 1

the ARCH(1) model has a constant mean (both conditional and
unconditional)

E(Yt|Yt−1, . . . ) = 0

and a time-varying conditional variance

Var(Yt|Yt−1, . . . ) = σ2
t
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MODELLING VOLATILITY The ARCH(1) model

Simulated ARCH(1) model
The simulated series (Yt) is generated from the ARCH(1) model

Yt = σt Zt, σ2
t = ω + αY2

t−1

with Zt ∼ N(0, 1), ω = 0.1, α = 0.4. This is equivalent to Eq.(1)-(2), where σ2
t

denotes the conditional variance.
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Figure 2: Left: ACF of simulated series; Middle and Right: ACF/PACF of
squared values of simulated series from the ARCH(1) model.
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MODELLING VOLATILITY The ARCH(m) model
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MODELLING VOLATILITY The ARCH(m) model

The ARCH(m) model

The first-order ARCH model can be extended to a mth-order process
by including higher lags. An ARCH(m) process is given by

Yt = σtZt (4)

where
σ2

t = ω + α1Y2
t−1 + · · ·+ αmY2

t−m (5)

- σ2
t is the conditional variance of Yt given the past values

- {Zt} iid process with mean zero and variance 1
- ω > 0, α1, . . . , αm ≥ 0.

Note that Eq.(4) is the same as Eq.(1), while Eq.(5) now contains the
past values Y2

t−1, . . . ,Y2
t−m.
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MODELLING VOLATILITY The ARCH(m) model

ARCH Models: pros and cons

ARCH models have some main advantages in analyzing asset returns:
the dependence of Yt can be described by a simple quadratic func-
tion of its lagged values
they can produce volatility clusters
they allow for heavy tails

ARCH models also have some weaknesses:
they assume positive and negative shocks have the same effects on
volatility because it depends on the square of the previous shocks
the conditional standard deviation can exhibit more persistent peri-
ods of high or low volatility than seen in an ARCH process
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GARCH MODELS The generalized ARCH (GARCH) model
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GARCH MODELS The generalized ARCH (GARCH) model

GARCH(m, s), models

A generalization of the ARCH model that allows the variance to depend
on past values of both the series and the volatility in squared form is the
generalized ARCH (or GARCH) model.

Yt is said to follows a GARCH model of order (m, s) when

Yt = σtZt, {Zt} ∼ SWN(0, 1)

and the local conditional variance is given by

σ2
t = ω +

m∑
i=1

αiY2
t−i +

s∑
j=1

βjσ
2
t−j (6)

where ω ≥ 0, αi, βj ≥ 0, and the sum
∑

αi +
∑

βj < 1 in order for the
process to be stationary.
The GARCH(m, s) model has the ARCH(m) model as the special case
GARCH(m, 0).
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GARCH MODELS The generalized ARCH (GARCH) model

The GARCH(1,1) model

The GARCH(1,1) model is

Yt = σtZt, σ2
t = ω + α1Y2

t−1 + β1σ
2
t−1 (7)

with Zt ∼ iidWN(0, 1), ω, α1, β1 ≥ 0, and α1 + β1 < 1 to ensure stability.

|Yt| has a chance of being large if either |Yt−1| is large or σt−1 is
large (volatility clustering)
Similar to ARCH models, the tail distribution of a GARCH(1,1) pro-
cess is heavier than that of a normal distribution
GARCH(1,1) unconditional variance is

σ2 =
ω

1 − α1 − β1

Similarly to ARCH models, one can establish parallels with the
ARMA(1,1) process
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GARCH MODELS The generalized ARCH (GARCH) model

Simulated GARCH model
The simulated series (Yt) is generated from the GARCH(1,1) model

Yt = σt Zt, σ2
t = ω + α1 Y2

t−1 + β1 σ
2
t−1

with Zt ∼ N(0, 1), ω = 0.1, α1 = 0.4, β1 = 0.2. This is equivalent to Eq.(7),
where σ2

t denotes the conditional variance.
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Figure 3: Left: ACF of simulated series; Middle and Right: ACF/PACF of
squared values of simulated series from the GARCH(1,1) model (n = 1000)
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GARCH MODELS t-GARCH model
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GARCH MODELS t-GARCH model

t-GARCH

In the previous example with simulated data, the {Zt} are standard nor-
mal innovations.

If we want to account for asymmetry or fat tails, we can consider alterna-
tive distributions for the Zt process, depending on additional parameters
that modify the skewness and kurtosis

::::

Two models employing alternative distributions for the innovations are
t-GARCH model: the process Zt follows a (scaled) Student’s t
distribution with ν dof (to be estimated)
skew t-GARCH model: the return distribution can be asymmetric
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GARCH MODELS t-GARCH model

Skew t-GARCH

□ For the Student-t distribution, as the degrees of freedom increase
the tails become shorter and the peak becomes lower.

□ For the skew t distribution with 5 df, a skew parameter η equal to
0.75, 1, and 1.5, produces left-skew, symmetric, and right-skew
density, respectively.
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Figure 4: The skew standardized Student-t with 5 df and degrees of skewness
η = 0.75 (red), 1 (black), and 1.5 (green).
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GARCH MODELS Volatility Forecasting
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GARCH MODELS Volatility Forecasting

GARCH-based volatility prediction

Suppose that the return data Y1, . . . ,Yn follow a particular model in the
GARCH family

We want to forecast future volatility, i.e, to predict the value of σn+h
for h ≥ 1
We again assume that we have access to the infinite history of the
process up to time t = n (Fn) and adapt our prediction formula to
take account of the finiteness of the sample
Assume that the GARCH model has been fitted and its parameters
estimated

We consider the case of simple GARCH(1,1) models that can be easily
generalized.
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GARCH MODELS Volatility Forecasting

Prediction in the GARCH(1, 1) model

For a GARCH(1,1) model the conditional variance is

σ2
t = ω + α1Y2

t−1 + β1σ
2
t−1

Predictions of Y2
n+1 based on Fn are given by

E(Y2
n+1|Fn) = Var(Yn+1|Fn) = σ2

n+1

and
σ2

n+1 = ω + α1Y2
n + β1σ

2
n

We approximate σ2
n by an estimate of squared volatility σ̂2

n, hence we
obtain a recursive scheme for estimating volatility one step ahead:

σ2
n+1 = ω̂ + α̂1y2

n + β̂1σ̂
2
n (8)
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FITTING ARMA-GARCH MODELS

ARMA-GARCH Model Specification
A common approach is to fit an ARMA model with GARCH errors to
the series of daily log returns:

Xt = µt + at (9)

where
mean equation

µt = ϕ0 +

p∑
i=1

ϕiXt−i +

q∑
i=1

θiat−i

variance equation

at = σt Zt, {Zt} ∼ SWN(0, 1)

σ2
t = ω +

m∑
i=1

αia2
t−i +

s∑
j=1

βjσ
2
t−j

Zt can have a non-normal distribution (e.g., Student-t or skew
Student-t distribution); ω > 0, αi, βj ≥ 0,

∑
i αi +

∑
j βj < 1.
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FITTING ARMA-GARCH MODELS

Residuals for ARMA-GARCH

We consider a general ARMA-GARCH model of the form
Xt − µt = at = σtZt. We distinguish between

the ordinary residuals â1, . . . , ân from the ARMA model

ât = xt − x̂t

(under the hypothesized model they should behave like a
realization of a pure GARCH process)
the standardized residuals that are calculated from the former by

ẑt = ât/σ̂t σ̂2
t = ω̂ +

m∑
i=1

α̂iâ2
t−i +

s∑
j=1

β̂jσ̂
2
t−j

(Starting values of ât can be set equal to zero and starting values of the
volatility σ̂t equal to either the sample variance or zero)
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FITTING ARMA-GARCH MODELS

Model Checking

The standardized residuals ẑt = ât/σ̂t where σ̂t expresses the volatility,
should behave like an SWN (ẑt and ẑ2

t should be uncorrelated); this can
be investigated by

performing Ljung-Box Tests with various lags
constructing correlograms of raw and absolute values

The null hypothesis for these tests should be accepted in order to
consider the fitted model as a good one; normality tests can be used if
the Zt are assumed to be N(0, 1)
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FITTING ARMA-GARCH MODELS

Prediction in an ARMA(1,1)-GARCH(1,1) model

Assume a model of the form (9) Xt − µt = at where
µt describes an ARMA(1,1) model
at = σtZt follows a GARCH(1,1) model

We have a sample x1, . . . , xn and we fit an ARMA(1,1) model; the
forecast of Xn+1 is

E(Xn+1|Fn) = E(µn+1|Fn) = x̂n(1) = µ̂+ ϕ̂1(xn − µ̂) + θ̂1an;

the following yields prediction of σ2
n+1

Var(Xn+1|Fn) = E(a2
n+1|Fn) = ω̂ + α̂1a2

n + β̂1σ
2
n

and these are approximated by substituting inferred values for at and σt
obtained from the residual equations.
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