
Package ‘ergm’
March 25, 2016

Version 3.6.0

Date 2016-03-24

Title Fit, Simulate and Diagnose Exponential-Family Models for
Networks

Depends statnet.common (>= 3.3), network (>= 1.13)

Imports robustbase (>= 0.9-10), coda (>= 0.18-1), trust, Matrix,
lpSolve, parallel, methods, MASS

Suggests lattice, latticeExtra, sna, latentnet, rmarkdown,
ergm.userterms, tergm, Rmpi

Description An integrated set of tools to analyze and simulate networks based on exponential-
family random graph models (ERGM). ``ergm'' is a part of the ``statnet'' suite of pack-
ages for network analysis.

License GPL-3 + file LICENSE

URL http://statnet.org

VignetteBuilder rmarkdown

NeedsCompilation yes

Author Mark S. Handcock [aut],
David R. Hunter [aut],
Carter T. Butts [aut],
Steven M. Goodreau [aut],
Pavel N. Krivitsky [aut, cre],
Martina Morris [aut],
Li Wang [ctb],
Kirk Li [ctb],
Skye Bender-deMoll [ctb]

Maintainer Pavel N. Krivitsky <pavel@uow.edu.au>

Repository CRAN

Date/Publication 2016-03-25 09:12:20

1

http://statnet.org

2 R topics documented:

R topics documented:
ergm-package . 4
anova.ergm . 6
approx.hotelling.diff.test . 7
as.edgelist . 8
as.network.numeric . 9
check.ErgmTerm . 10
coef.ergm . 12
coef.length.model . 13
colMeans.mcmc.list . 13
control.ergm . 14
control.ergm.bridge . 24
control.gof . 26
control.logLik.ergm . 28
control.san . 30
control.simulate . 32
degreedist . 34
ecoli . 35
enformulate.curved . 36
ergm . 37
ergm-constraints . 43
ergm-parallel . 46
ergm-references . 48
ergm-terms . 49
ergm.allstats . 72
ergm.bounddeg . 73
ergm.bridge.dindstart.llk . 75
ergm.bridge.llr . 76
ergm.ConstraintImplications . 78
ergm.Cprepare . 78
ergm.degeneracy . 80
ergm.eta . 81
ergm.exact . 82
ergm.formula.utils . 84
ergm.geodistdist . 86
ergm.getglobalstats . 87
ergm.getMCMCsample . 87
ergm.init.methods . 89
ergm.MHP.table . 89
ergm.mple . 90
ergmMPLE . 92
ergm_deprecated . 94
ergm_MH_proposals . 95
eut-upgrade . 97
faux.desert.high . 98
faux.dixon.high . 100
faux.magnolia.high . 102

R topics documented: 3

faux.mesa.high . 103
fix.curved . 105
flobusiness . 106
flomarriage . 107
florentine . 108
g4 . 109
get.free.dyads . 109
get.node.attr . 110
Getting.Started . 111
gof . 113
is.curved . 115
is.durational . 116
is.dyad.independent . 117
is.inCH . 118
kapferer . 119
lasttoggle . 120
logLik.ergm . 120
mcmc.diagnostics . 122
MHproposal . 124
molecule . 126
network.update . 127
newnw.extract . 128
nvattr.copy.network . 129
plot.ergm . 129
plot.gofobject . 132
plot.network.ergm . 134
print.ergm . 139
samplk . 140
sampson . 141
san . 143
search.ergmTerms . 144
simulate.ergm . 145
summary.ergm . 149
summary.gofobject . 150
summary.network.list . 151
summary.statistics . 152
vcov.ergm . 154
wtd.median . 155

Index 156

4 ergm-package

ergm-package Fit, Simulate and Diagnose Exponential-Family Models for Networks

Description

ergm is a collection of functions to plot, fit, diagnose, and simulate from exponential-family random
graph models (ERGMs). For a list of functions type: help(package='ergm')
For a complete list of the functions, use library(help="ergm") or read the rest of the manual. For
a simple demonstration, use demo(packages="ergm").
When publishing results obtained using this package, please cite the original authors as described
in citation(package="ergm").
All programs derived from this package must cite it.

Details

Recent advances in the statistical modeling of random networks have had an impact on the empirical
study of social networks. Statistical exponential family models (Strauss and Ikeda 1990) are a gen-
eralization of the Markov random network models introduced by Frank and Strauss (1986), which
in turn derived from developments in spatial statistics (Besag, 1974). These models recognize the
complex dependencies within relational data structures. To date, the use of stochastic network mod-
els for networks has been limited by three interrelated factors: the complexity of realistic models,
the lack of simulation tools for inference and validation, and a poor understanding of the inferential
properties of nontrivial models.
This manual introduces software tools for the representation, visualization, and analysis of network
data that address each of these previous shortcomings. The package relies on the network package
which allows networks to be represented in R. The ergm package implements maximum likelihood
estimates of ERGMs to be calculated using Markov Chain Monte Carlo (via ergm). The package
also provides tools for simulating networks (via simulate.ergm) and assessing model goodness-
of-fit (see mcmc.diagnostics and gof.ergm).
A number of Statnet Project packages extend and enhance ergm. These include tergm (Temporal
ERGM), which provides extensions for modeling evolution of networks over time; ergm.count,
which facilitates exponential family modeling for networks whose dyadic measurements are counts;
and ergm.userterms, which allows users to implement their own ERGM terms.
For detailed information on how to download and install the software, go to the ergm website:
statnet.org. A tutorial, support newsgroup, references and links to further resources are provided
there.

Author(s)

Mark S. Handcock <handcock@stat.ucla.edu>,
David R. Hunter <dhunter@stat.psu.edu>,
Carter T. Butts <buttsc@uci.edu>,
Steven M. Goodreau <goodreau@u.washington.edu>,
Pavel N. Krivitsky <krivitsky@stat.psu.edu>, and
Martina Morris <morrism@u.washington.edu>
Maintainer: Pavel N. Krivitsky <krivitsky@stat.psu.edu>

statnet.org

ergm-package 5

References

Admiraal R, Handcock MS (2007). networksis: Simulate bipartite graphs with fixed marginals
through sequential importance sampling. Statnet Project, Seattle, WA. Version 1, statnet.org.

Bender-deMoll S, Morris M, Moody J (2008). Prototype Packages for Managing and Animating
Longitudinal Network Data: dynamicnetwork and rSoNIA. Journal of Statistical Software, 24(7).
http://www.jstatsoft.org/v24/i07/.

Besag, J., 1974, Spatial interaction and the statistical analysis of lattice systems (with discussion),
Journal of the Royal Statistical Society, B, 36, 192-236.

Boer P, Huisman M, Snijders T, Zeggelink E (2003). StOCNET: an open software system for the
advanced statistical analysis of social networks. Groningen: ProGAMMA / ICS, version 1.4 edition.

Butts CT (2007). sna: Tools for Social Network Analysis. R package version 2.3-2. http://CRAN.
R-project.org/package=sna

Butts CT (2008). network: A Package for Managing Relational Data in R. Journal of Statistical
Software, 24(2). http://www.jstatsoft.org/v24/i02/.

Butts C (2015). network: Classes for Relational Data. The Statnet Project (http://www.statnet.
org). R package version 1.12.0, http://CRAN.R-project.org/package=network.

Frank, O., and Strauss, D.(1986). Markov graphs. Journal of the American Statistical Association,
81, 832-842.

Goodreau SM, Handcock MS, Hunter DR, Butts CT, Morris M (2008a). A statnet Tutorial. Journal
of Statistical Software, 24(8). http://www.jstatsoft.org/v24/i08/.

Goodreau SM, Kitts J, Morris M (2008b). Birds of a Feather, or Friend of a Friend? Using Ex-
ponential Random Graph Models to Investigate Adolescent Social Networks. Demography, 45, in
press.

Handcock, M. S. (2003) Assessing Degeneracy in Statistical Models of Social Networks, Working
Paper \#39, Center for Statistics and the Social Sciences, University of Washington. www.csss.
washington.edu/Papers/wp39.pdf

Handcock MS (2003b). degreenet: Models for Skewed Count Distributions Relevant to Networks.
Statnet Project, Seattle, WA. Version 1.0, statnet.org.

Handcock MS, Hunter DR, Butts CT, Goodreau SM, Morris M (2003a). ergm: A Package to Fit,
Simulate and Diagnose Exponential-Family Models for Networks. Statnet Project, Seattle, WA.
Version 3, statnet.org.

Handcock MS, Hunter DR, Butts CT, Goodreau SM, Morris M (2003b). statnet: Software Tools for
the Statistical Modeling of Network Data. Statnet Project, Seattle, WA. Version 3, statnet.org.

Hunter, D. R. and Handcock, M. S. (2006) Inference in curved exponential family models for net-
works, Journal of Computational and Graphical Statistics, 15: 565-583

Hunter DR, Handcock MS, Butts CT, Goodreau SM, Morris M (2008b). ergm: A Package to Fit,
Simulate and Diagnose Exponential-Family Models for Networks. Journal of Statistical Software,
24(3). http://www.jstatsoft.org/v24/i03/.

Krivitsky PN, Handcock MS (2007). latentnet: Latent position and cluster models for statistical
networks. Seattle, WA. Version 2, http://statnet.org.

Krivitsky PN (2012). Exponential-Family Random Graph Models for Valued Networks. Electronic
Journal of Statistics, 2012, 6, 1100-1128. doi:10.1214/12-EJS696

statnet.org
http://www.jstatsoft.org/v24/i07/
http://CRAN.R-project.org/package=sna
http://CRAN.R-project.org/package=sna
http://www.jstatsoft.org/v24/i02/
http://www.statnet.org
http://www.statnet.org
http://CRAN.R-project.org/package=network
http://www.jstatsoft.org/v24/i08/
www.csss.washington.edu/Papers/wp39.pdf
www.csss.washington.edu/Papers/wp39.pdf
statnet.org
statnet.org
statnet.org
http://www.jstatsoft.org/v24/i03/
http://statnet.org
http://dx.doi.org/10.1214/12-EJS696

6 anova.ergm

Morris M, Handcock MS, Hunter DR (2008). Specification of Exponential-Family Random Graph
Models: Terms and Computational Aspects. Journal of Statistical Software, 24(4). http://www.
jstatsoft.org/v24/i04/.

Strauss, D., and Ikeda, M.(1990). Pseudolikelihood estimation for social networks Journal of the
American Statistical Association, 85, 204-212.

anova.ergm ANOVA for ERGM Fits

Description

Compute an analysis of variance table for one or more ERGM fits.

Usage

S3 method for class 'ergm'
anova(object, ..., eval.loglik = FALSE)
S3 method for class 'ergmlist'
anova(object, ..., eval.loglik = FALSE, scale = 0, test = "F")

Arguments

object, ... objects of class ergm, usually, a result of a call to ergm.

eval.loglik a logical specifying whether the log-likelihood will be evaluated if missing.

test a character string specifying the test statistic to be used. Can be one of "F",
"Chisq" or "Cp", with partial matching allowed, or NULL for no test.

scale numeric. An estimate of the noise variance σ2. If zero this will be estimated
from the largest model considered.

Details

Specifying a single object gives a sequential analysis of variance table for that fit. That is, the
reductions in the residual sum of squares as each term of the formula is added in turn are given in
the rows of a table, plus the residual sum of squares.

The table will contain F statistics (and P values) comparing the mean square for the row to the
residual mean square.

If more than one object is specified, the table has a row for the residual degrees of freedom and sum
of squares for each model. For all but the first model, the change in degrees of freedom and sum of
squares is also given. (This only make statistical sense if the models are nested.) It is conventional
to list the models from smallest to largest, but this is up to the user.

Optionally the table can include test statistics. Normally the F statistic is most appropriate, which
compares the mean square for a row to the residual sum of squares for the largest model considered.
If scale is specified chi-squared tests can be used. Mallows’ Cp statistic is the residual sum of
squares plus twice the estimate of σ2 times the residual degrees of freedom.

If any of the objects do not have estimated log-likelihoods, produces an error, unless eval.loglik=TRUE.

http://www.jstatsoft.org/v24/i04/
http://www.jstatsoft.org/v24/i04/

approx.hotelling.diff.test 7

Value

An object of class "anova" inheriting from class "data.frame".

Warning

The comparison between two or more models will only be valid if they are fitted to the same dataset.
This may be a problem if there are missing values and R’s default of na.action = na.omit is used,
and anova.ergmlist will detect this with an error.

See Also

The model fitting function ergm, anova, logLik.ergm for adding the log-likelihood to an existing
ergm object.

Examples

data(molecule)
molecule %v% "atomic type" <- c(1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3)
fit0 <- ergm(molecule ~ edges)
anova(fit0)
fit1 <- ergm(molecule ~ edges + nodefactor("atomic type"))
anova(fit1)

fit2 <- ergm(molecule ~ edges + nodefactor("atomic type") + gwesp(0.5,
fixed=TRUE), eval.loglik=TRUE) # Note the eval.loglik argument.

anova(fit0, fit1)
anova(fit0, fit1, fit2)

approx.hotelling.diff.test

Approximate Hotelling T^2-Test for One Sample Means

Description

A multivariate hypothesis test of difference between a vector of sample means and a vector of true
means (mu). The null hypothesis assumes no differences for each pair of sample mean and true
mean, the alternative hypothesis assumes not all pairs are equal. Smaller p-value would reject the
null hypothesis. The distribution under the null hypothesis is an approximation to Hotelling’s T^2
distribution, hence the test is an approximated test.

Hotelling’s T^2 distribution

A multivariate method that is the multivariate counterpart of Student’s t and which also forms the
basis for certain multivariate control charts is based on Hotelling’s T2 distribution, which was in-
troduced by Hotelling (1947).

8 as.edgelist

References

Hotelling, H. (1947). Multivariate Quality Control. In C. Eisenhart, M. W. Hastay, and W. A.
Wallis, eds. Techniques of Statistical Analysis. New York: McGraw-Hill.

as.edgelist Convert a network object into a numeric edgelist matrix

Description

Constructs an edgelist in the format expected by ergm’s internal functions

NOTE: the as.edgelist functions have been moved to the network package, and this help file
may be removed in the future. See as.edgelist

Details

Constructs an edgelist matrix from a network, sorted tails-major order, with tails first, and, for
undirected networks, tail < head.

The as.matrix.network(nw, matrix.type="edgelist") provides similar functionality but it
does not enforce ordering..

Note

The as.edgelist functions have been moved to the network package. See as.edgelist

See Also

See alsoas.edgelist, as.matrix.network.edgelist

Examples

data(faux.mesa.high)
as.edgelist(faux.mesa.high)

as.network.numeric 9

as.network.numeric Create a Simple Random network of a Given Size

Description

as.network.numeric creates a random Bernoulli network of the given size as an object of class
network.

Usage

S3 method for class 'numeric'
as.network(x, directed = TRUE,

hyper = FALSE, loops = FALSE, multiple = FALSE, bipartite = FALSE,
ignore.eval = TRUE, names.eval = NULL,
edge.check = FALSE,
density=NULL, init=NULL, numedges=NULL, ...)

Arguments

x count; the number of nodes in the network. If bipartite=TRUE, it is the number
of events in the network.

directed logical; should edges be interpreted as directed?

hyper logical; are hyperedges allowed? Currently ignored.

loops logical; should loops be allowed? Currently ignored.

multiple logical; are multiplex edges allowed? Currently ignored.

bipartite count; should the network be interpreted as bipartite? If present (i.e., non-
NULL) it is the count of the number of actors in the bipartite network. In this
case, the number of nodes is equal to the number of actors plus the number of
events (with all actors preceding all events). The edges are then interpreted as
nondirected.

ignore.eval logical; ignore edge values? Currently ignored.

names.eval optionally, the name of the attribute in which edge values should be stored. Cur-
rently ignored.

edge.check logical; perform consistency checks on new edges?

density numeric; the probability of a tie for Bernoulli networks. If neither density nor
init is given, it defaults to the number of nodes divided by the number of dyads
(so the expected number of ties is the same as the number of nodes.)

init numeric; the log-odds of a tie for Bernoulli networks. It is only used if density
is not specified.

numedges count; if present, sample the Bernoulli network conditional on this number of
edges (rather than independently with the specified probability).

... additional arguments

10 check.ErgmTerm

Details

The network will have not have vertex, edge or network attributes. These can be added with opera-
tors such as %v%, %n%, %e%.

Value

An object of class network

References

Butts, C.T. 2002. “Memory Structures for Relational Data in R: Classes and Interfaces” Working
Paper.

See Also

network

Examples

#Draw a random directed network with 25 nodes
g<-network(25)
#Draw a random undirected network with density 0.1
g<-network(25, directed=FALSE, density=0.1)
#Draw a random bipartite network with 10 events and 5 actors and density 0.1
g<-network(5, bipartite=10, density=0.1)

check.ErgmTerm Ensures an Ergm Term and its Arguments Meet Appropriate Condi-
tions

Description

These are low-level functions not intended to be called by end users. For information on ergm
terms, see ergm-terms

The check.ErgmTerm function ensures for the InitErgmTerm.X function that the term X:

• is applicable given the ’directed’ and ’bipartite’ attributes of the given network

• is not applied to a directed bipartite network

• has an appropiate number of arguments

• has correct argument types if arguments where provided

• has default values assigned if defaults are available

by halting execution if any of the first 3 criteria are not met.

The ergm.checkargs function ensures for the InitErgm function that the term X:

• has an appropiate number of arguments

• has correct argument types if arguments where provieded

check.ErgmTerm 11

• has default values assigned for non-required arguments

by halting execution if either of the first 2 criteria are not met

The the ergm.checkdirected function halts execution for the <InitErgm> functions with an error
message if the given model term cannot be used with the network because of its state as (un)directed.
(essentially it prints and formats the the error message)

Usage

check.ErgmTerm(nw, arglist, directed = NULL, bipartite = NULL,
nonnegative = FALSE, varnames = NULL, vartypes = NULL,
defaultvalues = list(), required = NULL, response = NULL)

ergm.checkargs(fname, arglist, varnames=NULL, vartypes=NULL,
defaultvalues=list(), required=NULL)

ergm.checkdirected(fname, nw.directedflag, requirement,
extramessage="")

Arguments

nw the network that term X is being checked against

arglist the list of arguments for term X

directed, logical, whether term X requires a directed network; default=NULL

bipartite whether term X requires a bipartite network (T or F); default=NULL

nonnegative whether term X requires a network with only nonnegative weights; default=FALSE

varnames the vector of names of the possible arguments for term X; default=NULL

vartypes the vector of types of the possible arguments for term X; default=NULL

defaultvalues the list of default values for the possible arguments of term X; default=list()

required the logical vector of whether each possible argument is required; default=NULL

response edge attribute name?

fname the name of the model term as a character string

nw.directedflag

logical,whether the network is directed

requirement logical, whether the term requires a directed network

extramessage additional messages to attach to the warning; default value = ""

Value

a list of the values for each possible argument of term X; user provided values are used when given,
default values otherwise.

12 coef.ergm

coef.ergm Extract Model Coefficients

Description

coef is a Method which extracts model coefficients from objects returned by the ergm function.
coefficients is an alias for it.

Usage

S3 method for class 'ergm'
coef(object, ...)

S3 method for class 'ergm'
coefficients(object, ...)

Arguments

object an object for which the extraction of model coefficients is meaningful.

... other arguments.

Value

Coefficients extracted from the model object object.

See Also

fitted.values and residuals for related methods; glm, lm for model fitting.

Examples

data(molecule)
molecule %v% "atomic type" <- c(1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3)
fit <- ergm(molecule ~ edges + nodefactor("atomic type"))
coef(fit)

coef.length.model 13

coef.length.model Extract Number of parameters in ergm Model

Description

coef.sublength and coef.length are methods that extract the numbers of parameters for ergm
model objects.

Usage

S3 method for class 'model'
coef.length(object, ...)

S3 method for class 'model'
coef.sublength(object, ...)

Arguments

object an ergm model object

... other arguments.

Value

coef.sublength.model returns a vector containing the number of model parameters correspond-
ing to each model term. coef.length.model returns the sum of the values returned by coef.sublength.model.

colMeans.mcmc.list utility operations for mcmc.list objects

Description

Adaptations of colMeans and sweep for working with mcmc.list objects. The function mcmc.list
is used to represent parallel runs of the same chain, with different starting values and random seeds.

Usage

colMeans.mcmc.list(x, ...)

sweep.mcmc.list(x, STATS, FUN = "-", check.margin = TRUE, ...)

14 control.ergm

Arguments

x a mcmc.list object

STATS the summary statistic which is to be swept out

FUN the function to be used to carry out the sweep (default is ’-’, subtraction)

check.margin logical. If TRUE (the default), warn if the length or dimensions of STATS do
not match the specified dimensions of x. Set to FALSE for a small speed gain
when you know that dimensions match.

... additional arguments to colMeans or sweep

Details

colMeans.mcmc.list converts the mcmc list into a matrix and then runs colMeans on it

sweep.mcmc.lists modifies the values of the chains by computing some aggregate summary statis-
tic function (STATS) on the entire chain and applying it to each value via FUN (default is subtraction).
See sweep for additional examples.

Value

colMeans.mcmc returns a vector with length equal to the number of mcmc chains in x with the mean
value for each chain. sweep.mcmc.lists returns an appropriately modified version of x

control.ergm Auxiliary for Controlling ERGM Fitting

Description

Auxiliary function as user interface for fine-tuning ’ergm’ fitting.

Usage

control.ergm(drop=TRUE,

init=NULL,
init.method=NULL,

main.method=c("MCMLE","Robbins-Monro",
"Stochastic-Approximation","Stepping"),

force.main=FALSE,
main.hessian=TRUE,

MPLE.max.dyad.types=1e+6,
MPLE.samplesize=50000,
MPLE.type=c("glm", "penalized"),

MCMC.prop.weights="default", MCMC.prop.args=list(),

control.ergm 15

MCMC.interval=1024,
MCMC.burnin=MCMC.interval*16,
MCMC.samplesize=1024,

MCMC.effectiveSize=NULL,
MCMC.effectiveSize.damp=10,
MCMC.effectiveSize.maxruns=1000,
MCMC.effectiveSize.base=1/2,
MCMC.effectiveSize.points=5,
MCMC.effectiveSize.order=1,

MCMC.return.stats=TRUE,
MCMC.runtime.traceplot=FALSE,
MCMC.init.maxedges=20000,
MCMC.max.maxedges=Inf,
MCMC.addto.se=TRUE,
MCMC.compress=FALSE,
MCMC.packagenames=c(),

SAN.maxit=10,
SAN.burnin.times=10,
SAN.control=control.san(coef=init,

SAN.prop.weights=MCMC.prop.weights,
SAN.prop.args=MCMC.prop.args,
SAN.init.maxedges=MCMC.init.maxedges,
SAN.burnin=MCMC.burnin * SAN.burnin.times,
SAN.interval=MCMC.interval,
SAN.packagenames=MCMC.packagenames,
MPLE.max.dyad.types=MPLE.max.dyad.types,
parallel=parallel,
parallel.type=parallel.type,
parallel.version.check=parallel.version.check),

MCMLE.termination=c("Hummel", "Hotelling", "precision", "none"),
MCMLE.maxit=20,
MCMLE.conv.min.pval=0.5,
MCMLE.NR.maxit=100,
MCMLE.NR.reltol=sqrt(.Machine$double.eps),
obs.MCMC.samplesize=MCMC.samplesize,
obs.MCMC.interval=MCMC.interval,
obs.MCMC.burnin=MCMC.burnin,
obs.MCMC.burnin.min=obs.MCMC.burnin/10,

obs.MCMC.prop.weights=MCMC.prop.weights, obs.MCMC.prop.args=MCMC.prop.args,

MCMLE.check.degeneracy=FALSE,
MCMLE.MCMC.precision=0.005,
MCMLE.MCMC.max.ESS.frac=0.1,
MCMLE.metric=c("lognormal", "logtaylor",

16 control.ergm

"Median.Likelihood",
"EF.Likelihood", "naive"),

MCMLE.method=c("BFGS","Nelder-Mead"),
MCMLE.trustregion=20,
MCMLE.dampening=FALSE,
MCMLE.dampening.min.ess=20,
MCMLE.dampening.level=0.1,
MCMLE.steplength.margin=0.05,
MCMLE.steplength=if(is.null(MCMLE.steplength.margin)) 0.5 else 1,
MCMLE.adaptive.trustregion=3,
MCMLE.sequential=TRUE,
MCMLE.density.guard.min=10000,
MCMLE.density.guard=exp(3),
MCMLE.effectiveSize=NULL,
MCMLE.last.boost=4,
MCMLE.Hummel.esteq=TRUE,
MCMLE.Hummel.miss.sample=100,
MCMLE.Hummel.maxit=25,
MCMLE.steplength.min=0.0001,

SA.phase1_n=NULL,
SA.initial_gain=NULL,
SA.nsubphases=4,
SA.niterations=NULL,
SA.phase3_n=NULL,
SA.trustregion=0.5,

RM.phase1n_base=7,
RM.phase2n_base=100,
RM.phase2sub=7,
RM.init_gain=0.5,
RM.phase3n=500,

Step.MCMC.samplesize=100,
Step.maxit=50,
Step.gridsize=100,

CD.nsteps=8,
CD.multiplicity=1,
CD.nsteps.obs=128,
CD.multiplicity.obs=1,
CD.maxit=60,
CD.conv.min.pval=0.5,
CD.NR.maxit=100,
CD.NR.reltol=sqrt(.Machine$double.eps),
CD.metric=c("naive", "lognormal", "logtaylor",
"Median.Likelihood",
"EF.Likelihood"),

control.ergm 17

CD.method=c("BFGS","Nelder-Mead"),
CD.trustregion=20,
CD.dampening=FALSE,
CD.dampening.min.ess=20,
CD.dampening.level=0.1,
CD.steplength.margin=0.5,
CD.steplength=1,
CD.adaptive.trustregion=3,
CD.adaptive.epsilon=0.01,
CD.Hummel.esteq=TRUE,
CD.Hummel.miss.sample=100,
CD.Hummel.maxit=25,
CD.steplength.min=0.0001,

loglik.control=control.logLik.ergm(),

seed=NULL,
parallel=0,
parallel.type=NULL,
parallel.version.check=TRUE,
...)

Arguments

drop Logical: If TRUE, terms whose observed statistic values are at the extremes of
their possible ranges are dropped from the fit and their corresponding parameter
estimates are set to plus or minus infinity, as appropriate. This is done because
maximum likelihood estimates cannot exist when the vector of observed statistic
lies on the boundary of the convex hull of possible statistic values.

init numeric or NA vector equal in length to the number of parameters in the model
or NULL (the default); the initial values for the estimation and coefficient offset
terms. If NULL is passed, all of the initial values are computed using the method
specified by control$init.method. If a numeric vector is given, the elements
of the vector are interpreted as follows:

• Elements corresponding to terms enclosed in offset() are used as the fixed
offset coefficients. Note that offset coefficients alone can be more conve-
niently specified using ergm argument offset.coef. If both offset.coef
and init arguments are given, values in offset.coef will take precedence.

• Elements that do not correspond to offset terms and are not NA are used as
starting values in the estimation.

• Initial values for the elements that are NA are fit using the method specified
by control$init.method.

Passing control.ergm(init=coef(prev.fit)) can be used to “resume” an
uncoverged ergm run, but see enformulate.curved.

init.method A chatacter vector or NULL. The default method depends on the reference mea-
sure used. For the binary ("Bernoulli") ERGMs, it’s maximum pseudo-likelihood
estimation (MPLE). Other valid values include "zeros" for a 0 vector of appro-
priate length and "CD" for contrastive divergence.

18 control.ergm

Valid initial methods for a given reference can be queried using ergm.init.methods.

main.method One of "MCMLE" (default),"Robbins-Monro", "Stochastic-Approximation", or
"Stepping". Chooses the estimation method used to find the MLE. MCMLE at-
tempts to maximize an approximation to the log-likelihood function. Robbins-Monro
and Stochastic-Approximation are both stochastic approximation algorithms
that try to solve the method of moments equation that yields the MLE in the case
of an exponential family model. Another alternative is a partial stepping algo-
rithm (Stepping) as in Hummel et al. (2012). The direct use of the likelihood
function has many theoretical advantages over stochastic approximation, but the
choice will depend on the model and data being fit. See Handcock (2000) and
Hunter and Handcock (2006) for details.
Note that in recent versions of ERGM, the enhancements of Stepping have been
folded into the default MCMLE, which is able to handle more modeling scenarios.

force.main Logical: If TRUE, then force MCMC-based estimation method, even if the exact
MLE can be computed via maximum pseudolikelihood estimation.

main.hessian Logical: If TRUE, then an approximate Hessian matrix is used in the MCMC-
based estimation method.

MPLE.max.dyad.types

Maximum number of unique values of change statistic vectors, which are the
predictors in a logistic regression used to calculate the MPLE. This calculation
uses a compression algorithm that allocates space based on MPLE.max.dyad.types.

MPLE.samplesize

Not currently documented; used in conditional-on-degree version of MPLE.

MPLE.type One of "glm" or "penalized". Chooses method of calculating MPLE. "glm" is
the usual formal logistic regression, whereas "penalized" uses the bias-reduced
method of Firth (1993) as originally implemented by Meinhard Ploner, Daniela
Dunkler, Harry Southworth, and Georg Heinze in the "logistf" package.

MCMC.prop.weights, obs.MCMC.prop.weights

Specifies the proposal distribution used in the MCMC Metropolis-Hastings al-
gorithm. Possible choices depending on selected reference and constraints
arguments of the ergm function, but often include "TNT" and "random", and the
"default" is to use the one with the highest priority available.
The TNT (tie / no tie) option puts roughly equal weight on selecting a dyad with
or without a tie as a candidate for toggling, whereas the random option puts equal
weight on all possible dyads, though the interpretation of random may change
according to the constraints in place. When no constraints are in place, the
default is TNT, which appears to improve Markov chain mixing particularly for
networks with a low edge density, as is typical of many realistic social networks.
obs.MCMC.prop.weights, if given separately, specifies the weights to be used
for the constrained MCMC when missing dyads are present, defaulting to the
same as MCMC.prop.weights.

MCMC.prop.args, obs.MCMC.prop.args

An alternative, direct way of specifying additional arguments to proposal. obs.MCMC.prop.args,
if given separately, specifies the weights to be used for the constrained MCMC
when missing dyads are present, defaulting to the same as MCMC.prop.args.

control.ergm 19

MCMC.interval Number of proposals between sampled statistics. Increasing interval will re-
duces the autocorrelation in the sample, and may increase the precision in esti-
mates by reducing MCMC error, at the expense of time. Set the interval higher
for larger networks.

MCMC.burnin Number of proposals before any MCMC sampling is done. It typically is set to
a fairly large number.

MCMC.samplesize

Number of network statistics, randomly drawn from a given distribution on the
set of all networks, returned by the Metropolis-Hastings algorithm. Increasing
sample size may increase the precision in the estimates by reducing MCMC
error, at the expense of time. Set it higher for larger networks, or when using
parallel functionality.

MCMLE.effectiveSize, MCMC.effectiveSize, MCMC.effectiveSize.damp, MCMC.effectiveSize.maxruns, MCMC.effectiveSize.base, MCMC.effectiveSize.points, MCMC.effectiveSize.order

Set MCMLE.effectiveSize to non-NULL value to adaptively determine the
burn-in and the MCMC length needed to get the specified effective size us-
ing the method of Sahlin (2011); 50 is a reasonable value. This feature is in
experimental status until we verify the coverage of the standard errors.

MCMC.return.stats

Logical: If TRUE, return the matrix of MCMC-sampled network statistics. This
matrix should have MCMC.samplesize rows. This matrix can be used directly
by the coda package to assess MCMC convergence.

MCMC.runtime.traceplot

Logical: If TRUE, plot traceplots of the MCMC sample after every MCMC
MLE iteration.

MCMC.init.maxedges, MCMC.max.maxedges

Maximum number of edges expected in network. Starting at MCMC.init.maxedges,
it will be incremented by a factor of 10 if exceeded during fitting, up to MCMC.max.maxedges,
at which point the process will stop with an error.

MCMC.addto.se Whether to add the standard errors induced by the MCMC algorithm to the
estimates’ standard errors.

MCMC.compress Logical: If TRUE, the matrix of sample statistics returned is compressed to the
set of unique statistics with a column of frequencies post-pended.

MCMC.packagenames

Names of packages in which to look for change statistic functions in addition to
those autodetected. This argument should not be needed outside of very strange
setups.

SAN.maxit When target.stats argument is passed to ergm, the maximum number of at-
tempts to use san to obtain a network with statistics close to those specified.

SAN.burnin.times

Multiplier for SAN.burnin relative to MCMC.burnin. This lets one control the
amount of SAN burn-in (arguably, the most important of SAN parameters) with-
out overriding the other SAN.control defaults.

SAN.control Control arguments to san. See control.san for details.
MCMLE.termination

The criterion used for terminating MCMLE estimation:

20 control.ergm

• "Hummel" Terminate when the Hummel step length is 1 for two consecu-
tive iterations. For the last iteration, the sample size is boosted by a factor
of MCMLE.last.boost. See Hummel et. al. (2012).
Note that this criterion is incompatible with MCMLE.steplength 6= 1 or
MCMLE.steplength.margin = NULL.

• "Hotelling" After every MCMC sample, an autocorrelation-adjusted Hotelling’s
T^2 test for equality of MCMC-simulated network statistics to observed is
conducted, and if its P-value exceeds MCMLE.conv.min.pval, the estima-
tion is considered to have converged and finishes. This was the default
option in ergm version 3.1.

• "precision" Terminate when the estimated loss in estimating precision due
to using MCMC standard errors is below the precision bound specified by
MCMLE.MCMC.precision, and the Hummel step length is 1 for two consec-
utive iterations. See MCMLE.MCMC.precision for details. This feature is in
experimental status until we verify the coverage of the standard errors.
Note that this criterion is incompatible with MCMLE.steplength 6= 1 or
MCMLE.steplength.margin = NULL.

• "none" Stop after MCMLE.maxit iterations.
MCMLE.maxit Maximum number of times the parameter for the MCMC should be updated by

maximizing the MCMC likelihood. At each step the parameter is changed to the
values that maximizes the MCMC likelihood based on the current sample.

MCMLE.conv.min.pval

The P-value used in the Hotelling test for early termination.
MCMLE.NR.maxit, MCMLE.NR.reltol

The method, maximum number of iterations and relative tolerance to use within
the optim rountine in the MLE optimization. Note that by default, ergm uses
trust, and falls back to optim only when trust fails.

obs.MCMC.samplesize, obs.MCMC.burnin, obs.MCMC.interval, obs.MCMC.burnin.min

Sample size, burnin, and interval parameters for the MCMC sampling used when
unobserved data are present in the estimation routine.

MCMLE.check.degeneracy

Logical: If TRUE, employ a check for model degeneracy.
MCMLE.MCMC.precision, MCMLE.MCMC.max.ESS.frac

MCMLE.MCMC.precision is a vector of upper bounds on the standard errors in-
duced by the MCMC algorithm, expressed as a percentage of the total standard
error. The MCMLE algorithm will terminate when the MCMC standard errors
are below the precision bound, and the Hummel step length is 1 for two consec-
utive iterations. This is an experimental feature.
If effective sample size is used (see MCMC.effectiveSize), then ergm may in-
crease the target ESS to reduce the MCMC standard error.

MCMLE.metric Method to calculate the loglikelihood approximation. See Hummel et al (2010)
for an explanation of "lognormal" and "naive".

MCMLE.method Deprecated. By default, ergm uses trust, and falls back to optim with Nelder-
Mead method when trust fails.

MCMLE.trustregion

Maximum increase the algorithm will allow for the approximated likelihood at
a given iteration. See Snijders (2002) for details.

control.ergm 21

Note that not all metrics abide by it.

MCMLE.dampening

(logical) Should likelihood dampening be used?

MCMLE.dampening.min.ess

The effective sample size below which dampening is used.

MCMLE.dampening.level

The proportional distance from boundary of the convex hull move.

MCMLE.steplength.margin

The extra margin required for a Hummel step to count as being inside the convex
hull of the sample. Set this to 0 if the step length gets stuck at the same value
over several iteraions. Set it to NULL to use fixed step length. Note that this
parameter is required to be non-NULL for MCMLE termination using Hummel
or precision criteria.

MCMLE.steplength

Multiplier for step length, which may (for values less than one) make fitting
more stable at the cost of computational efficiency. Can be set to "adaptive"; see
MCMLE.adaptive.trustregion.
If MCMLE.steplength.margin is not NULL, the step length will be set using the
algorithm of Hummel et al. (2010). In that case, it will serve as the maximum
step length considered. However, setting it to anything other than 1 will preclude
using Hummel or precision as termination criteria.

MCMLE.adaptive.trustregion

Maximum increase the algorithm will allow for the approximated loglikelihood
at a given iteration when MCMLE.steplength="adaptive".

MCMLE.sequential

Logical: If TRUE, the next iteration of the fit uses the last network sampled as
the starting network. If FALSE, always use the initially passed network. The
results should be similar (stochastically), but the TRUE option may help if the
target.stats in the ergm function are far from the initial network.

MCMLE.density.guard.min, MCMLE.density.guard

A simple heuristic to stop optimization if it finds itself in an overly dense re-
gion, which usually indicates ERGM degeneracy: if the sampler encounters a
network configuration that has more than MCMLE.density.guard.min edges
and whose number of edges is exceeds the observed network by more than
MCMLE.density.guard, the optimization process will be stopped with an error.

MCMLE.last.boost

For the Hummel termination criterion, increase the MCMC sample size of the
last iteration by this factor.

MCMLE.Hummel.esteq

For curved ERGMs, should the estimating function values be used to compute
the Hummel step length? This allows the Hummel stepping algorithm converge
when some sufficient statistics are at 0.

MCMLE.steplength.min

Stops MCMLE estimation when the step length gets stuck below this minimum
value.

22 control.ergm

MCMLE.Hummel.miss.sample

In fitting the missing data MLE, the rules for step length become more compli-
cated. In short, it is necessary for all points in the constrained sample to be in
the convex hull of the unconstrained (though they may be on the border); and it
is necessary for their centroid to be in its interior. This requires checking a large
number of points against whether they are in the convex hull, so to speed up
the procedure, a sample is taken of the points most likely to be outside it. This
parameter specifies the sample size.

MCMLE.Hummel.maxit

Maximum number of iterations in searching for the best step length.

SA.phase1_n Number of MCMC samples to draw in Phase 1 of the stochastic approximation
algorithm. Defaults to 7 plus 3 times the number of terms in the model. See
Snijders (2002) for details.

SA.initial_gain

Initial gain to Phase 2 of the stochastic approximation algorithm. See Snijders
(2002) for details.

SA.nsubphases Number of sub-phases in Phase 2 of the stochastic approximation algorithm.
Defaults to MCMLE.maxit. See Snijders (2002) for details.

SA.niterations Number of MCMC samples to draw in Phase 2 of the stochastic approximation
algorithm. Defaults to 7 plus the number of terms in the model. See Snijders
(2002) for details.

SA.phase3_n Sample size for the MCMC sample in Phase 3 of the stochastic approximation
algorithm. See Snijders (2002) for details.

SA.trustregion The trust region parameter for the likelihood functions, used in the stochastic
approximation algorithm.

RM.phase1n_base, RM.phase2n_base, RM.phase2sub, RM.init_gain, RM.phase3n

The Robbins-Monro control parameters are not yet documented.
Step.MCMC.samplesize

MCMC sample size for the preliminary steps of the "Stepping" method of opti-
mization. This is usually chosen to be smaller than the final MCMC sample size
(which equals MCMC.samplesize). See Hummel et al. (2012) for details.

Step.maxit Maximum number of iterations (steps) allowed by the "Stepping" method.

Step.gridsize Integer N such that the "Stepping" style of optimization chooses a step length
equal to the largest possible multiple of 1/N . See Hummel et al. (2012) for
details.

CD.nsteps, CD.multiplicity

Main settings for contrastive divergence to obtain initial values for the estima-
tion: respectively, the number of Metropolis–Hastings steps to take before re-
verting to the starting value and the number of tentative proposals per step. Com-
putational experiments indicate that increasing CD.multiplicity improves the
estimate faster than increasing CD.nsteps — up to a point — but it also samples
from the wrong distribution, in the sense that while as CD.nsteps→∞, the CD
estimate approaches the MLE, this is not the case for CD.multiplicity.
In practice, MPLE, when available, usually outperforms CD for even a very high
CD.nsteps (which is, in turn, not very stable), so CD is useful primarily when
MPLE is not available. This feature is to be considered experimental and in flux.

control.ergm 23

The default values have been set experimentally, providing a reasonably stable,
if not great, starting values.

CD.nsteps.obs, CD.multiplicity.obs

When there are missing dyads, CD.nsteps and CD.multiplicity must be set
to a relatively high value, as the network passed is not necessarily a good start
for CD. Therefore, these settings are in effect if there are missing dyads in the
observed network, using a higher default number of steps.

CD.maxit, CD.conv.min.pval, CD.NR.maxit, CD.NR.reltol, CD.metric, CD.method, CD.trustregion, CD.dampening, CD.dampening.min.ess, CD.dampening.level, CD.steplength.margin, CD.steplength, CD.adaptive.trustregion, CD.adaptive.epsilon, CD.Hummel.esteq, CD.Hummel.miss.sample, CD.Hummel.maxit, CD.steplength.min

Miscellaneous tuning parameters of the CD sampler and optimizer. These have
the same meaning as their MCMC.* counterparts.
Note that only the Hotelling’s stopping criterion is implemented for CD.

loglik.control See control.ergm.bridge

seed Seed value (integer) for the random number generator. See set.seed

parallel Number of threads in which to run the sampling. Defaults to 0 (no parallelism).
See the entry on parallel processing for details and troubleshooting.

parallel.type API to use for parallel processing. Supported values are "MPI" and "PSOCK".
Defaults to using the parallel package with PSOCK clusters. See ergm-parallel

parallel.version.check

Logical: If TRUE, check that the version of ergm running on the slave nodes is
the same as that running on the master node.

... Additional arguments, passed to other functions This argument is helpful be-
cause it collects any control parameters that have been deprecated; a warning
message is printed in case of deprecated arguments.

Details

This function is only used within a call to the ergm function. See the usage section in ergm for
details.

Value

A list with arguments as components.

References

• Snijders, T.A.B. (2002), Markov Chain Monte Carlo Estimation of Exponential Random
Graph Models. Journal of Social Structure. Available from http://www.cmu.edu/joss/
content/articles/volume3/Snijders.pdf.

• Firth (1993), Bias Reduction in Maximum Likelihood Estimates. Biometrika, 80: 27-38.
• Hunter, D. R. and M. S. Handcock (2006), Inference in curved exponential family models for

networks. Journal of Computational and Graphical Statistics, 15: 565-583.
• Hummel, R. M., Hunter, D. R., and Handcock, M. S. (2012), Improving Simulation-Based

Algorithms for Fitting ERGMs, Journal of Computational and Graphical Statistics, 21: 920-
939.

• Kristoffer Sahlin. Estimating convergence of Markov chain Monte Carlo simulations. Mas-
ter’s Thesis. Stockholm University, 2011. http://www2.math.su.se/matstat/reports/
master/2011/rep2/report.pdf

http://www.cmu.edu/joss/content/articles/volume3/Snijders.pdf
http://www.cmu.edu/joss/content/articles/volume3/Snijders.pdf
http://www2.math.su.se/matstat/reports/master/2011/rep2/report.pdf
http://www2.math.su.se/matstat/reports/master/2011/rep2/report.pdf

24 control.ergm.bridge

See Also

ergm. The control.simulate function performs a similar function for simulate.ergm; control.gof
performs a similar function for gof.

control.ergm.bridge Auxiliary for Controlling ergm.bridge

Description

Auxiliary function as user interface for fine-tuning ergm.bridge algorithm, which approximates log
likelihood ratios using bridge sampling.

Usage

control.ergm.bridge(nsteps=20,
MCMC.burnin=10000,
MCMC.interval=100,
MCMC.samplesize=10000,
obs.MCMC.samplesize=MCMC.samplesize,
obs.MCMC.interval=MCMC.interval,
obs.MCMC.burnin=MCMC.burnin,

MCMC.prop.weights="default",
MCMC.prop.args=list(),

MCMC.init.maxedges=20000,
MCMC.packagenames=c(),

seed=NULL,
parallel=0,
parallel.type=NULL,
parallel.version.check=TRUE)

Arguments

nsteps Number of geometric bridges to use.

MCMC.burnin Number of proposals before any MCMC sampling is done. It typically is set to
a fairly large number.

MCMC.interval Number of proposals between sampled statistics.
MCMC.samplesize

Number of network statistics, randomly drawn from a given distribution on the
set of all networks, returned by the Metropolis-Hastings algorithm.

obs.MCMC.burnin, obs.MCMC.interval, obs.MCMC.samplesize

The obs versions of these arguments are for the unobserved data simulation
algorithm.

control.ergm.bridge 25

MCMC.prop.weights

Specifies the proposal distribution used in the MCMC Metropolis-Hastings al-
gorithm. Possible choices are "TNT" or "random"; the "default" is one of these
two, depending on the constraints in place (as defined by the constraints ar-
gument of the ergm function), though not all weights may be used with all con-
straints. The TNT (tie / no tie) option puts roughly equal weight on selecting a
dyad with or without a tie as a candidate for toggling, whereas the random op-
tion puts equal weight on all possible dyads, though the interpretation of random
may change according to the constraints in place. When no constraints are in
place, the default is TNT, which appears to improve Markov chain mixing par-
ticularly for networks with a low edge density, as is typical of many realistic
social networks.

MCMC.prop.args An alternative, direct way of specifying additional arguments to proposal.

MCMC.init.maxedges

Maximum number of edges expected in network.

MCMC.packagenames

Names of packages in which to look for change statistic functions in addition to
those autodetected. This argument should not be needed outside of very strange
setups.

seed Seed value (integer) for the random number generator. See set.seed

parallel Number of threads in which to run the sampling. Defaults to 0 (no parallelism).
See the entry on parallel processing for details and troubleshooting.

parallel.type API to use for parallel processing. Supported values are "MPI" and "PSOCK".
Defaults to using the parallel package with PSOCK clusters. See ergm-parallel

parallel.version.check

Logical: If TRUE, check that the version of ergm running on the slave nodes is
the same as that running on the master node.

Details

This function is only used within a call to the ergm.bridge.llr or ergm.bridge.dindstart.llk
functions.

Value

A list with arguments as components.

See Also

ergm.bridge.llr, ergm.bridge.dindstart.llk

26 control.gof

control.gof Auxiliary for Controlling ERGM Goodness-of-Fit Evaluation

Description

Auxiliary function as user interface for fine-tuning ERGM Goodness-of-Fit Evaluation.

Usage

control.gof.formula(nsim=100,
MCMC.burnin=10000,
MCMC.interval=1000,
MCMC.prop.weights="default",
MCMC.prop.args=list(),

MCMC.init.maxedges=20000,
MCMC.packagenames=c(),

MCMC.runtime.traceplot=FALSE,
network.output="network",

seed=NULL,
parallel=0,
parallel.type=NULL,
parallel.version.check=TRUE)

control.gof.ergm(nsim=100,
MCMC.burnin=NULL,
MCMC.interval=NULL,
MCMC.prop.weights=NULL,
MCMC.prop.args=NULL,

MCMC.init.maxedges=NULL,
MCMC.packagenames=NULL,

MCMC.runtime.traceplot=FALSE,
network.output="network",

seed=NULL,
parallel=0,
parallel.type=NULL,
parallel.version.check=TRUE)

Arguments

nsim Number of networks to be randomly drawn using Markov chain Monte Carlo.
This sample of networks provides the basis for comparing the model to the ob-
served network.

control.gof 27

MCMC.burnin Number of proposals before any MCMC sampling is done. It typically is set to
a fairly large number.

MCMC.interval Number of proposals between sampled statistics.
MCMC.prop.weights

Specifies the proposal distribution used in the MCMC Metropolis-Hastings al-
gorithm. Possible choices are "TNT" or "random"; the "default" is one of these
two, depending on the constraints in place (as defined by the constraints ar-
gument of the ergm function), though not all weights may be used with all con-
straints. The TNT (tie / no tie) option puts roughly equal weight on selecting a
dyad with or without a tie as a candidate for toggling, whereas the random op-
tion puts equal weight on all possible dyads, though the interpretation of random
may change according to the constraints in place. When no constraints are in
place, the default is TNT, which appears to improve Markov chain mixing par-
ticularly for networks with a low edge density, as is typical of many realistic
social networks.

MCMC.prop.args An alternative, direct way of specifying additional arguments to proposal.
MCMC.init.maxedges

Maximum number of edges expected in network.
MCMC.packagenames

Names of packages in which to look for change statistic functions in addition to
those autodetected. This argument should not be needed outside of very strange
setups.

MCMC.runtime.traceplot

Logical: If TRUE, plot traceplots of the MCMC sample after every MCMC
MLE iteration.

network.output R class with which to output networks. The options are "network" (default) and
"edgelist.compressed" (which saves space but only supports networks without
vertex attributes)

seed Seed value (integer) for the random number generator. See set.seed

parallel Number of threads in which to run the sampling. Defaults to 0 (no parallelism).
See the entry on parallel processing for details and troubleshooting.

parallel.type API to use for parallel processing. Supported values are "MPI" and "PSOCK".
Defaults to using the parallel package with PSOCK clusters. See ergm-parallel

parallel.version.check

Logical: If TRUE, check that the version of ergm running on the slave nodes is
the same as that running on the master node.

Details

This function is only used within a call to the gof function. See the usage section in gof for details.

Value

A list with arguments as components.

28 control.logLik.ergm

See Also

gof. The control.simulate function performs a similar function for simulate.ergm; control.ergm
performs a similar function for ergm.

control.logLik.ergm Auxiliary for Controlling logLik.ergm

Description

Auxiliary function as user interface for fine-tuning logLik.ergm algorithm, which approximates log
likelihood values.

Usage

control.logLik.ergm(nsteps=20,
MCMC.burnin=NULL,
MCMC.interval=NULL,
MCMC.samplesize=NULL,
obs.MCMC.samplesize=MCMC.samplesize,
obs.MCMC.interval=MCMC.interval,
obs.MCMC.burnin=MCMC.burnin,

MCMC.prop.weights=NULL,
MCMC.prop.args=NULL,
warn.dyads=TRUE,

MCMC.init.maxedges=NULL,
MCMC.packagenames=NULL,

seed=NULL,
parallel = NULL,
parallel.type = NULL,
parallel.version.check = TRUE)

Arguments

nsteps Number of geometric bridges to use.

MCMC.burnin Number of proposals before any MCMC sampling is done. It typically is set to
a fairly large number.

MCMC.interval Number of proposals between sampled statistics.
MCMC.samplesize

Number of network statistics, randomly drawn from a given distribution on the
set of all networks, returned by the Metropolis-Hastings algorithm.

obs.MCMC.burnin, obs.MCMC.interval, obs.MCMC.samplesize

The obs versions of these arguments are for the unobserved data simulation
algorithm.

control.logLik.ergm 29

MCMC.prop.weights

Specifies the proposal distribution used in the MCMC Metropolis-Hastings al-
gorithm. Possible choices are "TNT" or "random"; the "default" is one of these
two, depending on the constraints in place (as defined by the constraints ar-
gument of the ergm function), though not all weights may be used with all con-
straints. The TNT (tie / no tie) option puts roughly equal weight on selecting a
dyad with or without a tie as a candidate for toggling, whereas the random op-
tion puts equal weight on all possible dyads, though the interpretation of random
may change according to the constraints in place. When no constraints are in
place, the default is TNT, which appears to improve Markov chain mixing par-
ticularly for networks with a low edge density, as is typical of many realistic
social networks.

MCMC.prop.args An alternative, direct way of specifying additional arguments to proposal.

warn.dyads Whether or not a warning should be issued when sample space constraints render
the observed number of dyads ill-defined.

MCMC.init.maxedges

Maximum number of edges expected in network.

MCMC.packagenames

Names of packages in which to look for change statistic functions in addition to
those autodetected. This argument should not be needed outside of very strange
setups.

seed Seed value (integer) for the random number generator. See set.seed

parallel Number of threads in which to run the sampling. Defaults to 0 (no parallelism).
See the entry on parallel processing for details and troubleshooting.

parallel.type API to use for parallel processing. Supported values are "MPI" and "PSOCK".
Defaults to using the parallel package with PSOCK clusters. See ergm-parallel

parallel.version.check

Logical: If TRUE, check that the version of ergm running on the slave nodes is
the same as that running on the master node.

Details

This function is only used within a call to the logLik.ergm function.

Value

A list with arguments as components.

See Also

logLik.ergm

30 control.san

control.san Auxiliary for Controlling SAN

Description

Auxiliary function as user interface for fine-tuning simulated annealing algorithm.

Usage

control.san(coef=NULL,

SAN.tau=1,
SAN.invcov=NULL,
SAN.burnin=100000,
SAN.interval=10000,
SAN.init.maxedges=20000,

SAN.prop.weights="default",
SAN.prop.args=list(),
SAN.packagenames=c(),

MPLE.max.dyad.types=1e6,
MPLE.samplesize = 50000,

network.output="network",

seed=NULL,
parallel=0,
parallel.type=NULL,
parallel.version.check=TRUE)

Arguments

coef Vector of model coefficients used for MCMC simulations, one for each model
term.

SAN.tau Currently unused.

SAN.invcov Initial inverse covariance matrix used to calculate Mahalanobis distance in de-
termining how far a proposed MCMC move is from the target.stats vector.
If NULL, taken to be the covariance matrix returned when fitting the MPLE if
coef==NULL, or the identity matrix otherwise.

SAN.burnin Number of MCMC proposals before any sampling is done.

SAN.interval Number of proposals between sampled statistics.
SAN.init.maxedges

Maximum number of edges expected in network.

control.san 31

SAN.prop.weights

Specifies the method to allocate probabilities of being proposed to dyads. De-
faults to "default", which picks a reasonable default for the specified con-
straint. Other possible values are "TNT", "random", and "nonobserved", though
not all values may be used with all possible constraints.

SAN.prop.args An alternative, direct way of specifying additional arguments to proposal.

SAN.packagenames

Names of packages in which to look for change statistic functions in addition to
those autodetected. This argument should not be needed outside of very strange
setups.

MPLE.max.dyad.types

Maximum number of unique values of change statistic vectors, which are the
predictors in a logistic regression used to calculate the MPLE. This calculation
uses a compression algorithm that allocates space based on MPLE.max.dyad.types

MPLE.samplesize

Not currently documented; used in conditional-on-degree version of MPLE.

network.output R class with which to output networks. The options are "network" (default) and
"edgelist.compressed" (which saves space but only supports networks without
vertex attributes)

seed Seed value (integer) for the random number generator. See set.seed

parallel Number of threads in which to run the sampling. Defaults to 0 (no parallelism).
See the entry on parallel processing for details and troubleshooting.

parallel.type API to use for parallel processing. Supported values are "MPI" and "PSOCK".
Defaults to using the parallel package with PSOCK clusters. See ergm-parallel

parallel.version.check

Logical: If TRUE, check that the version of ergm running on the slave nodes is
the same as that running on the master node.

Details

This function is only used within a call to the san function. See the usage section in san for details.

Value

A list with arguments as components.

See Also

san

32 control.simulate

control.simulate Auxiliary for Controlling ERGM Simulation

Description

Auxiliary function as user interface for fine-tuning ERGM simulation.

Usage

control.simulate(MCMC.burnin=10000,
MCMC.interval=1000,
MCMC.prop.weights="default",
MCMC.prop.args=list(),
MCMC.init.maxedges=20000,
MCMC.packagenames=c(),
MCMC.runtime.traceplot=FALSE,
network.output="network",

parallel=0,
parallel.type=NULL,
parallel.version.check=TRUE,
...)

control.simulate.formula(MCMC.burnin=10000,
MCMC.interval=1000,
MCMC.prop.weights="default",
MCMC.prop.args=list(),
MCMC.init.maxedges=20000,
MCMC.packagenames=c(),
MCMC.runtime.traceplot=FALSE,
network.output="network",

parallel=0,
parallel.type=NULL,
parallel.version.check=TRUE,
...)

control.simulate.formula.ergm(MCMC.burnin=10000,
MCMC.interval=1000,
MCMC.prop.weights="default",
MCMC.prop.args=list(),
MCMC.init.maxedges=20000,
MCMC.packagenames=c(),
MCMC.runtime.traceplot=FALSE,
network.output="network",

parallel=0,

control.simulate 33

parallel.type=NULL,
parallel.version.check=TRUE,
...)

control.simulate.ergm(MCMC.burnin=NULL,
MCMC.interval=NULL,
MCMC.prop.weights=NULL,
MCMC.prop.args=NULL,
MCMC.init.maxedges=NULL,
MCMC.packagenames=NULL,
MCMC.runtime.traceplot=FALSE,
network.output="network",

parallel=0,
parallel.type=NULL,
parallel.version.check=TRUE,
...)

Arguments

MCMC.prop.weights

Specifies the proposal distribution used in the MCMC Metropolis-Hastings al-
gorithm. Possible choices are "TNT" or "random"; the "default" is one of these
two, depending on the constraints in place (as defined by the constraints ar-
gument of the ergm function), though not all weights may be used with all con-
straints. The TNT (tie / no tie) option puts roughly equal weight on selecting a
dyad with or without a tie as a candidate for toggling, whereas the random op-
tion puts equal weight on all possible dyads, though the interpretation of random
may change according to the constraints in place. When no constraints are in
place, the default is TNT, which appears to improve Markov chain mixing par-
ticularly for networks with a low edge density, as is typical of many realistic
social networks.

MCMC.prop.args An alternative, direct way of specifying additional arguments to proposal.
MCMC.burnin Number of proposals before any MCMC sampling is done. It typically is set to

a fairly large number.
MCMC.interval Number of proposals between sampled statistics.
MCMC.init.maxedges

Maximum number of edges expected in network.
MCMC.packagenames

Names of packages in which to look for change statistic functions in addition to
those autodetected. This argument should not be needed outside of very strange
setups.

MCMC.runtime.traceplot

Logical: If TRUE, plot traceplots of the MCMC sample after every MCMC
MLE iteration.

network.output R class with which to output networks. The options are "network" (default) and
"edgelist.compressed" (which saves space but only supports networks without
vertex attributes)

34 degreedist

parallel Number of threads in which to run the sampling. Defaults to 0 (no parallelism).
See the entry on parallel processing for details and troubleshooting.

parallel.type API to use for parallel processing. Supported values are "MPI" and "PSOCK".
Defaults to using the parallel package with PSOCK clusters. See ergm-parallel

parallel.version.check

Logical: If TRUE, check that the version of ergm running on the slave nodes is
the same as that running on the master node.

... Additional arguments, passed to other functions This argument is helpful be-
cause it collects any control parameters that have been deprecated; a warning
message is printed in case of deprecated arguments.

Details

This function is only used within a call to the simulate function. See the usage section in
simulate.ergm for details.

Value

A list with arguments as components.

See Also

simulate.ergm, simulate.formula. control.ergm performs a similar function for ergm; control.gof
performs a similar function for gof.

degreedist Computes and Returns the Degree Distribution Information for a
Given Network

Description

The degreedist function computes and returns the degree distribution (number of vertices in the
network with each degree value) for a given network.

The degreedistfactor function returns the cross table of the degree distribution for a network and
a given factor (vertex attribute name)

Usage

degreedist(g, print = TRUE)

Arguments

g a network object

print logical, whether to print the degree distribution; default=TRUE

ecoli 35

Details

Calculates the degrees using the appropriate ergm terms for for network type.

Value

• if directed – a matrix of the distributions of in and out degrees; this is row bound and only
contains degrees for which one of the in or out distributions has a positive count

• if bipartite – a list containing the degree distributions of b1 and b2

• otherwise – a vector of the positive values in the degree distribution

Examples

data(faux.mesa.high)
degreedist(faux.mesa.high)

ecoli Two versions of an E. Coli network dataset

Description

This network data set comprises two versions of a biological network in which the nodes are operons
in Escherichia Coli and a directed edge from one node to another indicates that the first encodes the
transcription factor that regulates the second.

Usage

data(ecoli)

Details

The network object ecoli1 is directed, with 423 nodes and 519 arcs. The object ecoli2 is an
undirected version of the same network, in which all arcs are treated as edges and the five isolated
nodes (which exhibit only self-regulation in ecoli1) are removed, leaving 418 nodes.

Licenses and Citation

When publishing results obtained using this data set, the original authors (Salgado et al, 2001;
Shen-Orr et al, 2002) should be cited, along with this R package.

Source

The data set is based on the RegulonDB network (Salgado et al, 2001) and was modified by Shen-
Orr et al (2002).

36 enformulate.curved

References

Salgado et al (2001), Regulondb (version 3.2): Transcriptional Regulation and Operon Organization
in Escherichia Coli K-12, Nucleic Acids Research, 29(1): 72-74.

Shen-Orr et al (2002), Network Motifs in the Transcriptional Regulation Network of Escerichia
Coli, Nature Genetics, 31(1): 64-68.

enformulate.curved Convert a curved ERGM into a form suitable as initial values for the
same ergm.

Description

The generic enformulate.curved converts an ergm object or formula of a model with curved terms
to the variant in which the curved parameters embedded into the formula and are removed from the
parameter vector. This is the form required by ergm calls.

Usage

S3 method for class 'ergm'
enformulate.curved(object, ...)
S3 method for class 'formula'
enformulate.curved(object, theta, response=NULL, ...)

Arguments

object An ergm object or an ERGM formula. The curved terms of the given formula
(or the formula used in the fit) must have all of their arguments passed by name.

theta Curved model parameter configuration.

response Not for release.

... Unused at this time.

Details

Because of a current kludge in ergm, output from one run cannot be directly passed as initial values
(control.ergm(init=)) for the next run if any of the terms are curved. One workaround is to
embed the curved parameters into the formula (while keeping fixed=FALSE) and remove them
from control.ergm(init=).

This function automates this process for curved ERGM terms included with the ergm package. It
does not work with curved terms not included in ergm.

Value

A list with the following components:

formula The formula with curved parameter estimates incorporated.

theta The coefficient vector with curved parameter estimates removed.

ergm 37

See Also

ergm, simulate.ergm

Examples

data(sampson)
gest<-ergm(samplike~edges+gwesp(alpha=.5, fixed=FALSE),

control=control.ergm(MCMLE.maxit=1))
Error:
gest2<-try(ergm(gest$formula, control=control.ergm(init=coef(gest), MCMLE.maxit=2)))
print(gest2)

Works:
tmp<-enformulate.curved(gest)
tmp
gest2<-try(ergm(tmp$formula, control=control.ergm(init=tmp$theta, MCMLE.maxit=2)))
summary(gest2)

ergm Exponential-Family Random Graph Models

Description

ergm is used to fit exponential-family random graph models (ERGMs), in which the probability of
a given network, y, on a set of nodes is h(y) exp{η(θ) · g(y)}/c(θ), where h(y) is the reference
measure (usually h(y) = 1), g(y) is a vector of network statistics for y, η(θ) is a natural parameter
vector of the same length (with η(θ) = θ for most terms), and c(θ) is the normalizing constant
for the distribution. ergm can return a maximum pseudo-likelihood estimate, an approximate maxi-
mum likelihood estimate based on a Monte Carlo scheme, or an approximate contrastive divergence
estimate based on a similar scheme.

(For an overview of the package, see ergm-package.)

Usage

ergm (formula,
response=NULL,
reference=~Bernoulli,
constraints=~.,
offset.coef=NULL,
target.stats=NULL,
eval.loglik=TRUE,
estimate=c("MLE", "MPLE", "CD"),
control=control.ergm(),
verbose=FALSE,
...)

38 ergm

Arguments

formula An R formula object, of the form y ~ <model terms>, where y is a network
object or a matrix that can be coerced to a network object. For the details
on the possible <model terms>, see ergm-terms and Morris, Handcock and
Hunter (2008) for binary ERGM terms and Krivitsky (2012) for valued ERGM
terms (terms for weighted edges). To create a network object in R, use the
network() function, then add nodal attributes to it using the %v% operator if
necessary. Enclosing a model term in offset() fixes its value to one specified
in offset.coef.

response Name of the edge attribute whose value is to be modeled. Defaults to NULL for
simple presence or absence, modeled via binary ERGM terms. Passing anything
but NULL uses valued ERGM terms.

reference A one-sided formula specifying the reference measure (h(y)) to be used. (De-
faults to ~Bernoulli.) See help for ERGM reference measures implemented in
the ergm package.

constraints A one-sided formula specifying one or more constraints on the support of the
distribution of the networks being modeled, using syntax similar to the formula
argument. Multiple constraints may be given, separated by “+” operators. To-
gether with the model terms in the formula and the reference measure, the con-
straints define the distribution of networks being modeled.
It is also possible to specify a proposal function directly by passing a string with
the function’s name. In that case, arguments to the proposal should be specified
through the prop.args argument to control.ergm.
The default is ~., for an unconstrained model.
See the ERGM constraints documentation for the constraints implemented in
the ergm package. Other packages may add their own constraints.
Note that not all possible combinations of constraints and reference measures
are supported.

offset.coef A vector of coefficients for the offset terms.

target.stats vector of "observed network statistics," if these statistics are for some reason dif-
ferent than the actual statistics of the network on the left-hand side of formula.
Equivalently, this vector is the mean-value parameter values for the model. If
this is given, the algorithm finds the natural parameter values corresponding to
these mean-value parameters. If NULL, the mean-value parameters used are the
observed statistics of the network in the formula.

eval.loglik Logical: For dyad-dependent models, if TRUE, use bridge sampling to evaluate
the log-likelihoood associated with the fit. Has no effect for dyad-independent
models. Since bridge sampling takes additional time, setting to FALSE may
speed performance if likelihood values (and likelihood-based values like AIC
and BIC) are not needed.

estimate If "MPLE," then the maximum pseudolikelihood estimator is returned. If "MLE"
(the default), then an approximate maximum likelihood estimator is returned.
For certain models, the MPLE and MLE are equivalent, in which case this ar-
gument is ignored. (To force MCMC-based approximate likelihood calculation
even when the MLE and MPLE are the same, see the force.main argument

ergm 39

of control.ergm. If "CD" (EXPERIMENTAL), the Monte-Carlo contrastive
divergence estimate is returned.)

control A list of control parameters for algorithm tuning. Constructed using control.ergm.

verbose logical; if this is TRUE, the program will print out additional information, includ-
ing goodness of fit statistics.

... Additional arguments, to be passed to lower-level functions.

Value

ergm returns an object of class ergm that is a list consisting of the following elements:

coef The Monte Carlo maximum likelihood estimate of θ, the vector of coefficients
for the model parameters.

sample The n × p matrix of network statistics, where n is the sample size and p is the
number of network statistics specified in the model, that is used in the maximum
likelihood estimation routine.

sample.obs As sample, but for the constrained sample.

iterations The number of Newton-Raphson iterations required before convergence.

MCMCtheta The value of θ used to produce the Markov chain Monte Carlo sample. As
long as the Markov chain mixes sufficiently well, sample is roughly a random
sample from the distribution of network statistics specified by the model with the
parameter equal to MCMCtheta. If estimate="MPLE" then MCMCtheta equals the
MPLE.

loglikelihood The approximate change in log-likelihood in the last iteration. The value is only
approximate because it is estimated based on the MCMC random sample.

gradient The value of the gradient vector of the approximated loglikelihood function,
evaluated at the maximizer. This vector should be very close to zero.

covar Approximate covariance matrix for the MLE, based on the inverse Hessian of
the approximated loglikelihood evaluated at the maximizer.

failure Logical: Did the MCMC estimation fail?

network Original network

newnetwork The final network at the end of the MCMC simulation

coef.init The initial value of θ.

est.cov The covariance matrix of the model statistics in the final MCMC sample.
coef.hist, steplen.hist, stats.hist, stats.obs.hist

For the MCMLE method, the history of coefficients, Hummel step lengths, and
average model statistics for each iteration..

control The control list passed to the call.

etamap The set of functions mapping the true parameter theta to the canonical parameter
eta (irrelevant except in a curved exponential family model)

formula The original formula entered into the ergm function.

target.stats The target.stats used during estimation (passed through from the Arguments)

40 ergm

target.esteq Used for curved models to preserve the target mean values of the curved terms.
It is identical to target.stats for non-curved models.

constrained The list of constraints implied by the constraints used by original ergm call

constraints Constraints used during estimation (passed through from the Arguments)

reference The reference measure used during estimation (passed through from the Argu-
ments)

estimate The estimation method used (passed through from the Arguments).

offset vector of logical telling which model parameters are to be set at a fixed value
(i.e., not estimated).

drop If control$drop=TRUE, a numeric vector indicating which terms were dropped
due to to extreme values of the corresponding statistics on the observed network,
and how:

0 The term was not dropped.
-1 The term was at its minimum and the coefficient was fixed at -Inf.
+1 The term was at its maximum and the coefficient was fixed at +Inf.

estimable A logical vector indicating which terms could not be estimated due to a constraints
constraint fixing that term at a constant value.

null.lik Log-likelihood of the null model. Valid only for unconstrained models.

mle.lik The approximate log-likelihood for the MLE. The value is only approximate
because it is estimated based on the MCMC random sample.

degeneracy.value

Score calculated to assess the degree of degeneracy in the model. Only shows
when MCMLE.check.degeneracy is TRUE in control.ergm.

degeneracy.type

Supporting output for degeneracy.value. Only shows when MCMLE.check.degeneracy
is TRUE in control.ergm. Mainly for internal use.

See the method print.ergm for details on how an ergm object is printed. Note that the method
summary.ergm returns a summary of the relevant parts of the ergm object in concise summary
format.

Notes on model specification

Although each of the statistics in a given model is a summary statistic for the entire network, it is
rarely necessary to calculate statistics for an entire network in a proposed Metropolis-Hastings step.

Thus, for example, if the triangle term is included in the model, a census of all triangles in the
observed network is never taken; instead, only the change in the number of triangles is recorded for
each edge toggle.

In the implementation of ergm, the model is initialized in R, then all the model information is passed
to a C program that generates the sample of network statistics using MCMC. This sample is then
returned to R, which implements a simple Newton-Raphson algorithm to approximate the MLE. An
alternative style of maximum likelihood estimation is to use a stochastic approximation algorithm.
This can be chosen with the control.ergm(style="Robbins-Monro") option.

The mechanism for proposing new networks for the MCMC sampling scheme, which is a Metropolis-
Hastings algorithm, depends on two things: The constraints, which define the set of possible

ergm 41

networks that could be proposed in a particular Markov chain step, and the weights placed on these
possible steps by the proposal distribution. The former may be controlled using the constraints
argument described above. The latter may be controlled using the prop.weights argument to the
control.ergm function.

The package is designed so that the user could conceivably add additional proposal types.

References

Admiraal R, Handcock MS (2007). networksis: Simulate bipartite graphs with fixed marginals
through sequential importance sampling. Statnet Project, Seattle, WA. Version 1. statnet.org.

Bender-deMoll S, Morris M, Moody J (2008). Prototype Packages for Managing and Animating
Longitudinal Network Data: dynamicnetwork and rSoNIA. Journal of Statistical Software, 24(7).
http://www.jstatsoft.org/v24/i07/.

Butts CT (2007). sna: Tools for Social Network Analysis. R package version 2.3-2. http://CRAN.
R-project.org/package=sna.

Butts CT (2008). network: A Package for Managing Relational Data in R. Journal of Statistical
Software, 24(2). http://www.jstatsoft.org/v24/i02/.

Butts C (2015). network: The Statnet Project (http://www.statnet.org). R package version 1.12.0,
http://CRAN.R-project.org/package=network.

Goodreau SM, Handcock MS, Hunter DR, Butts CT, Morris M (2008a). A statnet Tutorial. Journal
of Statistical Software, 24(8). http://www.jstatsoft.org/v24/i08/.

Goodreau SM, Kitts J, Morris M (2008b). Birds of a Feather, or Friend of a Friend? Using Ex-
ponential Random Graph Models to Investigate Adolescent Social Networks. Demography, 45, in
press.

Handcock, M. S. (2003) Assessing Degeneracy in Statistical Models of Social Networks, Working
Paper \#39, Center for Statistics and the Social Sciences, University of Washington. www.csss.
washington.edu/Papers/wp39.pdf

Handcock MS (2003b). degreenet: Models for Skewed Count Distributions Relevant to Networks.
Statnet Project, Seattle, WA. Version 1.0, statnet.org.

Handcock MS, Hunter DR, Butts CT, Goodreau SM, Morris M (2003a). ergm: A Package to Fit,
Simulate and Diagnose Exponential-Family Models for Networks. Statnet Project, Seattle, WA.
Version 2, statnet.org.

Handcock MS, Hunter DR, Butts CT, Goodreau SM, Morris M (2003b). statnet: Software Tools for
the Statistical Modeling of Network Data. Statnet Project, Seattle, WA. Version 2, statnet.org.

Hunter, D. R. and Handcock, M. S. (2006) Inference in curved exponential family models for net-
works, Journal of Computational and Graphical Statistics.

Hunter DR, Handcock MS, Butts CT, Goodreau SM, Morris M (2008b). ergm: A Package to Fit,
Simulate and Diagnose Exponential-Family Models for Networks. Journal of Statistical Software,
24(3). http://www.jstatsoft.org/v24/i03/.

Krivitsky PN (2012). Exponential-Family Random Graph Models for Valued Networks. Electronic
Journal of Statistics, 2012, 6, 1100-1128. doi:10.1214/12-EJS696

Morris M, Handcock MS, Hunter DR (2008). Specification of Exponential-Family Random Graph
Models: Terms and Computational Aspects. Journal of Statistical Software, 24(4). http://www.
jstatsoft.org/v24/i04/.

statnet.org
http://www.jstatsoft.org/v24/i07/
http://CRAN.R-project.org/package=sna
http://CRAN.R-project.org/package=sna
http://www.jstatsoft.org/v24/i02/
http://CRAN.R-project.org/package=network
http://www.jstatsoft.org/v24/i08/
www.csss.washington.edu/Papers/wp39.pdf
www.csss.washington.edu/Papers/wp39.pdf
statnet.org
statnet.org
statnet.org
http://www.jstatsoft.org/v24/i03/
http://dx.doi.org/10.1214/12-EJS696
http://www.jstatsoft.org/v24/i04/
http://www.jstatsoft.org/v24/i04/

42 ergm

Snijders, T.A.B. (2002), Markov Chain Monte Carlo Estimation of Exponential Random Graph
Models. Journal of Social Structure. Available from http://www.cmu.edu/joss/content/articles/
volume3/Snijders.pdf.

See Also

network, %v%, %n%, ergm-terms, ergmMPLE, summary.ergm, print.ergm

Examples

#
load the Florentine marriage data matrix
#
data(flo)
#
attach the sociomatrix for the Florentine marriage data
This is not yet a network object.
#
flo
#
Create a network object out of the adjacency matrix
#
flomarriage <- network(flo,directed=FALSE)
flomarriage
#
print out the sociomatrix for the Florentine marriage data
#
flomarriage[,]
#
create a vector indicating the wealth of each family (in thousands of lira)
and add it as a covariate to the network object
#
flomarriage %v% "wealth" <- c(10,36,27,146,55,44,20,8,42,103,48,49,10,48,32,3)
flomarriage
#
create a plot of the social network
#
plot(flomarriage)
#
now make the vertex size proportional to their wealth
#
plot(flomarriage, vertex.cex=flomarriage %v% "wealth" / 20, main="Marriage Ties")
#
Use 'data(package = "ergm")' to list the data sets in a
#
data(package="ergm")
#
Load a network object of the Florentine data
#
data(florentine)
#

http://www.cmu.edu/joss/content/articles/volume3/Snijders.pdf
http://www.cmu.edu/joss/content/articles/volume3/Snijders.pdf

ergm-constraints 43

Fit a model where the propensity to form ties between
families depends on the absolute difference in wealth
#
gest <- ergm(flomarriage ~ edges + absdiff("wealth"))
summary(gest)
#
add terms for the propensity to form 2-stars and triangles
of families
#
gest <- ergm(flomarriage ~ kstar(1:2) + absdiff("wealth") + triangle)
summary(gest)

import synthetic network that looks like a molecule
data(molecule)
Add a attribute to it to mimic the atomic type
molecule %v% "atomic type" <- c(1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3)
#
create a plot of the social network
colored by atomic type
#
plot(molecule, vertex.col="atomic type",vertex.cex=3)

measure tendency to match within each atomic type
gest <- ergm(molecule ~ edges + kstar(2) + triangle + nodematch("atomic type"),

control=control.ergm(MCMC.samplesize=10000))
summary(gest)

compare it to differential homophily by atomic type
gest <- ergm(molecule ~ edges + kstar(2) + triangle

+ nodematch("atomic type",diff=TRUE),
control=control.ergm(MCMC.samplesize=10000))

summary(gest)

ergm-constraints Sample Space Constraints for Exponential-Family Random Graph
Models

Description

ergm is used to fit exponential-family random graph models (ERGMs), in which the probability of
a given network, y, on a set of nodes is h(y) exp{η(θ) · g(y)}/c(θ), where h(y) is the reference
measure (usually h(y) = 1), g(y) is a vector of network statistics for y, η(θ) is a natural parameter
vector of the same length (with η(θ) = θ for most terms), and c(θ) is the normalizing constant for
the distribution.

This page describes the constraints (the networks y for which h(y) > 0) that are included with the
ergm package. Other packages may add new constraints.

44 ergm-constraints

Constraints implemented in the ergm package

. or NULL A placeholder for no constraints: all networks of a particular size and type have non-zero
probability. Cannot be combined with other constraints.

bd(attribs,maxout,maxin,minout,minin) Constrain maximum and minimum vertex degree.
See “Placing Bounds on Degrees” section for more information.

blockdiag(attrname) Force a block-diagonal structure (and its bipartite analogue) on the net-
work. Only dyads (i, j) for which attrname(i)==attrname(j) can have edges.
Note that the current implementation requires that blocks be contiguous for “unipartite” graphs,
and for bipartite graphs, they must be contiguous within a partition and must have the same
ordering in both partitions. (They do not, however, require that all blocks be represented in
both partitions, but those that overlap must have the same order.)

degrees and nodedegrees Preserve the degree of each vertex of the given network: only networks
whose vertex degrees are the same as those in the network passed in the model formula have
non-zero probability. If the network is directed, both indegree and outdegree are preserved.

odegrees, idegrees, b1degrees, b2degrees For directed networks, odegrees preserves the out-
degree of each vertex of the given network, while allowing indegree to vary, and conversely
for idegrees. b1degrees and b2degrees perform a similar function for bipartite networks.

degreedist Preserve the degree distribution of the given network: only networks whose degree
distributions are the same as those in the network passed in the model formula have non-zero
probability.

idegreedist and odegreedist Preserve the (respectively) indegree or outdegree distribution of
the given network.

edges Preserve the edge count of the given network: only networks having the same number of
edges as the network passed in the model formula have non-zero probability.

observed Preserve the observed dyads of the given network.

fixedas(present,absent) Preserve the edges in ’present’ and preclude the edges in ’absent’.
Both ’present’ and ’absent’ can take input object as edgelist and network, the latter will convert
to the corresponding edgelist.

fixallbut(free.dyads) Preserve the dyad status in all but free.dyads. free.dyads can take input
object as edgelist and network, the latter will convert to the corresponding edgelist.
Not all combinations of the above are supported.

Placing Bounds on Degrees:

There are many times when one may wish to condition on the number of inedges or outedges
possessed by a node, either as a consequence of some intrinsic property of that node (e.g., to control
for activity or popularity processes), to account for known outliers of some kind, and thus we wish
to limit its indegree, an intrinsic property of the sampling scheme whence came our data (e.g., the
survey asked everyone to name only three friends total) or as a function of the attributes of the nodes
to which a node has edges (e.g., we specify that nodes designated “male” have a maximum number
of outdegrees to nodes designated “female”). To accomplish this we use the constraints term bd.

Let’s consider the simple cases first. Suppose you want to condition on the total number of degrees
regardless of attributes. That is, if you had a survey that asked respondents to name three alters and
no more, then you might want to limit your maximal outdegree to three without regard to any of the
alters’ attributes. The argument is then:

ergm-constraints 45

constraints=~bd(maxout=3)

Similar calls are used to restrict the number of indegrees (maxin), the minimum number of outde-
grees (minout), and the minimum number of indegrees (minin).

You can also set ego specific limits. For example:

constraints=bd(maxout=rep(c(3,4),c(36,35)))

limits the first 36 to 3 and the other 35 to 4 outdegrees.

Multiple restrictions can be combined. bd is very flexible. In general, the bd term can contain up to
five arguments:

bd(attribs=attribs,
maxout=maxout,
maxin=maxin,
minout=minout,
minin=minin)

Omitted arguments are unrestricted, and arguments of length 1 are replicated out to all nodes (as
above). If an individual entry in maxout,..., minin is NA then no restriction of that kind is applied to
that actor.

In general, attribs is a matrix of the attributes on which we are conditioning. The dimensions
of attribs are n_nodes rows by attrcount columns, where attrcount is the number of distinct
attribute values on which we want to condition (i.e., a separate column is required for “male” and
“female” if we want to condition on the number of ties to both “male” and “female” partners). The
value of attribs[n, i], therefore, is TRUE if node n has attribute value i, and FALSE otherwise.
(Note that, since each column represents only a single value of a single attribute, the values of this
matrix are all Boolean (TRUE or FALSE).) It is important to note that attribs is a matrix of nodal
attributes, not alter attributes.

So, for instance, if we wanted to construct an attribs matrix with two columns, one each for male
and female attribute values (we are conditioning on these values of the attribute “sex”), and the
attribute sex is represented in ads.sex as an n_node-long vector of 0s and 1s (men and women), then
our code would look as follows:

male column: bit vector, TRUE for males
attrsex1 <- (ads.sex == 0)
female column: bit vector, TRUE for females
attrsex2 <- (ads.sex == 1)
now create attribs matrix
attribs <- matrix(ncol=2,nrow=71, data=c(attrsex1,attrsex2))

maxout is a matrix of alter attributes, with the same dimensions as the attribs matrix. maxout
is n_nodes rows by attrcount columns. The value of maxout[n,i], therefore, is the maximum
number of outdegrees permitted from node n to nodes with the attribute i (where a NA means there
is no maximum).

For example: if we wanted to create a maxout matrix to work with our attribs matrix above, with
a maximum from every node of five outedges to males and five outedges to females, our code would
look like this:

46 ergm-parallel

every node has maximum of 5 outdegrees to male alters
maxoutsex1 <- c(rep(5,71))
every node has maximum of 5 outdegrees to female alters
maxoutsex2 <- c(rep(5,71))
now create maxout matrix
maxout <- cbind(maxoutsex1,maxoutsex2)

The maxin, minout, and minin matrices are constructed exactly like the maxout matrix, except
for the maximum allowed indegree, the minimum allowed outdegree, and the minimum allowed
indegree, respectively. Note that in an undirected network, we only look at the outdegree matrices;
maxin and minin will both be ignored in this case.

References

Goodreau SM, Handcock MS, Hunter DR, Butts CT, Morris M (2008a). A statnet Tutorial. Journal
of Statistical Software, 24(8). http://www.jstatsoft.org/v24/i08/.

Hunter, D. R. and Handcock, M. S. (2006) Inference in curved exponential family models for net-
works, Journal of Computational and Graphical Statistics.

Hunter DR, Handcock MS, Butts CT, Goodreau SM, Morris M (2008b). ergm: A Package to Fit,
Simulate and Diagnose Exponential-Family Models for Networks. Journal of Statistical Software,
24(3). http://www.jstatsoft.org/v24/i03/.

Krivitsky PN (2012). Exponential-Family Random Graph Models for Valued Networks. Electronic
Journal of Statistics, 2012, 6, 1100-1128. doi:10.1214/12-EJS696

Morris M, Handcock MS, Hunter DR (2008). Specification of Exponential-Family Random Graph
Models: Terms and Computational Aspects. Journal of Statistical Software, 24(4). http://www.
jstatsoft.org/v24/i04/.

ergm-parallel Parallel Processing in the ergm Package

Description

For estimation that require MCMC, ergm can take advantage of multiple CPUs or CPU cores on
the system on which it runs, as well as computing clusters. It uses package parallel and snow to
facilitate this, and supports all cluster types that they does.

The number of nodes used and the parallel API are controlled using the parallel and parallel.type
arguments passed to the control functions, such as control.ergm.

The ergm.getCluster function is usually called internally by the ergm process (in ergm.getMCMCsample)
and will attempt to start the appropriate type of cluster indicated by the control.ergm settings. The
ergm.stopCluster is helpful if the user has directly created a cluster.

Further details on the various cluster types are included below.

http://www.jstatsoft.org/v24/i08/
http://www.jstatsoft.org/v24/i03/
http://dx.doi.org/10.1214/12-EJS696
http://www.jstatsoft.org/v24/i04/
http://www.jstatsoft.org/v24/i04/

ergm-parallel 47

Usage

ergm.getCluster(control, verbose=FALSE)

ergm.stopCluster(object, ...)

Arguments

control a control.ergm list of parameter values from which the parallel settings should
be read

object an object, probably of class "cluster"

verbose logical, should detailed status info be printed to console

... not currently used

PSOCK clusters

The parallel package is used with PSOCK clusters by default, to utilize multiple cores on a
system. The number of cores on a system can be determined with the detectCores function.

This method works with the base installation of R on all platforms, and does not require additional
software.

For more advanced applications, such as clusters that span multiple machines on a network, the
clusters can be initialized manually, and passed into ergm using the parallel control argument.
See the second example below.

MPI clusters

To use MPI to accelerate ERGM sampling, pass the control parameter parallel.type="MPI".
ergm requires the snow and Rmpi packages to communicate with an MPI cluster.

Using MPI clusters requires the system to have an existing MPI installation. See the MPI documen-
tation for your particular platform for instructions.

To use ergm across multiple machines in a high performance computing environment, see the sec-
tion "User initiated clusters" below.

User initiated clusters

A cluster can be passed into ergm with the parallel control parameter. ergm will detect the number
of nodes in the cluster, and use all of them for MCMC sampling. This method is flexible: it
will accept any cluster type that is compatible with snow or parallel packages. Usage examples
for a multiple-machine high performance MPI cluster can be found at the statnet wiki: https:
//statnet.csde.washington.edu/trac/wiki/ergmParallel

Examples

Uses 2 SOCK clusters for MCMLE estimation
data(faux.mesa.high)
nw <- faux.mesa.high
fauxmodel.01 <- ergm(nw ~ edges + isolates + gwesp(0.2, fixed=TRUE),

https://statnet.csde.washington.edu/trac/wiki/ergmParallel
https://statnet.csde.washington.edu/trac/wiki/ergmParallel

48 ergm-references

control=control.ergm(parallel=2, parallel.type="PSOCK"))
summary(fauxmodel.01)

ergm-references Reference Measures for Exponential-Family Random Graph Models

Description

This page describes the possible reference measures (baseline distributions) for found in the ergm
package, particularly the default (Bernoulli) reference measure for binary ERGMs.

The reference measure is specified on the RHS of a one-sided formula passed as the reference ar-
gument to ergm. See the ergm documentation for a complete description of how reference measures
are specified.

Possible reference measures to represent baseline distributions

Reference measures currently available are:

Bernoulli Bernoulli-reference ERGM: Specifies each dyad’s baseline distribution to be Bernoulli
with probability of the tie being 0.5. This is the only reference measure used in binary mode.

DiscUnif(a,b) Discrete-Uniform-reference ERGM: Specifies each dyad’s baseline distribution to
be discrete uniform between a and b (both inclusive): h(y) = 1, with the support being
a,a+1,. . . ,b-1,b. At this time, both a and b must be finite.

Unif(a,b) Coninuous-Uniform-reference ERGM: Specifies each dyad’s baseline distribution to be
continuous uniform between a and b (both inclusive): h(y) = 1, with the support being [a,b].
At this time, both a and b must be finite.

StdNormal Standard-Normal-reference ERGM: Specifies each dyad’s baseline distribution to be
the normal distribution with mean 0 and variance 1.

References

Hunter DR, Handcock MS, Butts CT, Goodreau SM, Morris M (2008b). ergm: A Package to Fit,
Simulate and Diagnose Exponential-Family Models for Networks. Journal of Statistical Software,
24(3). http://www.jstatsoft.org/v24/i03/.

Krivitsky PN (2012). Exponential-Family Random Graph Models for Valued Networks. Electronic
Journal of Statistics, 2012, 6, 1100-1128. doi:10.1214/12-EJS696

See Also

ergm, network, %v%, %n%, sna, summary.ergm, print.ergm

http://www.jstatsoft.org/v24/i03/
http://dx.doi.org/10.1214/12-EJS696

ergm-terms 49

ergm-terms Terms used in Exponential Family Random Graph Models

Description

The function ergm is used to fit exponential random graph models, in which the probability of a
given network, y, on a set of nodes is h(y) exp{η(θ) · g(y)}/c(θ), where h(y) is the reference
measure (for valued network models), g(y) is a vector of network statistics for y, η(θ) is a natural
parameter vector of the same length (with η(θ) = θ for most terms), and c(θ) is the normalizing
constant for the distribution.

The network statistics g(y) are entered as terms in the function call to ergm.

This page describes the possible terms (and hence network statistics) included in ergm package.
Other packages may add their own terms, and package ergm.userterms provides tools for imple-
menting them.

The current recommendation for any package implementing additional terms is to create a help file
with a name or alias ergm-terms, so that help("ergm-terms") will list ERGM terms available
from all loaded packages.

Specifying models

Terms to ergm are specified by a formula to represent the network and network statistics. This is
done via a formula, that is, an R formula object, of the form y ~ <term 1> + <term 2> ...,
where y is a network object or a matrix that can be coerced to a network object, and <term 1>,
<term 2>, etc, are each terms chosen from the list given below. To create a network object in R,
use the network function, then add nodal attributes to it using the %v% operator if necessary.

Binary and valued ERGM terms

ergm functions such as ergm and simulate (for ERGMs) may operate in two modes: binary and
weighted/valued, with the latter activated by passing a non-NULL value as the response argument,
giving the edge attribute name to be modeled/simulated.

Binary ERGM statistics cannot be used in valued mode and vice versa. However, a substantial
number of binary ERGM statistics — particularly the ones with dyadic indepenence — have simple
generalizations to valued ERGMs, and have been adapted in ergm. They have the same form as
their binary ERGM counterparts, with an additional argument: form, which, at this time, has two
possible values: "sum" (the default) and "nonzero". The former creates a statistic of the form∑

i,j xi,jyi,j , where yi,j is the value of dyad (i, j) and xi,j is the term’s covariate associated with
it. The latter computes the binary version, with the edge considered to be present if its value is not
0.

Valued version of some binary ERGM terms have an argument threshold, which sets the value
above which a dyad is conidered to have a tie. (Value less than or equal to threshold is considered
a nontie.)

50 ergm-terms

Covariate transformations

Some terms taking nodal or dyadic covariates take optional transform and transformname argu-
ments. transform should be a function with one argument, taking a data structure of the same
mode as the covariate and returning a similarly structured data structure, transforming the covariate
as needed.

For example, nodecov("a", transform=function(x) x^2) will add a nodal covariate having
the square of the value of the nodal attribute "a".

transformname, if given, will be added to the term’s name to help identify it.

Terms to represent network statistics included in the ergm package

A cross-referenced html version of the term documentation is is available via vignette('ergm-term-crossRef')
and terms can also be searched via search.ergmTerms.

absdiff(attrname, pow=1) (binary) (dyad-independent) (frequently-used) (directed) (undirected) (quantitative nodal attribute), absdiff(attrname, pow=1, form ="sum") (valued) (dyad-independent) (directed) (undirected) (quantitative nodal attribute)
Absolute difference: The attrname argument is a character string giving the name of a quan-
titative attribute in the network’s vertex attribute list. This term adds one network statistic to
the model equaling the sum of abs(attrname[i]-attrname[j])^pow for all edges (i,j) in
the network.

absdiffcat(attrname, base=NULL) (binary) (dyad-independent) (directed) (undirected) (categorical nodal attribute), absdiffcat(attrname, base=NULL, form="sum") (valued) (dyad-independent) (directed) (undirected) (categorical nodal attribute)
Categorical absolute difference: The attrname argument is a character string giving the name
of a quantitative attribute in the network’s vertex attribute list. This term adds one statistic for
every possible nonzero distinct value of abs(attrname[i]-attrname[j]) in the network;
the value of each such statistic is the number of edges in the network with the corresponding
absolute difference. The optional base argument is a vector indicating which nonzero differ-
ences, in order from smallest to largest, should be omitted from the model (i.e., treated like the
zero-difference category). The base argument, if used, should contain indices, not differences
themselves. For instance, if the possible values of abs(attrname[i]-attrname[j]) are 0,
0.5, 3, 3.5, and 10, then to omit 0.5 and 10 one should set base=c(1, 4). Note that this term
should generally be used only when the quantitative attribute has a limited number of possible
values; an example is the "Grade" attribute of the faux.mesa.high or faux.magnolia.high
datasets.

altkstar(lambda, fixed=FALSE) (binary) (undirected) (curved) (categorical nodal attribute)
Alternating k-star: This term adds one network statistic to the model equal to a weighted al-
ternating sequence of k-star statistics with weight parameter lambda. This is the version given
in Snijders et al. (2006). The gwdegree and altkstar produce mathematically equivalent
models, as long as they are used together with the edges (or kstar(1)) term, yet the inter-
pretation of the gwdegree parameters is slightly more straightforward than the interpretation
of the altkstar parameters. For this reason, we recommend the use of the gwdegree instead
of altkstar. See Section 3 and especially equation (13) of Hunter (2007) for details. The
optional argument fixed indicates whether the scale parameter lambda is to be fit as a curved
exponential family model (see Hunter and Handcock, 2006). The default is FALSE, which
means the scale parameter is not fixed and thus the model is a CEF model. This term can only
be used with undirected networks.

asymmetric(attrname=NULL, diff=FALSE, keep=NULL) (binary) (directed) (dyad-independent) (triad-related)
Asymmetric dyads: This term adds one network statistic to the model equal to the number of
pairs of actors for which exactly one of (i→j) or (j→i) exists. This term can only be used

ergm-terms 51

with directed networks. If the optional attrname argument is used, only asymmetric pairs that
match on the named vertex attribute are counted. The optional modifiers diff and keep are
used in the same way as for the nodematch term; refer to this term for details and an example.

atleast(threshold=0) (valued) (directed) (undirected) (dyad-independent) Number of dyads
with values greater than or equal to a threshold Adds one statistic equaling to the number of
dyads whose values equal or exceed threshold.

atmost(threshold=0) (valued) (directed) (undirected) (dyad-independent) Number of dyads with
values less than or equal to a threshold Adds one statistic equaling to the number of dyads
whose values equal or are exceeded by threshold.

b1concurrent(by=NULL) (binary) (bipartite) (undirected) (categorical nodal attribute) Concurrent
node count for the first mode in a bipartite (aka two-mode) network: This term adds one net-
work statistic to the model, equal to the number of nodes in the first mode of the network with
degree 2 or higher. The first mode of a bipartite network object is sometimes known as the
"actor" mode. The optional argument by is a character string giving the name of an attribute in
the network’s vertex attribute list; it functions just like the by argument of the b1degree term.
Without the optional argument, this statistic is equivalent to b1mindegree(2). This term can
only be used with undirected bipartite networks.

b1cov(attrname, transform, transformname) (binary) (undirected) (bipartite) (dyadic-independent) (quantitative nodalattribute) (frequently-used), b1cov(attrname, transform, transformname, form="sum") (valued) (undirected) (bipartite) (dyadic-independent) (quantitative nodal attribute) (frequently-used)
Main effect of a covariate for the first mode in a bipartite (aka two-mode) network: The
attrname argument is a character string giving the name of a numeric (not categorical) at-
tribute in the network’s vertex attribute list. This term adds a single network statistic to the
model equaling the total value of attrname(i) for all edges (i, j) in the network. This term
may only be used with bipartite networks. For categorical attributes, see b1factor.

b1degrange(from, to=+Inf, by=NULL, homophily=FALSE) (binary) (bipartite) (undirected)
Degree range for the first mode in a bipartite (a.k.a. two-mode) network: The from and to
arguments are vectors of distinct integers (or +Inf, for to (its default)). If one of the vectors
has length 1, it is recycled to the length of the other. Otherwise, they must have the same
length. This term adds one network statistic to the model for each element of from (or to);
the ith such statistic equals the number of nodes of the first mode ("actors") in the network of
degree greater than or equal to from[i] but strictly less than to[i], i.e. with edge count in
semiopen interval [from,to). The optional argument by is a character string giving the name
of an attribute in the network’s vertex attribute list. If this is specified and homophily is TRUE,
then degrees are calculated using the subnetwork consisting of only edges whose endpoints
have the same value of the by attribute. If by is specified and homophily is FALSE (the de-
fault), then separate degree range statistics are calculated for nodes having each separate value
of the attribute.
This term can only be used with bipartite networks; for directed networks see idegrange and
odegrange. For undirected networks, see degrange, and see b2degrange for degrees of the
second mode ("events").

b1degree(d, by=NULL) (binary) (bipartite) (undirected) (categorical nodal attribute) (frequently-used)
Degree for the first mode in a bipartite (aka two-mode) network: The d argument is a vector
of distinct integers. This term adds one network statistic to the model for each element in d;
the ith such statistic equals the number of nodes of degree d[i] in the first mode of a bipartite
network, i.e. with exactly d[i] edges. The first mode of a bipartite network object is some-
times known as the "actor" mode. The optional argument by is a character string giving the
name of an attribute in the network’s vertex attribute list. If this is specified then each node’s

52 ergm-terms

degree is tabulated only with other nodes having the same value of the by attribute. This term
can only be used with undirected bipartite networks.

b1factor(attrname, base=1) (binary) (bipartite) (undirected) (dyad-independent) (frequently-used) (categorical nodal attribute), b1factor(attrname, base=1, form="sum") (valued) (bipartite) (undirected) (dyad-independent) (frequently-used) (categorical nodal attribute)
Factor attribute effect for the first mode in a bipartite (aka two-mode) network: The attrname
argument is a character string giving the name of a categorical attribute in the network’s vertex
attribute list. This term adds multiple network statistics to the model, one for each of (a sub-
set of) the unique values of the attrname attribute. Each of these statistics gives the number
of times a node with that attribute in the first mode of the network appears in an edge. The
first mode of a bipartite network object is sometimes known as the "actor" mode. To include
all attribute values is usually not a good idea, because the sum of all such statistics equals
the number of edges and hence a linear dependency would arise in any model also including
edges. Thus, the base argument tells which value(s) (numbered in order according to the
sort function) should be omitted. The default value, base=1, means that the smallest (i.e.,
first in sorted order) attribute value is omitted. For example, if the “fruit” factor has levels
“orange”, “apple”, “banana”, and “pear”, then to add just two terms, one for “apple” and one
for “pear”, then set “banana” and “orange” to the base (remember to sort the values first) by
using nodefactor("fruit", base=2:3). This term can only be used with undirected
bipartite networks.

b1mindegree(d) (binary) (bipartite) (undirected) Minimum degree for the first mode in a bipar-
tite (aka two-mode) network: The d argument is a vector of distinct integers. This term adds
one network statistic to the model for each element in d; the ith such statistic equals the num-
ber of nodes in the first mode of a bipartite network with at least degree d[i]. The first mode
of a bipartite network object is sometimes known as the "actor" mode. This term can only be
used with undirected bipartite networks.

b1nodematch(attrname, diff=FALSE, keep=NULL, by=NULL, alpha=1, beta=1, byb2attr=NULL) (binary) (bipartite) (undirected) (dyadic-independent) (categorical nodal attribute) (frequently-used)
Nodal attribute-based homophily effect for the first mode in a bipartite (aka two-mode) net-
work: This term is introduced in Bomiriya et al (2014). The attrname argument is a character
string giving the name of a categorical attribute in the network’s vertex attribute list. Out of
the two arguments (discount parameters) alpha and beta, both which takes values from [0,1],
only one should be set at a time. If none is set to a value other than 1, this term will simply
be a homophily based two-star statistic. This term adds one statistic to the model unless diff
is set to TRUE, in which case the term adds multiple network statistics to the model, one for
each of (a subset of) the unique values of the attrname attribute. To include only the attribute
values you wish, use the keep argument. If an alpha discount parameter is used, each of these
statistics gives the sum of the number of common second-mode nodes raised to the power
alpha for each pair of first-mode nodes with that attribute. If a beta discount parameter is
used, each of these statistics gives half the sum of the number of two-paths with two first-
mode nodes with that attribute as the two ends of the two path raised to the power beta for
each edge in the network. The byb2attr argument is a character string giving the name of
a second mode categorical attribute in the network’s attribute list. Setting this argument will
separate the orginal statistics based on the values of the set second mode attribute— i.e. for
example, if diff is FALSE, then the sum of all the statistics for each level of this second-mode
attribute will be equal to the original b1nodematch statistic where byb2attr set to NULL. This
term can only be used with undirected bipartite networks.

b1star(k, attrname=NULL) (binary) (bipartite) (undirected) (categorical nodal attribute) k-
Stars for the first mode in a bipartite (aka two-mode) network: The k argument is a vector
of distinct integers. This term adds one network statistic to the model for each element in
k. The ith such statistic counts the number of distinct k[i]-stars whose center node is in

ergm-terms 53

the first mode of the network. The first mode of a bipartite network object is sometimes
known as the "actor" mode. A k-star is defined to be a center node N and a set of k different
nodes {O1, . . . , Ok} such that the ties {N,Oi} exist for i = 1, . . . , k. The optional argument
attrname is a character string giving the name of an attribute in the network’s vertex attribute
list. If this is specified then the count is over the number of k-stars (with center node in the
first mode) where all nodes have the same value of the attribute. This term can only be used
for undirected bipartite networks. Note that b1star(1) is equal to b2star(1) and to edges.

b1starmix(k, attrname, base=NULL, diff=TRUE) (binary) (bipartite) (undirected) (categorical nodal attribute)
Mixing matrix for k-stars centered on the first mode of a bipartite network: Only a single value
of k is allowed. This term counts all k-stars in which the b2 nodes (called events in some con-
texts) are homophilous in the sense that they all share the same value of attrname. However,
the b1 node (in some contexts, the actor) at the center of the k-star does NOT have to have
the same value as the b2 nodes; indeed, the values taken by the b1 nodes may be completely
distinct from those of the b2 nodes, which allows for the use of this term in cases where there
are two separate nodal attributes, one for the b1 nodes and another for the b2 nodes (in this
case, however, these two attributes should be combined to form a single nodal attribute called
attrname. A different statistic is created for each value of attrname seen in a b1 node, even
if no k-stars are observed with this value. Whether a different statistic is created for each value
seen in a b2 node depends on the value of the diff argument: When diff=TRUE, the default, a
different statistic is created for each value and thus the behavior of this term is reminiscent of
the nodemix term, from which it takes its name; when diff=FALSE, all homophilous k-stars
are counted together, though these k-stars are still categorized according to the value of the
central b1 node. The base term may be used to control which of the possible terms are left out
of the model: By default, all terms are included, but if base is set to a vector of indices then
the corresponding terms (in the order they would be created when base=NULL) are left out.

b1twostar(b1attrname, b2attrname, base=NULL) (binary) (bipartite) (undirected) (categorical nodal attribute)
Two-star census for central nodes centered on the first mode of a bipartite network: This term
takes two nodal attribute names, one for b1 nodes (actors in some contexts) and one for b2
nodes (events in some contexts). Only b1attrname is required; if b2attrname is not passed, it
is assumed to be the same as b1attrname. Assuming that there are n1 values of b1attrname
among the b1 nodes and n2 values of b2attrname among the b2 nodes, then the total number
of distinct categories of two stars according to these two attributes is n1(n2)(n2 + 1)/2. This
model term creates a distinct statistic counting each of these categories. The base term may
be used to leave some of these categories out; when passed as a vector of integer indices (in
the order the statistics would be created when base=NULL), the corresponding terms will be
left out.

b2concurrent(by=NULL) (binary) (bipartite) (undirected) (frequently-used) Concurrent node
count for the second mode in a bipartite (aka two-mode) network: This term adds one network
statistic to the model, equal to the number of nodes in the second mode of the network with
degree 2 or higher. The second mode of a bipartite network object is sometimes known as the
"event" mode. The optional argument by is a character string giving the name of an attribute in
the network’s vertex attribute list; it functions just like the by argument of the b2degree term.
Without the optional argument, this statistic is equivalent to b2mindegree(2). This term can
only be used with undirected bipartite networks.

b2cov(attrname, transform, transformname) (binary) (undirected) (bipartite) (dyadic-independent) (quantitative nodal attribute) (frequently-used), b2cov(attrname, transform, transformname, form="sum") (valued) (undirected) (bipartite) (dyadic-independent) (quantitative nodal attribute) (frequently-used)
Main effect of a covariate for the second mode in a bipartite (aka two-mode) network: The
attrname argument is a character string giving the name of a numeric (not categorical) at-
tribute in the network’s vertex attribute list. This term adds a single network statistic to the

54 ergm-terms

model equaling the total value of attrname(j) for all edges (i, j) in the network. This term
may only be used with bipartite networks. For categorical attributes, see b2factor.

b2degrange(from, to=+Inf, by=NULL, homophily=FALSE) (binary) (bipartite) (undirected)
Degree range for the second mode in a bipartite (a.k.a. two-mode) network: The from and to
arguments are vectors of distinct integers (or +Inf, for to (its default)). If one of the vectors
has length 1, it is recycled to the length of the other. Otherwise, they must have the same
length. This term adds one network statistic to the model for each element of from (or to);
the ith such statistic equals the number of nodes of the second mode ("events") in the network
of degree greater than or equal to from[i] but strictly less than to[i], i.e. with edge count in
semiopen interval [from,to). The optional argument by is a character string giving the name
of an attribute in the network’s vertex attribute list. If this is specified and homophily is TRUE,
then degrees are calculated using the subnetwork consisting of only edges whose endpoints
have the same value of the by attribute. If by is specified and homophily is FALSE (the de-
fault), then separate degree range statistics are calculated for nodes having each separate value
of the attribute.
This term can only be used with bipartite networks; for directed networks see idegrange and
odegrange. For undirected networks, see degrange, and see b1degrange for degrees of the
first mode ("actors").

b2degree(d, by=NULL) (binary) (bipartite) (undirected) (categorical nodal attribute) (frequently-used)
Degree for the second mode in a bipartite (aka two-mode) network: The d argument is a vec-
tor of distinct integers. This term adds one network statistic to the model for each element in
d; the ith such statistic equals the number of nodes of degree d[i] in the second mode of a
bipartite network, i.e. with exactly d[i] edges. The second mode of a bipartite network object
is sometimes known as the "event" mode. The optional term by is a character string giving the
name of an attribute in the network’s vertex attribute list. If this is specified then each node’s
degree is tabulated only with other nodes having the same value of the by attribute. This term
can only be used with undirected bipartite networks.

b2factor(attrname, base=1) (binary) (bipartite) (undirected) (dyad-independent) (categorical nodal attribute) (frequently-used), b2factor(attrname, base=1, form="sum") (valued) (bipartite) (undirected) (dyad-independent) (categorical nodal attribute) (frequently-used)
Factor attribute effect for the second mode in a bipartite (aka two-mode) network : The
attrname argument is a character string giving the name of a categorical attribute in the net-
work’s vertex attribute list. This term adds multiple network statistics to the model, one for
each of (a subset of) the unique values of the attrname attribute. Each of these statistics gives
the number of times a node with that attribute in the second mode of the network appears in
an edge. The second mode of a bipartite network object is sometimes known as the "event"
mode. To include all attribute values is usually not a good idea, because the sum of all such
statistics equals the number of edges and hence a linear dependency would arise in any model
also including edges. Thus, the base argument tells which value(s) (numbered in order ac-
cording to the sort function) should be omitted. The default value, base=1, means that the
smallest (i.e., first in sorted order) attribute value is omitted. For example, if the “fruit” fac-
tor has levels “orange”, “apple”, “banana”, and “pear”, then to add just two terms, one for
“apple” and one for “pear”, then set “banana” and “orange” to the base (remember to sort the
values first) by using nodefactor("fruit", base=2:3). This term can only be used with
undirected bipartite networks.

b2mindegree(d) (binary) (bipartite) (undirected) Minimum degree for the second mode in a
bipartite (aka two-mode) network: The d argument is a vector of distinct integers. This term
adds one network statistic to the model for each element in d; the ith such statistic equals the
number of nodes in the second mode of a bipartite network with at least degree d[i]. The

ergm-terms 55

second mode of a bipartite network object is sometimes known as the "event" mode. This
term can only be used with undirected bipartite networks.

b2nodematch(attrname, diff=FALSE, keep=NULL, by=NULL, alpha=1, beta=1, byb1attr=NULL) (binary) (bipartite) (undirected) (dyadic-independent) (categorical nodal attribute) (frequently-used)
Nodal attribute-based homophily effect for the second mode in a bipartite (aka two-mode) net-
work: This term is introduced in Bomiriya et al (2014). The attrname argument is a character
string giving the name of a categorical attribute in the network’s vertex attribute list. Out of
the two arguments (discount parameters) alpha and beta, both which takes values from [0,1],
only one should be set at a time. If none is set to a value other than 1, this term will simply
be a homophily based two-star statistic. This term adds one statistic to the model unless diff
is set to TRUE, in which case the term adds multiple network statistics to the model, one for
each of (a subset of) the unique values of the attrname attribute. To include only the attribute
values you wish, use the keep argument. If an alpha discount parameter is used, each of these
statistics gives the sum of the number of common first-mode nodes raised to the power alpha
for each pair of second-mode nodes with that attribute. If a beta discount parameter is used,
each of these statistics gives half the sum of the number of two-paths with two second-mode
nodes with that attribute as the two ends of the two path raised to the power beta for each
edge in the network. The byb1attr argument is a character string giving the name of a first
mode categorical attribute in the network’s attribute list. Setting this argument will separate
the orginal statistics based on the values of the set first mode attribute— i.e. for example, if
diff is FALSE, then the sum of all the statistics for each level of this first-mode attribute will
be equal to the original b2nodematch statistic where byb1attr set to NULL. This term can only
be used with undirected bipartite networks.

b2star(k, attrname=NULL) (binary) (bipartite) (undirected) (categorical nodal attribute) k-
Stars for the second mode in a bipartite (aka two-mode) network: The k argument is a vector
of distinct integers. This term adds one network statistic to the model for each element in
k. The ith such statistic counts the number of distinct k[i]-stars whose center node is in the
second mode of the network. The second mode of a bipartite network object is sometimes
known as the "event" mode. A k-star is defined to be a center node N and a set of k different
nodes {O1, . . . , Ok} such that the ties {N,Oi} exist for i = 1, . . . , k. The optional argument
attrname is a character string giving the name of an attribute in the network’s vertex attribute
list. If this is specified then the count is over the number of k-stars (with center node in the
second mode) where all nodes have the same value of the attribute. This term can only be used
for undirected bipartite networks. Note that b2star(1) is equal to b1star(1) and to edges.

b2starmix(k, attrname, base=NULL, diff=TRUE) (binary) (bipartite) (undirected) (categorical nodal attribute)
Mixing matrix for k-stars centered on the second mode of a bipartite network: This term is
exactly the same as b1starmix except that the roles of b1 and b2 are reversed.

b2twostar(b1attrname, b2attrname, base=NULL) (binary) (bipartite) (undirected) (categorical nodal attribute)
Two-star census for central nodes centered on the second mode of a bipartite network: This
term is exactly the same as b1twostar except that the roles of b1 and b2 are reversed.

balance (binary) (triad-related) (directed) (undirected) Balanced triads: This term adds one
network statistic to the model equal to the number of triads in the network that are balanced.
The balanced triads are those of type 102 or 300 in the categorization of Davis and Leinhardt
(1972). For details on the 16 possible triad types, see ?triad.classify in the {sna} package.
For an undirected network, the balanced triads are those with an even number of ties (i.e., 0
and 2).

coincidence(d=NULL,active=0) (binary) (bipartite) (undirected) Coincident node count for
the second mode in a bipartite (aka two-mode) network: By default this term adds one network

56 ergm-terms

statistic to the model for each pair of nodes of mode two. It is equal to the number of (first
mode) mutual partners of that pair. The first mode of a bipartite network object is sometimes
known as the "actor" mode and the seconds as the "event" mode. So this is the number of
actors going to both events in the pair. The optional argument d is a two-column matrix of
(row-wise) pairs indices where the first row is less than the second row. The second optional
argument, active, selects pairs for which the observed count is at least active. This term
can only be used with undirected bipartite networks.

concurrent(by=NULL) (binary) (undirected) (categorical nodal attribute) Concurrent node count:
This term adds one network statistic to the model, equal to the number of nodes in the network
with degree 2 or higher. The optional argument by is a character string giving the name of
an attribute in the network’s vertex attribute list; it functions just like the by argument of the
degree term. This term can only be used with undirected networks.

concurrentties(by=NULL) (binary) (undirected) (categorical nodal attribute) Concurrent tie
count: This term adds one network statistic to the model, equal to the number of ties incident
on each actor beyond the first. The optional argument by is a character string giving the name
of an attribute in the network’s vertex attribute list; it functions just like the by argument of
the degree term. This term can only be used with undirected networks.

ctriple(attrname=NULL) (binary) (directed) (triad-related) (categorical nodal attribute) , a.k.a. ctriad (binary) (directed) (triad-related) (categorical nodal attribute)
Cyclic triples: This term adds one statistic to the model, equal to the number of cyclic triples
in the network, defined as a set of edges of the form {(i→j), (j→k), (k→i)}. Note that for
all directed networks, triangle is equal to ttriple+ctriple, so at most two of these three
terms can be in a model. The optional argument attrname is a character string giving the
name of an attribute in the network’s vertex attribute list. If this is specified then the count is
over the number of cyclic triples where all three nodes have the same value of the attribute.
This term can only be used with directed networks.

cycle(k) (binary) (directed) (undirected) Cycles: The k argument is a vector of distinct inte-
gers. This term adds one network statistic to the model for each element in k; the ith such
statistic equals the number of cycles in the network with length exactly k[i]. The cycle statis-
tic applies to both directed and undirected networks. For directed networks, it counts directed
cycles of length k, as opposed to undirected cycles in the undirected case. The directed cycle
terms of lengths 2 and 3 are equivalent to mutual and ctriple (respectively). The undirected
cycle term of length 3 is equivalent to triangle, and there is no undirected cycle term of
length 2.

cyclicalties(attrname=NULL) (binary) (directed), cyclicalties(threshold=0) (valued) (directed) (undirected)
Cyclical ties: This term adds one statistic, equal to the number of ties i → j such that there
exists a two-path from i to j. (Related to the ttriple term.) The binary version takes a nodal
attribute attrname, and, if given, all three nodes involved (i, j, and the node on the two-path)
must match on this attribute in order for i→ j to be counted. The binary version of this term
can only be used with directed networks. The valued version can be used with both directed
and undirected.

cyclicalweights(twopath="min",combine="max",affect="min") (valued) (directed) (undirected)
Cyclical weights: This statistic implements the cyclical weights statistic, like that defined by
Krivitsky (2012), Equation 13, but with the focus dyad being yj,i rather than yi,j . The cur-
rently implemented options for twopath is the minimum of the constituent dyads ("min")
or their geometric mean ("geomean"); for combine, the maximum of the 2-path strengths
("max") or their sum ("sum"); and for affect, the minimum of the focus dyad and the com-
bined strength of the two paths ("min") or their geometric mean ("geomean"). For each of

ergm-terms 57

these options, the first (and the default) is more stable but also more conservative, while the
second is more sensitive but more likely to induce a multimodal distribution of networks.

ddsp(d, type="OTP") (binary) (directed) Directed dyadwise shared partners: This term adds
one network statistic to the model for each element in d where the ith such statistic equals the
number of dyads in the network with exactly d[i] shared partners. This term can only be used
with directed networks. Multiple shared partner definitions are possible; the type argument
may be used to select the type of shared partner to be counted (see below for type codes). By
default, outgoing two-paths are employed.
While there is only one shared partner configuration in the undirected case, nine distinct con-
figurations are possible for directed graphs. Currently, edgewise shared partner terms may be
defined with respect to five of these configurations; they are defined here as follows (using
terminology from Butts (2008) and the relevent package):

Outgoing Two-path (OTP) vertex k is an OTP shared partner of ordered pair (i, j) iff i →
k → j. Also known as "transitive shared partner".

Incoming Two-path (ITP) vertex k is an ITP shared partner of ordered pair (i, j) iff j →
k → i. Also known as "cyclical shared partner"

Outgoing Shared Partner (OSP) vertex k is an OSP shared partner of ordered pair (i, j) iff
i→ k, j → k.

Incoming Shared Partner (ISP) vertex k is an ISP shared partner of ordered pair (i, j) iff
k → i, k → j.

Note that Robins et al. (2009) define closely related statistics to several of the above, using
slightly different terminology.

degrange(from, to=+Inf, by=NULL, homophily=FALSE) (binary) (undirected) (categorical nodal attribute)
Degree range: The from and to arguments are vectors of distinct integers (or +Inf, for to (its
default)). If one of the vectors has length 1, it is recycled to the length of the other. Otherwise,
they must have the same length. This term adds one network statistic to the model for each
element of from (or to); the ith such statistic equals the number of nodes in the network of de-
gree greater than or equal to from[i] but strictly less than to[i], i.e. with edges in semiopen
interval [from,to). The optional argument by is a character string giving the name of an
attribute in the network’s vertex attribute list. If this is specified and homophily is TRUE, then
degrees are calculated using the subnetwork consisting of only edges whose endpoints have
the same value of the by attribute. If by is specified and homophily is FALSE (the default),
then separate degree range statistics are calculated for nodes having each separate value of the
attribute.
This term can only be used with undirected networks; for directed networks see idegrange
and odegrange. This term can be used with bipartite networks, and will count nodes of
both first and second mode in the specified degree range. To count only nodes of the first
mode ("actors"), use b1degrange and to count only those fo the second mode ("events"), use
b2degrange.

degree(d, by=NULL, homophily=FALSE) (binary) (undirected) (categorical nodal attribute) (frequently-used)
Degree: The d argument is a vector of distinct integers. This term adds one network statistic
to the model for each element in d; the ith such statistic equals the number of nodes in the
network of degree d[i], i.e. with exactly d[i] edges. The optional argument by is a character
string giving the name of an attribute in the network’s vertex attribute list. If this is speci-
fied and homophily is TRUE, then degrees are calculated using the subnetwork consisting of
only edges whose endpoints have the same value of the by attribute. If by is specified and

58 ergm-terms

homophily is FALSE (the default), then separate degree statistics are calculated for nodes hav-
ing each separate value of the attribute. This term can only be used with undirected networks;
for directed networks see idegree and odegree.

degreepopularity (binary) (undirected) Degree popularity: This term adds one network statis-
tic to the model equaling the sum over the actors of each actor’s degree taken to the 3/2 power
(or, equivalently, multiplied by its square root). This term is an undirected analog to the terms
of Snijders et al. (2010), equations (11) and (12). This term can only be used with undirected
networks.

degcrossprod (binary) (undirected) Degree Cross-Product: This term adds one network statistic
equal to the mean of the cross-products of the degrees of all pairs of nodes in the network
which are tied. Only coded for undirected networks.

degcor (binary) (undirected) Degree Correlation: This term adds one network statistic equal to
the correlation of the degrees of all pairs of nodes in the network which are tied. Only coded
for undirected networks.

density (binary) (dyad-independent) (directed) (undirected) Density: This term adds one net-
work statistic equal to the density of the network. For undirected networks, density equals
kstar(1) or edges divided by n(n − 1)/2; for directed networks, density equals edges or
istar(1) or ostar(1) divided by n(n− 1).

desp(d, type="OTP") (binary) (directed) Directed edgewise shared partners: This term adds
one network statistic to the model for each element in d where the ith such statistic equals the
number of edges in the network with exactly d[i] shared partners. This term can only be used
with directed networks. Multiple shared partner definitions are possible; the type argument
may be used to select the type of shared partner to be counted (see ddsp for type codes). By
default, outgoing two-paths are employed.

dgwdsp(alpha=0, fixed=FALSE, cutoff=30, type="OTP") (binary) (directed) Geometrically
weighted dyadwise shared partner distribution: This term adds one network statistic to the
model equal to the geometrically weighted dyadwise shared partner distribution with weight
parameter alpha > 0. Note that the GWDSP statistic is equal to the sum of GWNSP plus
GWESP. The optional argument fixed indicates whether the scale parameter lambda is to be
fit as a curved exponential-family model (see Hunter and Handcock, 2006). The default is
FALSE, which means the scale parameter is not fixed and thus the model is a CEF model. For a
directed network, multiple shared partner definitions are possible; the type argument may be
used to select the type of shared partner to employ (see ddsp for definitions). By default, out-
going two-paths are employed. The optional argument cutoff sets the number of underlying
DSP terms to use in computing the statistics to reduce the computational burden.

dgwesp(alpha=0, fixed=FALSE, cutoff=30, type="OTP") (binary) (directed) Geometrically
weighted edgewise shared partner distribution: This term adds a statistic equal to the geomet-
rically weighted edgewise (not dyadwise) shared partner distribution with weight parameter
alpha. The optional argument fixed indicates whether the scale parameter lambda is to be
fit as a curved exponential-family model (see Hunter and Handcock, 2006). The default is
FALSE, which means the scale parameter is not fixed and thus the model is a CEF model. For a
directed network, multiple shared partner definitions are possible; the type argument may be
used to select the type of shared partner to employ (see ddsp for definitions). By default, out-
going two-paths are employed. The optional argument cutoff sets the number of underlying
ESP terms to use in computing the statistics to reduce the computational burden.

dgwnsp(alpha=0, fixed=FALSE, cutoff=30, type="OTP") (binary) (directed) Geometrically
weighted non-edgewise shared partner distribution: This term is just like gwesp and gwdsp

ergm-terms 59

except it adds a statistic equal to the geometrically weighted nonedgewise (that is, over dyads
that do not have an edge) shared partner distribution with weight parameter alpha. The op-
tional argument fixed indicates whether the scale parameter lambda is to be fit as a curved
exponential-family model (see Hunter and Handcock, 2006). The default is FALSE, which
means the scale parameter is not fixed and thus the model is a CEF model. For a directed
network, multiple shared partner definitions are possible; the type argument may be used to
select the type of shared partner to employ (see ddsp for definitions). By default, outgoing
two-paths are employed. The optional argument cutoff sets the number of underlying NSP
terms to use in computing the statistics to reduce the computational burden.

dnsp(d, type="OTP") (binary) (directed) Directed non-edgewise shared partners: This term
adds one network statistic to the model for each element in d where the ith such statistic
equals the number of non-edges in the network with exactly d[i] shared partners. This term
can only be used with directed networks. Multiple shared partner definitions are possible; the
type argument may be used to select the type of shared partner to be counted (see ddsp for
type codes). By default, outgoing two-paths are employed.

dsp(d) (binary) (directed) (undirected) Dyadwise shared partners: The d argument is a vector
of distinct integers. This term adds one network statistic to the model for each element in
d; the ith such statistic equals the number of dyads in the network with exactly d[i] shared
partners. This term can be used with directed and undirected networks. For directed networks
the count is over homogeneous shared partners only (i.e., only partners on a directed two-path
connecting the nodes in the dyad).

dyadcov(x, attrname=NULL) (binary) (dyad-independent) (directed) (undirected) (categorical nodal attribute)
Dyadic covariate: If the network is directed, x is either a (symmetric) matrix of covariates,
one for each possible dyad (i, j), or an undirected network; if the latter, optional argument
attrname provides the name of the quantitative edge attribute to use for covariate values (in
this case, missing edges in x are assigned a covariate value of zero). This term adds three
statistics to the model, each equal to the sum of the covariate values for all dyads occupying
one of the three possible non-empty dyad states (mutual, upper-triangular asymmetric, and
lower-triangular asymmetric dyads, respectively), with the empty or null state serving as a
reference category. If the network is undirected, x is either a matrix of edgewise covariates, or
a network; if the latter, optional argument attrname provides the name of the edge attribute
to use for edge values. This term adds one statistic to the model, equal to the sum of the
covariate values for each edge appearing in the network. The edgecov and dyadcov terms are
equivalent for undirected networks.

edgecov(x, attrname=NULL) (binary) (dyad-independent) (directed) (undirected) (frequently-used) , edgecov(x, attrname=NULL, form="sum") (valued) (directed) (undirected) (dyad-independent)
Edge covariate: The x argument is either a square matrix of covariates, one for each possible
edge in the network, the name of a network attribute of covariates, or a network; if the latter,
optional argument attrname provides the name of the quantitative edge attribute to use for
covariate values (in this case, missing edges in x are assigned a covariate value of zero). This
term adds one statistic to the model, equal to the sum of the covariate values for each edge
appearing in the network. The edgecov term applies to both directed and undirected networks.
For undirected networks the covariates are also assumed to be undirected. The edgecov and
dyadcov terms are equivalent for undirected networks.

edges (binary) (valued) (dyad-independent) (directed) (undirected) (frequently-used) , a.k.a nonzero (valued) (directed) (undirected) (dyad-independent)
Edges: This term adds one network statistic equal to the number of edges (i.e. nonzero values)
in the network. For undirected networks, edges is equal to kstar(1); for directed networks,
edges is equal to both ostar(1) and istar(1).

60 ergm-terms

esp(d) (binary) (directed) (undirected) Edgewise shared partners: This is just like the dsp term,
except this term adds one network statistic to the model for each element in d where the ith
such statistic equals the number of edges (rather than dyads) in the network with exactly d[i]
shared partners. This term can be used with directed and undirected networks. For directed
networks the count is over homogeneous shared partners only (i.e., only partners on a directed
two-path connecting the nodes in the edge and in the same direction).

equalto(value=0, tolerance=0) (valued) (directed) (undirected) (dyadic-independent) Number
of dyads with values equal to a specific value (within tolerance): Adds one statistic equal to the
number of dyads whose values are within tolerance of value, i.e., between value-tolerance
and value+tolerance, inclusive.

greaterthan(threshold=0) (valued) (directed) (undirected) (dyadic-independent) Number of
dyads with values strictly greater than a threshold: Adds one statistic equal to the number of
dyads whose values exceed threshold.

gwb1degree(decay, fixed=FALSE, cutoff=30) (binary) (bipartite) (undirected) (curved) Geometrically
weighted degree distribution for the first mode in a bipartite (aka two-mode) network: This
term adds one network statistic to the model equal to the weighted degree distribution with de-
cay controlled by the decay parameter, for nodes in the first mode of a bipartite network. The
first mode of a bipartite network object is sometimes known as the "actor" mode. The decay
parameter is the same as theta_s in equation (14) in Hunter (2007). The value supplied for this
parameter may be fixed (if fixed=TRUE), or it may be used as merely the starting value for the
estimation in a curved exponential family model (the default). The optional argument cutoff
is only relevant if fixed=FALSE. In that case it only uses this number of terms in computing
the statistics to reduce the computational burden. This term can only be used with undirected
bipartite networks.

gwb2degree(decay, fixed=FALSE, cutoff=30) (binary) (bipartite) (undirected) (curved) Geometrically
weighted degree distribution for the second mode in a bipartite (aka two-mode) network: This
term adds one network statistic to the model equal to the weighted degree distribution with
decay controlled by the decay parameter, for nodes in the second mode of a bipartite network.
The second mode of a bipartite network object is sometimes known as the "event" mode. The
decay parameter is the same as theta_s in equation (14) in Hunter (2007). The value supplied
for this parameter may be fixed (if fixed=TRUE), or it may be used as merely the starting value
for the estimation in a curved exponential family model (the default). The optional argument
cutoff is only relevant if fixed=FALSE. In that case it only uses this number of terms in
computing the statistics to reduce the computational burden. This term can only be used with
undirected bipartite networks.

gwdegree(decay, fixed=FALSE, cutoff=30) (binary) (undirected) (curved) (frequently-used)
Geometrically weighted degree distribution: This term adds one network statistic to the model
equal to the weighted degree distribution with decay controlled by the decay parameter. The
decay parameter is the same as theta_s in equation (14) in Hunter (2007). The value supplied
for this parameter may be fixed (if fixed=TRUE), or it may be used as merely the starting value
for the estimation in a curved exponential family model (the default). The optional argument
cutoff is only relevant if fixed=FALSE. In that case it only uses this number of terms in
computing the statistics to reduce the computational burden. This term can only be used with
undirected networks.

gwdsp(alpha=0, fixed=FALSE, cutoff=30) (binary) (directed) (undirected) (curved) Geometrically
weighted dyadwise shared partner distribution: This term adds one network statistic to the
model equal to the geometrically weighted dyadwise shared partner distribution with weight

ergm-terms 61

parameter alpha > 0. The optional argument fixed indicates whether the scale parameter
lambda is to be fit as a curved exponential family model (see Hunter and Handcock, 2006).
The default is FALSE, which means the scale parameter is not fixed and thus the model is a
CEF model. This term can be used with directed and undirected networks. For directed net-
works the count is over homogeneous shared partners only (i.e., only partners on a directed
two-path connecting the nodes in the dyad). The optional argument cutoff is only relevant
if fixed=FALSE. In that case it only uses this number of terms in computing the statistics to
reduce the computational burden.

gwesp(alpha=0, fixed=FALSE, cutoff=30) (binary) (frequently-used) (directed) (undirected) (curved)
Geometrically weighted edgewise shared partner distribution: This term is just like gwdsp
except it adds a statistic equal to the geometrically weighted edgewise (not dyadwise) shared
partner distribution with weight parameter alpha. The optional argument fixed indicates
whether the scale parameter lambda is to be fit as a curved exponential-family model (see
Hunter and Handcock, 2006). The default is FALSE, which means the scale parameter is not
fixed and thus the model is a CEF model. This term can be used with directed and undirected
networks. For directed networks the geometric weighting is over homogeneous shared part-
ners only (i.e., only partners on a directed two-path connecting the nodes in the edge and in
the same direction). The optional argument cutoff is only relevant if fixed=FALSE. In that
case it only uses this number of terms in computing the statistics to reduce the computational
burden.

gwidegree(decay, fixed=FALSE, cutoff=30) (binary) (directed) (curved) Geometrically weighted
in-degree distribution: This term adds one network statistic to the model equal to the weighted
in-degree distribution with weight parameter decay. The optional argument fixed indicates
whether the scale parameter lambda is to be fit as a curved exponential family model (see
Hunter and Handcock, 2006). The default is FALSE, which means the scale parameter is not
fixed and thus the model is a CEF model. This term can only be used with directed networks.
The optional argument cutoff is only relevant if fixed=FALSE. In that case it only uses this
number of terms in computing the statistics to reduce the computational burden.

gwnsp(alpha=0, fixed=FALSE, cutoff=30) (binary) (directed) (undirected) (curved) Geometrically
weighted nonedgewise shared partner distribution: This term is just like gwesp and gwdsp ex-
cept it adds a statistic equal to the geometrically weighted nonedgewise (that is, over dyads
that do not have an edge) shared partner distribution with weight parameter alpha. The op-
tional argument fixed indicates whether the scale parameter lambda is to be fit as a curved
exponential-family model (see Hunter and Handcock, 2006). The default is FALSE, which
means the scale parameter is not fixed and thus the model is a CEF model. This term can be
used with directed and undirected networks. For directed networks the geometric weighting
is over homogeneous shared partners only (i.e., only partners on a directed two-path connect-
ing the nodes in the non-edge and in the same direction). The optional argument cutoff is
only relevant if fixed=FALSE. In that case it only uses this number of terms in computing the
statistics to reduce the computational burden.

gwodegree(decay, fixed=FALSE, cutoff=30) (binary) (directed) (curved) Geometrically weighted
out-degree distribution: This term adds one network statistic to the model equal to the weighted
out-degree distribution with weight parameter decay. The optional argument fixed indicates
whether the scale parameter lambda is to be fit as a curved exponential family model (see
Hunter and Handcock, 2006). The default is FALSE, which means the scale parameter is not
fixed and thus the model is a CEF model. This term can only be used with directed networks.
The optional argument cutoff is only relevant if fixed=FALSE. In that case it only uses this
number of terms in computing the statistics to reduce the computational burden.

62 ergm-terms

hamming(x, cov, attrname=NULL) (binary) (dyad-independent) (directed) (undirected) Hamming
distance: This term adds one statistic to the model equal to the weighted or unweighted Ham-
ming distance of the network from the network specified by x. (If no argument is given, x
is taken to be the observed network, i.e., the network on the left side of the ∼ in the for-
mula that defines the ERGM.) Unweighted Hamming distance is defined as the total number
of pairs (i, j) (ordered or unordered, depending on whether the network is directed or undi-
rected) on which the two networks differ. If the optional argument cov is specified, then the
weighted Hamming distance is computed instead, where each pair (i, j) contributes a pre-
specified weight toward the distance when the two networks differ on that pair. The argument
cov is either a matrix of edgewise weights or a network; if the latter, the optional argument
attrname provides the name of the edge attribute to use for weight values.

hammingmix(attrname, x, base=0) (binary) (directed) (dyad-independent) Hamming distance
within mixing: This term adds one statistic to the model for every possible pairing of attribute
values of the network for the vertex attribute named attrname. Each such statistic is the Ham-
ming distance (i.e., the number of differences) between the appropriate subset of dyads in the
network and the corresponding subset in x. The ordering of the attribute values is alphabetical.
The option base gives the index of statistics to be omitted from the tabulation. For example
base=2 will omit the second statistic, making it the de facto reference category. This term can
only be used with directed networks.

idegrange(from, to=+Inf, by=NULL, homophily=FALSE) (binary) (directed) (categorical nodal attribute)
In-degree range: The from and to arguments are vectors of distinct integers (or +Inf, for to
(its default)). If one of the vectors has length 1, it is recycled to the length of the other. Oth-
erwise, they must have the same length. This term adds one network statistic to the model
for each element of from (or to); the ith such statistic equals the number of nodes in the
network of in-degree greater than or equal to from[i] but strictly less than to[i], i.e. with
in-edge count in semiopen interval [from,to). The optional argument by is a character string
giving the name of an attribute in the network’s vertex attribute list. If this is specified and
homophily is TRUE, then degrees are calculated using the subnetwork consisting of only edges
whose endpoints have the same value of the by attribute. If by is specified and homophily is
FALSE (the default), then separate degree range statistics are calculated for nodes having each
separate value of the attribute.
This term can only be used with directed networks; for undirected networks (bipartite and
not) see degrange. For degrees of specific modes of bipartite networks, see b1degrange and
b2degrange. For in-degrees, see idegrange.

idegree(d, by=NULL, homophily=FALSE) (binary) (directed) (categorical nodal attribute) (frequently-used)
In-degree: The d argument is a vector of distinct integers. This term adds one network statistic
to the model for each element in d; the ith such statistic equals the number of nodes in the
network of in-degree d[i], i.e. the number of nodes with exactly d[i] in-edges. The optional
term by is a character string giving the name of an attribute in the network’s vertex attribute
list. If this is specified and homophily is TRUE, then degrees are calculated using the subnet-
work consisting of only edges whose endpoints have the same value of the by attribute. If by is
specified and homophily is FALSE (the default), then separate degree statistics are calculated
for nodes having each separate value of the attribute. This term can only be used with directed
networks; for undirected networks see degree.

idegreepopularity (binary) (directed) In-degree popularity: This term adds one network statis-
tic to the model equaling the sum over the actors of each actor’s in-degree taken to the 3/2
power (or, equivalently, multiplied by its square root). This term is analogous to the term of
Snijders et al. (2010), equation (11). This term can only be used with directed networks.

ergm-terms 63

ininterval(lower=-Inf, upper=+Inf, open=c(TRUE,TRUE)) (valued) (directed) (undirected) (dyadic-independent)
Number of dyads whose values are in an interval Adds one statistic equaling to the number
of dyads whose values are between lower and upper. Argument open is a logical vector of
length 2 that controls whether the interval is open (exclusive) on the lower and on the upper
end, respectively.

intransitive (binary) (directed) (triad-related) Intransitive triads: This term adds one statistic
to the model, equal to the number of triads in the network that are intransitive. The intransitive
triads are those of type 111D, 201, 111U, 021C, or 030C in the categorization of Davis and
Leinhardt (1972). For details on the 16 possible triad types, see triad.classify in the sna
package. Note the distinction from the ctriple term. This term can only be used with directed
networks.

isolates (binary) (directed) (undirected) (frequently-used) Isolates: This term adds one statis-
tic to the model equal to the number of isolates in the network. For an undirected network, an
isolate is defined to be any node with degree zero. For a directed network, an isolate is any
node with both in-degree and out-degree equal to zero.

istar(k, attrname=NULL) (binary) (directed) (categorical nodal attribute) In-stars: The k
argument is a vector of distinct integers. This term adds one network statistic to the model for
each element in k. The ith such statistic counts the number of distinct k[i]-instars in the net-
work, where a k-instar is defined to be a node N and a set of k different nodes {O1, . . . , Ok}
such that the ties (Oj→N) exist for j = 1, . . . , k. The optional argument attrname is a
character string giving the name of an attribute in the network’s vertex attribute list. If this is
specified then the count is over the number of k-instars where all nodes have the same value
of the attribute. This term can only be used for directed networks; for undirected networks see
kstar. Note that istar(1) is equal to both ostar(1) and edges.

kstar(k, attrname=NULL) (binary) (undirected) (categorical nodal attribute) k-Stars: The
k argument is a vector of distinct integers. This term adds one network statistic to the model
for each element in k. The ith such statistic counts the number of distinct k[i]-stars in the
network, where a k-star is defined to be a node N and a set of k different nodes {O1, . . . , Ok}
such that the ties {N,Oi} exist for i = 1, . . . , k. The optional argument attrname is a
character string giving the name of an attribute in the network’s vertex attribute list. If this is
specified then the count is over the number of k-stars where all nodes have the same value of
the attribute. This term can only be used for undirected networks; for directed networks, see
istar, ostar, twopath and m2star. Note that kstar(1) is equal to edges.

smallerthan(threshold=0) (valued) (directed) (undirected) (dyadic-independent) Number of
dyads with values strictly smaller than a threshold: Adds one statistic equaling to the number
of dyads whose values exceeded by threshold.

localtriangle(x) (binary) (triad-related) (directed) (undirected) Triangles within neighbor-
hoods: This term adds one statistic to the model equal to the number of triangles in the
network between nodes “close to” each other. For an undirected network, a local triangle is
defined to be any set of three edges between nodal pairs {(i, j), (j, k), (k, i)} that are in the
same neighborhood. For a directed network, a triangle is defined as any set of three edges
(i→j), (j→k) and either (k→i) or (k←i) where again all nodes are within the same neigh-
borhood. The argument x is an undirected network or an symmetric adjacency matrix that
specifies whether the two nodes are in the same neighborhood. Note that triangle, with or
without an argument, is a special case of localtriangle.

m2star (binary) (directed) Mixed 2-stars, a.k.a 2-paths: This term adds one statistic to the model,
equal to the number of mixed 2-stars in the network, where a mixed 2-star is a pair of distinct

64 ergm-terms

edges (i→j), (j→k). A mixed 2-star is sometimes called a 2-path because it is a directed
path of length 2 from i to k via j. However, in the case of a 2-path the focus is usually on
the endpoints i and k, whereas for a mixed 2-star the focus is usually on the midpoint j. This
term can only be used with directed networks; for undirected networks see kstar(2). See
also twopath.

meandeg (binary) (dyad-independent) (directed) (undirected) Mean vertex degree: This term
adds one network statistic to the model equal to the average degree of a node. Note that
this term is a constant multiple of both edges and density.

mutual(same=NULL, diff=FALSE, by=NULL, keep=NULL) (binary) (directed) (dyad-independent) (frequently-used), mutual(form="min",threshold=0) (valued) (directed) (dyad-independent)
Mutuality: In binary ERGMs, equal to the number of pairs of actors i and j for which (i→j)
and (j→i) both exist. For valued ERGMs, equal to

∑
i<j m(yi,j , yj,i), where m is deter-

mined by form argument: "min" for min(yi,j , yj,i), "nabsdiff" for −|yi,j , yj,i|, "product"
for yi,jyj,i, and "geometric" for √yi,j

√
yj,i. See Krivitsky (2012) for a discussion of these

statistics. form="threshold" simply computes the binary mutuality after thresholding at
threshold.
This term can only be used with directed networks. The binary version also has the following
capabilities: if the optional same argument is passed the name of a vertex attribute, only mutual
pairs that match on the attribute are counted; separate counts for each unique matching value
can be obtained by using diff=TRUE with same; and if by is passed the name of a vertex
attribute, then each node is counted separately for each mutual pair in which it occurs and
the counts are tabulated by unique values of the attribute. This means that the sum of the
mutual statistics when by is used will equal twice the standard mutual statistic. Only one of
same or by may be used, and only the former is affected by diff; if both same and by are
passed, by is ignored. Finally, if keep is passed a numerical vector, this vector of integers tells
which statistics should be kept whenever the mutual term would ordinarily result in multiple
statistics.

nearsimmelian (binary) (directed) (triad-related) Near simmelian triads: This term adds one
statistic to the model equal to the number of near Simmelian triads, as defined by Krackhardt
and Handcock (2007). This is a sub-graph of size three which is exactly one tie short of being
complete. This term can only be used with directed networks.

nodecov(attrname, transform, transformname) (binary) (dyad-independent) (frequently-used) (directed) (undirected) (quantitative nodal attribute) , nodecov(attrname, transform, transformname, form="sum") (valued) (dyad-independent) (directed) (undirected) (quantitative nodal attribute) , a.k.a. nodemain (binary) (directed) (undirected)
Main effect of a covariate: The attrname argument is a character string giving the name of a
numeric (not categorical) attribute in the network’s vertex attribute list. This term adds a sin-
gle network statistic to the model equaling the sum of attrname(i) and attrname(j) for all
edges (i, j) in the network. For categorical attributes, see nodefactor. Note that for directed
networks, nodecov equals nodeicov plus nodeocov.

nodecovar (valued) (directed) (undirected) (quantitative nodal attribute) Uncentered covari-
ance of dyad values incident on each actor: This term adds one statistic equal to

∑
i,j,k(yi,jyi,k+

yk,jyk,j). This can be viewed as a valued analog of the kstar(2) statistic.

nodefactor(attrname, base=1) (binary) (dyad-independent) (directed) (undirected) (categorical nodal attribute) (frequently-used) , nodefactor(attrname, base=1, form="sum") (dyad-independent) (valued) (directed) (undirected) (categorical nodal attribute)
Factor attribute effect: The attrname argument is a character vector giving one or more names
of categorical attributes in the network’s vertex attribute list. This term adds multiple network
statistics to the model, one for each of (a subset of) the unique values of the attrname at-
tribute (or each combination of the attributes given). Each of these statistics gives the number
of times a node with that attribute or those attributes appears in an edge in the network. In par-
ticular, for edges whose endpoints both have the same attribute values, this value is counted

ergm-terms 65

twice. To include all attribute values is usually not a good idea – though this may be ac-
complished if desired by setting base=0 – because the sum of all such statistics equals twice
the number of edges and hence a linear dependency would arise in any model also including
edges. Thus, the base argument tells which value(s) (numbered in order according to the
sort function) should be omitted. The default value, base=1, means that the smallest (i.e.,
first in sorted order) attribute value is omitted. For example, if the “fruit” factor has levels
“orange”, “apple”, “banana”, and “pear”, then to add just two terms, one for “apple” and one
for “pear”, then set “banana” and “orange” to the base (remember to sort the values first) by
using nodefactor("fruit", base=2:3). For an analogous term for quantitative vertex
attributes, see nodecov.

nodeicov(attrname, transform, transformname) (binary) (directed) (quantitative nodal attribute) (frequently-used) , nodeicov(attrname, transform, transformname, form="sum") (valued) (directed) (quantitative nodal attribute)
Main effect of a covariate for in-edges: The attrname argument is a character string giving
the name of a numeric (not categorical) attribute in the network’s vertex attribute list. This
term adds a single network statistic to the model equaling the total value of attrname(j)
for all edges (i, j) in the network. This term may only be used with directed networks. For
categorical attributes, see nodeifactor.

nodeicovar (valued) (directed) (quantitative nodal attribute) Uncentered covariance of in-dyad
values incident on each actor: This term adds one statistic equal to

∑
i,j,k yk,jyk,j . This can

be viewed as a valued analog of the istar(2) statistic.

nodeifactor(attrname, base=1) (binary) (dyad-independent) (directed) (categorical nodal attribute) (frequently-used) , nodeifactor(attrname, base=1, form="sum") (valued) (dyad-independent) (directed) (categorical nodal attribute)
Factor attribute effect for in-edges: The attrname argument is a character vector giving one
or more names of a categorical attribute in the network’s vertex attribute list. This term adds
multiple network statistics to the model, one for each of (a subset of) the unique values of the
attrname attribute (or each combination of the attributes given). Each of these statistics gives
the number of times a node with that attribute or those attributes appears as the terminal node
of a directed tie. To include all attribute values is usually not a good idea – though this may
be accomplished if desired by setting base=0 – because the sum of all such statistics equals
the number of edges and hence a linear dependency would arise in any model also including
edges. Thus, the base argument tells which value(s) (numbered in order according to the
sort function) should be omitted. The default value, base=1, means that the smallest (i.e.,
first in sorted order) attribute value is omitted. For example, if the “fruit” factor has levels “or-
ange”, “apple”, “banana”, and “pear”, then to add just two terms, one for “apple” and one for
“pear”, then set “banana” and “orange” to the base (remember to sort the values first) by using
nodefactor("fruit", base=2:3). For an analogous term for quantitative vertex attributes,
see nodeicov.

nodeisqrtcovar (valued) (directed) (non-negative) (quantitative nodal attribute) Uncentered
covariance of square roots of in-dyad values incident on each actor: This term adds one
statistic equal to

∑
i,j,k

√
yi,j
√
yk,j . This can be viewed as a valued analog of the istar(2)

statistic.

nodematch(attrname, diff=FALSE, keep=NULL) (binary) (dyad-independent) (frequently-used) (directed) (undirected) (categorical nodal attribute) , nodematch(attrname, diff=FALSE, keep=NULL, form="sum") (valued) (dyad-independent) (directed) (undirected) (categorical nodal attribute) a.k.a. match (binary) (directed) (dyad-independent) (undirected) (categorical nodal attribute)
Uniform homophily and differential homophily: The attrname argument is a character vector
giving one or more names of attributes in the network’s vertex attribute list. When diff=FALSE,
this term adds one network statistic to the model, which counts the number of edges (i, j) for
which attrname(i)==attrname(j). (When multiple names are given, the statistic counts
only those on which all the named attributes match.) When diff=TRUE, p network statis-
tics are added to the model, where p is the number of unique values of the attrname at-
tribute. The kth such statistic counts the number of edges (i, j) for which attrname(i) ==

66 ergm-terms

attrname(j) == value(k), where value(k) is the kth smallest unique value of the attrname
attribute. If set to non-NULL, the optional keep argument should be a vector of integers giving
the values of k that should be considered for matches; other values are ignored (this works for
both diff=FALSE and diff=TRUE). For instance, to add two statistics, counting the matches
for just the 2nd and 4th categories, use nodematch with diff=TRUE and keep=c(2,4).

nodemix(attrname, base=NULL) (binary) (dyad-independent) (frequently-used) (directed) (undirected) (categorical nodal attribute) , nodemix(attrname, base=NULL, form="sum") (valued) (dyad-independent) (directed) (undirected) (categorical nodal attribute)
Nodal attribute mixing: The attrname argument is a character vector giving the names of cat-
egorical attributes in the network’s vertex attribute list. By default, this term adds one network
statistic to the model for each possible pairing of attribute values. The statistic equals the num-
ber of edges in the network in which the nodes have that pairing of values. (When multiple
names are given, a statistic is added for each combination of attribute values for those names.)
In other words, this term produces one statistic for every entry in the mixing matrix for the
attribute(s). The ordering of the attribute values is alphabetical (for nominal categories) or
numerical (for ordered categories). The optional base argument is a vector of integers corre-
sponding to the pairings that should not be included. If base contains only negative integers,
then these integers correspond to the only pairings that should be included. By default (i.e.,
with base=NULL or base=0), all pairings are included.

nodeocov(attrname, transform, transformname) (binary) (directed) (dyadic-independent)(quantitative nodal attribute) , nodeocov(attrname, transform, transformname, form="sum") (valued) (directed) (dyadic-independent) (quantitative nodal attribute)
Main effect of a covariate for out-edges: The attrname argument is a character string giving
the name of a numeric (not categorical) attribute in the network’s vertex attribute list. This
term adds a single network statistic to the model equaling the total value of attrname(i)
for all edges (i, j) in the network. This term may only be used with directed networks. For
categorical attributes, see nodeofactor.

nodeocovar (valued) (directed) (quantitative nodal attribute) Uncentered covariance of out-dyad
values incident on each actor: This term adds one statistic equal to

∑
i,j,k yi,jyi,k. This can

be viewed as a valued analog of the ostar(2) statistic.

nodeofactor(attrname, base=1) (binary) (dyad-independent) (directed) (categorical nodal attribute) , nodeofactor(attrname, base=1, form="sum") (valued) (dyad-independent) (categorical nodal attribute) (directed)
Factor attribute effect for out-edges: The attrname argument is a character string giving one
or more names of categorical attributes in the network’s vertex attribute list. This term adds
multiple network statistics to the model, one for each of (a subset of) the unique values of the
attrname attribute (or each combination of the attributes given). Each of these statistics gives
the number of times a node with that attribute or those attributes appears as the node of origin
of a directed tie. To include all attribute values is usually not a good idea – though this may
be accomplished if desired by setting base=0 – because the sum of all such statistics equals
the number of edges and hence a linear dependency would arise in any model also including
edges. Thus, the base argument tells which value(s) (numbered in order according to the
sort function) should be omitted. The default value, base=1, means that the smallest (i.e.,
first in sorted order) attribute value is omitted. For example, if the “fruit” factor has levels “or-
ange”, “apple”, “banana”, and “pear”, then to add just two terms, one for “apple” and one for
“pear”, then set “banana” and “orange” to the base (remember to sort the values first) by using
nodefactor("fruit", base=2:3). For an analogous term for quantitative vertex attributes,
see nodeocov.

nodeosqrtcovar (valued) (directed) (non-negative) (quantitative nodal attribute) Uncentered
covariance of square roots of out-dyad values incident on each actor: This term adds one
statistic equal to

∑
i,j,k

√
yi,j
√
yi,k. This can be viewed as a valued analog of the ostar(2)

statistic.

nodesqrtcovar(center=TRUE) (valued) (non-negative) (directed) (undirected) (quantitative nodal attribute)

ergm-terms 67

Covariance of square roots of dyad values incident on each actor: This term adds one statistic
equal to

∑
i,j,k(
√
yi,j
√
yi,k +

√
yk,j
√
yk,j) if center=FALSE. This can be viewed as a val-

ued analog of the kstar(2) statistic. If center=FALSE (the default), the statistic is instead∑
i,j,k((

√
yi,j −

√̄
y)(
√
yi,k −

√̄
y) + (

√
yk,j −

√̄
y)(
√
yk,j −

√̄
y)), where

√̄
y is the mean

of the square root of dyad values.

nsp(d) (binary) (directed) (undirected) Nonedgewise shared partners: This is just like the dsp
and esp terms, except this term adds one network statistic to the model for each element in d
where the ith such statistic equals the number of non-edges (that is, dyads that do not have an
edge) in the network with exactly d[i] shared partners. This term can be used with directed
and undirected networks. For directed networks the count is over homogeneous shared part-
ners only (i.e., only partners on a directed two-path connecting the nodes in the non-edge and
in the same direction).

odegrange(from, to=+Inf, by=NULL, homophily=FALSE) (binary) (directed) (categorical nodal attribute)
Out-degree range: The from and to arguments are vectors of distinct integers (or +Inf, for to
(its default)). If one of the vectors has length 1, it is recycled to the length of the other. Oth-
erwise, they must have the same length. This term adds one network statistic to the model for
each element of from (or to); the ith such statistic equals the number of nodes in the network
of out-degree greater than or equal to from[i] but strictly less than to[i], i.e. with out-edge
count in semiopen interval [from,to). The optional argument by is a character string giving
the name of an attribute in the network’s vertex attribute list. If this is specified and homophily
is TRUE, then degrees are calculated using the subnetwork consisting of only edges whose end-
points have the same value of the by attribute. If by is specified and homophily is FALSE (the
default), then separate degree range statistics are calculated for nodes having each separate
value of the attribute.
This term can only be used with directed networks; for undirected networks (bipartite and
not) see degrange. For degrees of specific modes of bipartite networks, see b1degrange and
b2degrange. For in-degrees, see idegrange.

odegree(d, by=NULL, homophily=FALSE) (binary) (directed) (categorical nodal attribute) (frequently-used)
Out-degree: The d argument is a vector of distinct integers. This term adds one network statis-
tic to the model for each element in d; the ith such statistic equals the number of nodes in the
network of out-degree d[i], i.e. the number of nodes with exactly d[i] out-edges. The op-
tional argument by is a character string giving the name of an attribute in the network’s vertex
attribute list. If this is specified and homophily is TRUE, then degrees are calculated using the
subnetwork consisting of only edges whose endpoints have the same value of the by attribute.
If by is specified and homophily is FALSE (the default), then separate degree statistics are cal-
culated for nodes having each separate value of the attribute. This term can only be used with
directed networks; for undirected networks see degree.

odegreepopularity (binary) (directed) Out-degree popularity: This term adds one network statis-
tic to the model equaling the sum over the actors of each actor’s outdegree taken to the 3/2
power (or, equivalently, multiplied by its square root). This term is analogous to the term of
Snijders et al. (2010), equation (12). This term can only be used with directed networks.

opentriad (binary) (undirected) (triad-related) Open triads: This term adds one statistic to the
model equal to the number of 2-stars minus three times the number of triangles in the network.
It is currently only implemented for undirected networks.

ostar(k, attrname=NULL) (binary) (directed) (categorical nodal attribute) k-Outstars: The k
argument is a vector of distinct integers. This term adds one network statistic to the model for

68 ergm-terms

each element in k. The ith such statistic counts the number of distinct k[i]-outstars in the net-
work, where a k-outstar is defined to be a node N and a set of k different nodes {O1, . . . , Ok}
such that the ties (N→Oj) exist for j = 1, . . . , k. The optional argument attrname is a
character string giving the name of an attribute in the network’s vertex attribute list. If this is
specified then the count is the number of k-outstars where all nodes have the same value of
the attribute. This term can only be used with directed networks; for undirected networks see
kstar. Note that ostar(1) is equal to both istar(1) and edges.

receiver(base=1) (binary) (directed) (dyad-independent) Receiver effect: This term adds one
network statistic for each node equal to the number of in-ties for that node. This measures
the popularity of the node. The term for the first node is omitted by default because of lin-
ear dependence that arises if this term is used together with edges, but its coefficient can be
computed as the negative of the sum of the coefficients of all the other actors. That is, the av-
erage coefficient is zero, following the Holland-Leinhardt parametrization of the p_1 model
(Holland and Leinhardt, 1981). The base argument allows the user to determine which nodes’
statistics should be omitted. The base argument can also be a vector of negative indices, to
specify which should be added instead of deleted, and base=0 specifies that all statistics should
be included. This term can only be used with directed networks. For undirected networks, see
sociality.

sender(base=1) (binary) (directed) (dyad-independent) Sender effect: This term adds one net-
work statistic for each node equal to the number of out-ties for that node. This measures the
activity of the node. The term for the first node is omitted by default because of linear depen-
dence that arises if this term is used together with edges, but its coefficient can be computed
as the negative of the sum of the coefficients of all the other actors. That is, the average coef-
ficient is zero, following the Holland-Leinhardt parametrization of the p_1 model (Holland
and Leinhardt, 1981). The base argument allows the user to determine which nodes’ statistics
should be omitted. The base argument can also be a vector of negative indices, to specify
which should be added instead of deleted, and base=0 specifies that all statistics should be
included. This term can only be used with directed networks. For undirected networks, see
sociality.

simmelian (binary) (directed) (triad-related) Simmelian triads: This term adds one statistic to
the model equal to the number of Simmelian triads, as defined by Krackhardt and Handcock
(2007). This is a complete sub-graph of size three. This term can only be used with directed
networks.

simmelianties (binary) (triad-related) (directed) Ties in simmelian triads: This term adds one
statistic to the model equal to the number of ties in the network that are associated with Sim-
melian triads, as defined by Krackhardt and Handcock (2007). Each Simmelian has six ties
in it but, because Simmelians can overlap in terms of nodes (and associated ties), the total
number of ties in these Simmelians is less than six times the number of Simmelians. Hence
this is a measure of the clustering of Simmelians (given the number of Simmelians). This term
can only be used with directed networks.

smalldiff(attrname, cutoff) (binary) (dyad-independent) (directed) (undirected) (quantitative nodal attribute)
Number of ties between actors with similar (but not necessarily identical) attribute values:
The attrname argument is a character string giving the name of a quantitative attribute in the
network’s vertex attribute list. This term adds one statistic, having as its value the number of
edges in the network for which the incident actors’ attribute values differ less than cotoff;
that is, number of edges between i to j such that abs(attrname[i]-attrname[j])<cutoff.

sociality(attrname=NULL, base=1) (binary) (undirected) (categorical nodal attribute) Undirected

ergm-terms 69

degree: This term adds one network statistic for each node equal to the number of ties of that
node. The optional attrname argument is a character string giving the name of an attribute
in the network’s vertex attribute list that takes categorical values. If provided, this term only
counts ties between nodes with the same value of the attribute (an actor-specific version of
the nodematch term). This term can only be used with undirected networks. For directed net-
works, see sender and receiver. By default, base=1 means that the statistic for the first node
will be omitted, but this argument may be changed to control which statistics are included just
as for the sender and receiver terms.

sum(pow=1) (valued) (directed) (undirected) Sum of dyad values (optionally taken to a power):
This term adds one statistic equal to the sum of dyad values taken to the power pow, which
defaults to 1.

threetrail(keep=1:4) (binary) (directed) (undirected) (triad-related), Three-trails: a.k.a. threepath.
For an undirected network, this term adds one statistic equal to the number of 3-trails, where
a 3-trail is defined as a “trail” of length three that traverses three distinct edges. Note that a
3-trail need not include four distinct nodes; in particular, a triangle counts as three 3-trails.
For a directed network, this term adds four statistics (or some subset of these four specified
by the keep argument), one for each of the four distinct types of directed three-paths. If the
nodes of the path are written from left to right such that the middle edge points to the right
(R), then the four types are RRR, RRL, LRR, and LRL. That is, an RRR 3-trail is of the form
i → j → k → l, and RRL 3-trail is of the form i → j → k ← l, etc. Like in the undirected
case, there is no requirement that the nodes be distinct in a directed 3-trail. However, the three
edges must all be distinct. Thus, a mutual tie i ↔ j does not count as a 3-trail of the form
i → j → i ← j; however, in the subnetwork i ↔ j → k, there are two directed 3-trails, one
LRR (k ← j → i← j) and one RRR (j → i→ j ← k).
This term used to be (inaccurately) called threepath. That name has been deprecated and
may be removed in a future version.

transitive (binary) (directed) (triad-related) Transitive triads: This term adds one statistic to
the model, equal to the number of triads in the network that are transitive. The transitive triads
are those of type 120D, 030T, 120U, or 300 in the categorization of Davis and Leinhardt (1972).
For details on the 16 possible triad types, see triad.classify in the sna package. Note the
distinction from the ttriple term. This term can only be used with directed networks.

transitiveties(attrname=NULL) (binary) (directed) (triad-related) (categorical nodal attribute) , transitiveties(threshold=0) (valued) (directed) (undirected) (triad-related)
Transitive ties: This term adds one statistic, equal to the number of ties i→ j such that there
exists a two-path from i to j. (Related to the ttriple term.) The binary version takes a nodal
attribute attrname, and, if given, all three nodes involved (i, j, and the node on the two-path)
must match on this attribute in order for i→ j to be counted. The binary version of this term
can only be used with directed networks. The valued version can be used with both directed
and undirected.

transitiveweights(twopath="min",combine="max",affect="min") (valued) (directed) (undirected) (non-negative) (triad-related)
Transitive weights: This statistic implements the transitive weights statistic defined by Krivit-
sky (2012), Equation 13. The currently implemented options for twopath is the minimum of
the constituent dyads ("min") or their geometric mean ("geomean"); for combine, the maxi-
mum of the 2-path strengths ("max") or their sum ("sum"); and for affect, the minimum of
the focus dyad and the combined strength of the two paths ("min") or their geometric mean
("geomean"). For each of these options, the first (and the default) is more stable but also
more conservative, while the second is more sensitive but more likely to induce a multimodal
distribution of networks.

70 ergm-terms

triadcensus(d) (binary) (triad-related) (directed) (undirected) Triad census: For a directed
network, this term adds one network statistic for each of an arbitrary subset of the 16 possible
types of triads categorized by Davis and Leinhardt (1972) as 003, 012, 102, 021D, 021U, 021C, 111D, 111U, 030T, 030C, 201, 120D, 120U, 120C, 210,
and 300. Note that at least one category should be dropped; otherwise a linear dependency
will exist among the 16 statistics, since they must sum to the total number of three-node sets.
By default, the category 003, which is the category of completely empty three-node sets, is
dropped. This is considered category zero, and the others are numbered 1 through 15 in the
order given above. By specifying a numeric vector of integers from 0 to 15 as the d argument,
the user may specify a set of terms to add other than the default value of 1:15. Each statistic
is the count of the corresponding triad type in the network. For details on the 16 types, see
?triad.classify in the {sna} package, on which this code is based. For an undirected net-
work, the triad census is over the four types defined by the number of ties (i.e., 0, 1, 2, and 3),
and the default is to add 1:3, which is to say that the 0 is dropped; however, this too may be
controlled by changing the d argument to a numeric vector giving a subset of {0, 1, 2, 3}.

triangle(attrname=NULL) (binary) (frequently-used) (triad-related) (directed) (undirected) (categorical nodal attribute)
Triangles: This term adds one statistic to the model equal to the number of triangles in the
network. For an undirected network, a triangle is defined to be any set {(i, j), (j, k), (k, i)} of
three edges. For a directed network, a triangle is defined as any set of three edges (i→j) and
(j→k) and either (k→i) or (k←i). The former case is called a “transitive triple” and the latter
is called a “cyclic triple”, so in the case of a directed network, triangle equals ttriple plus
ctriple — thus at most two of these three terms can be in a model. The optional argument
attrname restricts the count to those triples of nodes with equal values of the vertex attribute
specified by attrname.

tripercent(attrname=NULL) (binary) (undirected) (triad-related) (categorical nodal attribute)
Triangle percentage: This term adds one statistic to the model equal to 100 times the ratio of
the number of triangles in the network to the sum of the number of triangles and the number
of 2-stars not in triangles (the latter is considered a potential but incomplete triangle). In case
the denominator equals zero, the statistic is defined to be zero. For the definition of trian-
gle, see triangle. The optional argument attrname restricts the counts (both numerator and
denominator) to those triples of nodes with equal values of the vertex attribute specified by
attrname. This is often called the mean correlation coefficient. This term can only be used
with undirected networks; for directed networks, it is difficult to define the numerator and
denominator in a consistent and meaningful way.

ttriple(attrname=NULL) (binary) (directed) (triad-related) (categorical nodal attribute) , a.k.a. ttriad (binary) (directed) (triad-related) (categorical nodal attribute)
Transitive triples: This term adds one statistic to the model, equal to the number of transitive
triples in the network, defined as a set of edges {(i→j), (j→k), (i→k)}. Note that triangle
equals ttriple+ctriple for a directed network, so at most two of the three terms can be in a
model. The optional argument attrname is a character string giving the name of an attribute
in the network’s vertex attribute list. If this is specified then the count is over the number of
transitive triples where all three nodes have the same value of the attribute. This term can only
be used with directed networks.

twopath (binary) (directed) (undirected) 2-Paths: This term adds one statistic to the model, equal
to the number of 2-paths in the network. For a directed network this is defined as a pair of
edges (i→j), (j→k), where i and j must be distinct. That is, it is a directed path of length 2
from i to k via j. For directed networks a 2-path is also a mixed 2-star but the interpretation is
usually different; see m2star. For undirected networks a twopath is defined as a pair of edges
{i, j}, {j, k}. That is, it is an undirected path of length 2 from i to k via j, also known as a
2-star.

ergm-terms 71

References

• Bomiriya, R. P, Bansal, S., and Hunter, D. R. (2014). Modeling Homophily in ERGMs for
Bipartite Networks. Submitted.

• Butts, CT. (2008). “A Relational Event Framework for Social Action.” Sociological Method-
ology, 38(1).

• Davis, J.A. and Leinhardt, S. (1972). The Structure of Positive Interpersonal Relations in
Small Groups. In J. Berger (Ed.), Sociological Theories in Progress, Volume 2, 218–251.
Boston: Houghton Mifflin.

• Holland, P. W. and S. Leinhardt (1981). An exponential family of probability distributions for
directed graphs. Journal of the American Statistical Association, 76: 33–50.

• Hunter, D. R. and M. S. Handcock (2006). Inference in curved exponential family models for
networks. Journal of Computational and Graphical Statistics, 15: 565–583.

• Hunter, D. R. (2007). Curved exponential family models for social networks. Social Networks,
29: 216–230.

• Krackhardt, D. and Handcock, M. S. (2007). Heider versus Simmel: Emergent Features in
Dynamic Structures. Lecture Notes in Computer Science, 4503, 14–27.

• Krivitsky P. N. (2012). Exponential-Family Random Graph Models for Valued Networks.
Electronic Journal of Statistics, 2012, 6, 1100-1128. doi:10.1214/12-EJS696

• Robins, G; Pattison, P; and Wang, P. (2009). “Closure, Connectivity, and Degree Distribu-
tions: Exponential Random Graph (p*) Models for Directed Social Networks.” Social Net-
works, 31:105-117.

• Snijders T. A. B., G. G. van de Bunt, and C. E. G. Steglich. Introduction to Stochastic Actor-
Based Models for Network Dynamics. Social Networks, 2010, 32(1), 44-60. doi:10.1016/j.socnet.2009.02.004

• Morris M, Handcock MS, and Hunter DR. Specification of Exponential-Family Random Graph
Models: Terms and Computational Aspects. Journal of Statistical Software, 2008, 24(4), 1-24.
http://www.jstatsoft.org/v24/i04

• Snijders, T. A. B., P. E. Pattison, G. L. Robins, and M. S. Handcock (2006). New specifications
for exponential random graph models, Sociological Methodology, 36(1): 99-153.

See Also

ergm package, search.ergmTerms, ergm, network, %v%, %n%

Examples

Not run:
ergm(flomarriage ~ kstar(1:2) + absdiff("wealth") + triangle)

ergm(molecule ~ edges + kstar(2:3) + triangle
+ nodematch("atomic type",diff=TRUE)
+ triangle + absdiff("atomic type"))

End(Not run)

http://dx.doi.org/10.1214/12-EJS696
http://dx.doi.org/10.1016/j.socnet.2009.02.004
http://www.jstatsoft.org/v24/i04

72 ergm.allstats

ergm.allstats Calculate all possible vectors of statistics on a network for an ERGM

Description

ergm.allstats produces a matrix of network statistics for an arbitrary statnet exponential-family
random graph model. One possible use for this function is to calculate the exact loglikelihood
function for a small network via the ergm.exact function.

Usage

ergm.allstats (formula, zeroobs = TRUE, force = FALSE,
maxNumChangeStatVectors = 2^16, ...)

Arguments

formula an R formula object of the form y ~ <model terms>, where y is a network
object or a matrix that can be coerced to a network object. For the details on the
possible <model terms>, see ergm-terms. To create a network object in R, use
the network() function, then add nodal attributes to it using the %v% operator if
necessary.

zeroobs Logical: Should the vectors be centered so that the network passed in the formula
has the zero vector as its statistics?

force Logical: Should the algorithm be run even if it is determined that the problem
may be very large, thus bypassing the warning message that normally terminates
the function in such cases?

maxNumChangeStatVectors

Maximum possible number of distinct values of the vector of statistics. It’s good
to use a power of 2 for this.

... further arguments; not currently used.

Details

The mechanism for doing this is a recursive algorithm, where the number of levels of recursion
is equal to the number of possible dyads that can be changed from 0 to 1 and back again. The
algorithm starts with the network passed in formula, then recursively toggles each edge twice so
that every possible network is visited.

ergm.allstats should only be used for small networks, since the number of possible networks
grows extremely fast with the number of nodes. An error results if it is used on a directed network
of more than 6 nodes or an undirected network of more than 8 nodes; use force=TRUE to override
this error.

ergm.bounddeg 73

Value

Returns a list object with these two elements:

weights integer of counts, one for each row of statmat telling how many networks share
the corresponding vector of statistics.

statmat matrix in which each row is a unique vector of statistics.

See Also

ergm.exact

Examples

Count by brute force all the edge statistics possible for a 7-node
undirected network
mynw <- network(matrix(0,7,7),dir=FALSE)
unix.time(a <- ergm.allstats(mynw~edges))

Summarize results
rbind(t(a$statmat),a$weights)

Each value of a$weights is equal to 21-choose-k,
where k is the corresponding statistic (and 21 is
the number of dyads in an 7-node undirected network).
Here's a check of that fact:
as.vector(a$weights - choose(21, t(a$statmat)))

Simple ergm.exact outpuf for this network.
We know that the loglikelihood for my empty 7-node network
should simply be -21*log(1+exp(eta)), so we may check that
the following two values agree:
-21*log(1+exp(.1234))
ergm.exact(.1234, mynw~edges, statmat=a$statmat, weights=a$weights)

ergm.bounddeg initializes the parameters to bound degree during sampling

Description

Not normally called directly by user, ergm.bounddeg initializes the list of parameters used to bound
the degree during the Metropolis Hastings sampling process, and issues warnings if the original
network doesn’t meet the constraints specified by ’bounddeg’.

Usage

ergm.bounddeg(bounddeg, nw)

74 ergm.bounddeg

Arguments

bounddeg a list of parameters which may contain the following for a network of size n
nodes:

• attribs: an nxp matrix, where entry ij is TRUE if node i has attribute j, and
FALSE otherwise; default=an nx1 matrix of 1’s

• maxout : an nxp matrix, where entry ij is the maximum number of out
degrees for node i to nodes with attribute j; default=an nxp matrix of the
value (n-1)

• maxin : defined similarly to maxout, but ignored for undirected networks;
default=an nxp matrix of the value (n-1)

• minout : defined similarly to maxout; default=an nxp matrix of 0’s
• minin : defined similarly to maxout, but ignored for undirected networks;

default=an nxp matrix of 0’s

nw the orginal network specified to ergm in ’formula’

Details

In some modeling situations, the degree of certain nodes are constrained to lie in a certain range
(rather than their theoretically possible range of 0 to n-1). Such sample space constraints may be
incorporated into the ergm modeling process, and if so then the MCMC routine is prevented from
visiting network states that violate any of these bounds.

In case there are categories of nodes and degree bounds for each set of categories, such constraints
may be incorporated as well. For instance, if the nodes are girls and boys, and there is a maximum
of 5 out-ties to boys and a maximum of 5 out-ties to girls for each node, we would define p to be 2,
and the nxp matrix attribs would have TRUE in the first column (say) for exactly those nodes that
are boys and TRUE in the second column for only the girls. The maxout matrix would consist of
all 5s in this case, and the other arguments would be left as their default values.

Since the observed network is generally the beginning of the Markov chain, it must satisfy all of the
degree constraints itself; thus, this function returns an error message if any bound is violated by the
observed network.

Value

a list of parameters used to bound degree during sampling

• condAllDegExact: always FALSE

• attribs : as defined above

• maxout : as defined above

• maxin : as defined above

• minout : as defined above

• minin : as defined above

See Also

ergm_MH_proposals

ergm.bridge.dindstart.llk 75

ergm.bridge.dindstart.llk

Bridge sampling to estiamte log-likelihood of an ERGM, using a dyad-
independent ERGM as a staring point.

Description

This function is a wrapper around ergm.bridge.llr that uses a dyad-independent ERGM as a
starting point for bridge sampling to estimate the log-likelihood for a given dyad-dependent model
and parameter configuration. The dyad-independent model may be specified or can be chosen
adaptively.

Usage

ergm.bridge.dindstart.llk(object,
response=NULL,
constraints=~.,
coef,
dind=NULL,
coef.dind=NULL,
basis=NULL,
...,
llkonly=TRUE,
control=control.ergm.bridge())

Arguments

object A model formula. See ergm for details.

response The name of the edge attribute that is the response. Note that it’s included solely
for consistency, since ergm.bridge.dindstart.llk can only handle binary
ERGMs.

constraints A model constraints formula. See ergm for details. Note that only constraints
that do not induce dyadic dependence can be handled by ergm.bridge.dindstart.llk.

coef A vector of coefficients for the configuration of interest.
dind A one-sided formula with the dyad-independent model to use as a starting point.

Defaults to the dyad-independent terms found in the formula object with an
overal density term (edges) added if not redundant.

coef.dind Parameter configuration for the dyad-independent starting point. Defaults to the
MLE of dind.

basis An optional network object to start the Markov chain. If omitted, the default is
the left-hand-side of the object.

... Further arguments to ergm.bridge.llr and simulate.formula.ergm.
llkonly Whether only the estiamted log-likelihood should be returned. (Defaults to

TRUE.)
control Control parameters. See control.ergm.bridge.

76 ergm.bridge.llr

Value

If llkonly=TRUE, returns the scalar log-likelihood. Otherwise, returns a copy of the list returned by
ergm.bridge.llr in addition to the following components:

llk.dind The log-likelihood of the dyad-independence model.
llk The estimated log-likelihood.

References

Hunter, D. R. and Handcock, M. S. (2006) Inference in curved exponential family models for net-
works, Journal of Computational and Graphical Statistics.

See Also

ergm.bridge.llr, simulate.formula.ergm

ergm.bridge.llr A simple implementation of bridge sampling to evaluate log-
likelihood-ratio between two ERGM configurations

Description

ergm.bridge.llr uses bridge sampling with geometric spacing to estimate the difference between
the log-likelihoods of two parameter vectors for an ERGM via repeated calls to simulate.formula.ergm.

ergm.bridge.0.llk is a convenience wrapper around ergm.bridge.llr: returns the log-likelihood
of configuration ‘theta’ relative to the reference measure. That is, the configuration with theta=0 is
defined as having log-likelihood of 0

See also ergm.bridge.dindstart.llk to use dyad-independent ERGM as a staring point.

Usage

ergm.bridge.llr(object,
response=NULL,
constraints=~.,
from,
to,
basis=NULL,
verbose=FALSE,
...,
llronly=FALSE,
control=control.ergm.bridge())

ergm.bridge.0.llk(object,
response=response,
coef,
...,
llkonly=TRUE,
control=control.ergm.bridge())

ergm.bridge.llr 77

Arguments

object A model formula. See ergm for details.

response Not for release.

constraints A one-sided formula specifying one or more constraints on the support of the
distribution of the networks being simulated. See the documentation for a sim-
ilar argument for ergm for more information. For simulate.formula, defaults
to no constraints. For simulate.ergm, defaults to using the same constraints as
those with which object was fitted.

from, to The initial and final parameter vectors.

basis An optional network object to start the Markov chain. If omitted, the default is
the left-hand-side of the object.

verbose Logical: If TRUE, print detailed information.

... Further arguments to ergm.bridge.llr and simulate.formula.ergm.

llronly Logical: If TRUE, only the estiamted log-ratio will be returned.

control Control arguments. See control.ergm.bridge for details.

coef A vector of coefficients for the configuration of interest.

llkonly Whether only the estiamted log-likelihood should be returned. (Defaults to
TRUE.)

Value

If llronly=TRUE, returns the scalar log-likelihood-ratio. Otherwise, returns a list with the following
components:

llr The estimated log-ratio.

llrs The estimated log-ratios for each of the nsteps bridges.

path A numeric matrix with nsteps rows, with each row being the respective bridge’s
parameter configuration.

stats A numeric matrix with nsteps rows, with each row being the respective bridge’s
vector of simulated statistics.

Dtheta.Du The gradient vector of the parameter values with respect to position of the
bridge.

References

Hunter, D. R. and Handcock, M. S. (2006) Inference in curved exponential family models for net-
works, Journal of Computational and Graphical Statistics.

See Also

simulate.formula.ergm, ergm.bridge.dindstart.llk

78 ergm.Cprepare

ergm.ConstraintImplications

Set up the implied constraints from the current constraint

Description

This is a low-level function not intended to be called directly by end users. For information on
constraints, see the ergm-constraints page. This function set up the implied constraints from the
current constraint. (It is defined in the scope of local environment)

Usage

ergm.ConstraintImplications(implier, implies)

Arguments

implier The current constraint specified in the model. For the list of constraints, see
ergm-constraints

implies Implied constraints from the current constraint (based on the user’s knowledge).

ergm.Cprepare Internal Function to Prepare Data for ergm’s C Interface

Description

These are internal functions not intended to be called by end users. The ergm.Cprepare func-
tion builds an object called Clist that contains all the necessary ingredients to be passed to the C
functions, other functions create edgelists and handle missing edge data.

Usage

ergm.Cprepare(nw, m, response = NULL)

ergm.Cprepare.el(x, attrname=NULL, prototype=NULL)

ergm.Cprepare.miss(nw)

ergm.design(nw, model, verbose = FALSE)

ergm.Cprepare 79

Arguments

nw,x a network object

m,model a model object, as returned by ergm.getmodel

response,attrname

character name of an edge attribute

prototype A network whose relevant attributes (size, directedness, bipartitedness, and pres-
ence of loops) are imposed on the output edgelist if x is already an edgelist.
(For example, if the prototype is undirected, ergm.Cprepare.el will ensure
that t < h.)

verbose logical, whether the design matrix should be printed; default=FALSE

Details

These low-level functions are used by other ergm-related packages, but should never need to be
called directly by the user.

• ergm.Cprepare builds an object called Clist that contains all the necessary ingredients to be
passed to the C functions

• ergm.Cprepare.el constructs and serializes a very simple static edgelist, with the vertex
having the lesser index the tail and sorted by tails, then by heads.

• ergm.Cprepare.miss constructs an edgelist as ergm.Cprepare.el, but only includes ’miss-
ing’ edges (marked as NA)

• ergm.design functions as ergm.Cprepare would, but acts on the network of missing edges

Value

ergm.Cprepare returns Clist: a list of parameters used by several of the fitting routines containing

• n : the size of the network

• dir : whether the network is directed (T or F)

• bipartite : whether the network is bipartite (T or F)

• ndyads : the number of dyads in the network

• nedges : the number of edges in this network

• tails : the vector of tail nodes; tail nodes are the 1st column of the implicit edgelist, so either
the lower-numbered nodes in an undirected graph, or the out nodes of a directed graph, or the
b1 nodes of a bi- partite graph

• heads : the vector of head nodes; head nodes are the 2nd column of the implicit edgelist, so
either the higher-numbered nodes in an undirected graph, or the in nodes of a directed graph,
or the b2 nodes of a bi- partite graph

• nterms : the number of model terms

• nstats : the total number of change statistics for all model terms

• inputs : the concatenated vector of ’input’s from each model term as returned by <InitErgmTerm.X>
or <InitErgm.X>

• fnamestring : the concatenated string of model term names

80 ergm.degeneracy

• snamestring : the concatenated string of package names that contain the C function ’d_fname’;
default="ergm" for each fname in fnamestring

ergm.design returns: Clist.miss

• if ’nw’ has missing edges, see the return list, ’Clist’, from the ergm.Cprepare function header
• if ’nw’ hasn’t any missing edges, the list will only contain NULL values for the ’tails’ and

’heads’ components, a 0 for ’nedges’ and ’dir’ appropriately set

ergm.Cprepare.miss returns a vector of length 1+Nmissing*2. The first element is the number of
missing edges, and the remainder a column-major edgelist

ergm.degeneracy Checks an ergm Object for Degeneracy

Description

The ergm.degeneracy function checks a given ergm object for degeneracy by computing and re-
turning the instability value of the model and the value of the log-likelihood function at the maxi-
mized theta values

Usage

ergm.degeneracy(object, control = object$control,
fast = TRUE, test.only = FALSE,
verbose = FALSE)

Arguments

object an ergm object
control the list of control parameters as returned by control.ergm; default=control.ergm()
fast whether the degeneracy check should be "fast", i.e to sample changeobs(?) when

there are > 100, rather than use all changeobs; default=TRUE
test.only whether to silence printing of the model instability calculation (T or F); this

parameter is ignored if the instability > 1; default=FALSE
verbose whether to print a notification when ’object’ is deemed degenerate (T or F);

default=FALSE

Value

returns the original ergm object with 2 additional components:

• degeneracy.value: the instability of the model
• degeneracy.type : a 2-element vector containing

– loglikelihood: the value of the log-likelihood function corresponding to ’theta’; if degen-
erate, this is a vector of Inf

– theta : the vector of theta values found through maximixing the log- likelihood; if degen-
erate, this is ’guess’

ergm.eta 81

ergm.eta Operations with ’eta’ vector of canonical parameter values from ergm
model

Description

The ergm.eta function calculates and returns eta, mapped from theta using the etamap object cre-
ated by ergm.etamap.

The ergm.etagrad function caculates and returns the gradient of eta mapped from theta using the
etamap object created by ergm.etamap. If the gradient is only intended to be a multiplier for some
vector, the more efficient ergm.etagradmult is recommended.

The ergm.etagradmult function calculates and returns the product of the gradient of eta with a
vector v

The ergm.etamap function takes a model object and creates a mapping from the model parameters,
theta, to the canonical (linear) eta parameters; the mapping is carried out by ergm.eta

Usage

ergm.eta(theta, etamap)

ergm.etagrad(theta, etamap)

ergm.etagradmult(theta, v, etamap)

ergm.etamap(model)

Arguments

theta the curved model parameters

etamap the list of values that constitutes the theta-> eta mapping and is returned by
ergm.etamap

v a vector of the same length as the vector of mapped eta parameters

model model object, as returned by ergm.getmodel

Details

This function is only important in the case of curved exponential family models, i.e., those in
which the parameter of interest (theta) is not a linear function of the sufficient statistics (eta) in the
exponential-family model. In non-curved models, we may assume without loss of generality that
eta(theta)=theta.

A succinct description of how eta(theta) is incorporated into an ERGM is given by equation (5) of
Hunter (2007). See Hunter and Handcock (2006) and Hunter (2007) for further details about how
eta and its derivatives are used in the estimation process.

82 ergm.exact

Value

• for ergm.eta: eta the canonical eta parameters as mapped from theta

• for ergm.etagrad: etagrad a matrix of the gradient of eta

• for ergm.etagradmult: ans the vector that is the product of the gradient of eta and v; infinite
values are replaced by (+-)10000

• for ergm.etamap the theta -> eta mapping given by a list of the following:

– canonical : a numeric vector whose ith entry specifies whether the ith component of theta
is canonical (via non- negative integers) or curved (via zeroes)

– offsetmap : a logical vector whose ith entry tells whether the ith coefficient of the canon-
ical parameterization was "offset", i.e fixed

– offset : a logical vector whose ith entry tells whether the ith model term was offset/fixed
– offsettheta: a logical vector whose ith entry tells whether the ith curved theta coeffient

was offset/fixed;
– curved : a list with one component per curved EF term in the model containing

* from : the indices of the curved theta parameter that are to be mapped from

* to : the indices of the canonical eta parameters to be mapped to

* map : the map provided by <InitErgmTerm>

* gradient: the gradient function provided by InitErgmTerm

* cov : the eta covariance ??, possibly always NULL (no <Init> function creates such
an item)

– etalength : the length of the eta vector

References

• Hunter, D. R. and M. S. Handcock (2006). Inference in curved exponential family models for
networks. Journal of Computational and Graphical Statistics, 15: 565–583.

• Hunter, D. R. (2007). Curved exponential family models for social networks. Social Networks,
29: 216–230.

See Also

ergm-terms

ergm.exact Calculate the exact loglikelihood for an ERGM

Description

ergm.exact calculates the exact loglikelihood, evaluated at eta, for the statnet exponential-
family random graph model represented by formula.

Usage

ergm.exact (eta, formula, statmat=NULL, weights=NULL, ...)

ergm.exact 83

Arguments

eta vector of canonical parameter values at which the loglikelihood should be eval-
uated.

formula an R link{formula} object of the form y ~ <model terms>, where y is a
network object or a matrix that can be coerced to a network object. For the
details on the possible <model terms>, see ergm-terms. To create a network
object in R, use the network() function, then add nodal attributes to it using the
%v% operator if necessary.

statmat if NULL, call ergm.allstats to generate all possible graph statistics for the
networks in this model.

weights In case statmat is not NULL, this should be the vector of counts corresponding
to the rows of statmat. If statmat is NULL, this is generated by the call to
ergm.allstats.

... further arguments; not currently used.

Details

ergm.exact should only be used for small networks, since the number of possible networks grows
extremely fast with the number of nodes. An error results if it is used on a directed network of more
than 6 nodes or an undirected network of more than 8 nodes; use force=TRUE to override this error.

In case this function is to be called repeatedly, for instance by an optimization routine, it is prefer-
able to call ergm.allstats first, then pass statmat and weights explicitly to avoid repeatedly
calculating these objects.

Value

Returns the value of the exact loglikelihood, evaluated at eta, for the statnet exponential-family
random graph model represented by formula.

See Also

ergm.allstats

Examples

Count by brute force all the edge statistics possible for a 7-node
undirected network
mynw <- network(matrix(0,7,7),dir=FALSE)
unix.time(a <- ergm.allstats(mynw~edges))

Summarize results
rbind(t(a$statmat),a$weights)

Each value of a$weights is equal to 21-choose-k,
where k is the corresponding statistic (and 21 is
the number of dyads in an 7-node undirected network).
Here's a check of that fact:
as.vector(a$weights - choose(21, t(a$statmat)))

84 ergm.formula.utils

Simple ergm.exact outpuf for this network.
We know that the loglikelihood for my empty 7-node network
should simply be -21*log(1+exp(eta)), so we may check that
the following two values agree:
-21*log(1+exp(.1234))
ergm.exact(.1234, mynw~edges, statmat=a$statmat, weights=a$weights)

ergm.formula.utils Internal Functions for Querying, Validating and Extracting from
ERGM Formulas

Description

These are all functions that are generally not called directly by users, but may be employed by other
depending packages.

Usage

ergm.getmodel(formula, nw, response = NULL, silent = FALSE, role = "static", ...)

ergm.getnetwork(form, loopswarning = TRUE)

ergm.getterms(formula)

offset.info.formula(object, response = NULL)

remove.offset.formula(object, response = NULL)

Deprecated. Use nonsimp.update.formula() from statnet.common package.
ergm.update.formula(object, new, ..., from.new = FALSE)

Arguments

formula a formula of the form network ~ model.term(s)

nw the network of interest

response charcter, name of edge attribute containing edge weights

silent logical, whether to print the warning messages from the initialization of each
model term; default=FALSE

role A hint about how the model will be used. Used primarily for dynamic network
models.

... additional parameters for model formulation

form same as formula, a formula of the form 'network ~ model.term(s)'

loopswarning whether warnings about loops should be printed (T or F);default=TRUE

ergm.formula.utils 85

object formula object to be updated

new new formula to be used in updating

from.new logical or character vector of variable names. controls how environment of for-
mula gets updated.

Details

• The ergm.getmodel function parses the given formula, and initiliazes each ergm term via the
InitErgmTerm functions to create a model.ergm object for the given network

• The ergm.getnetwork function ensures that the network in a given formula is valid; if so, the
network is returned; if not, execution is halted with warnings

• The ergm.getterms function returns the terms of a given formula and ensures that the formula
is indeed a formula with the necessary ~ operator

• ergm.update.formula (DEPRECATED: use nonsimp.update.formula instead) is a reim-
plementation of update.formula that does not simplify. Note that the resulting formula’s
environment is set as follows. If from.new==FALSE, it is set to that of object. Otherwise, a
new sub-environment of object, containing, in addition, variables in new listed in from.new (if
a character vector) or all of new (if TRUE).

• offset.info.formula returns the offset vectors associated with a formula.

• remove.offset.formula deletes all offset terms in an ERGM formula.

Value

ergm.getmodel returns a ’model.ergm’ object as a list containing:

• formula : the formula inputted to ergm.getmodel

• coef.names : a vector of coefficient names

• offset : a logical vector of whether each term was "offset", i.e. fixed

• terms : a list of terms and ’term components’ initialized by the appropriate InitErgmTerm.X
function.

• network.stats0: NULL always??

• etamap : the theta -> eta mapping as a list returned from <ergm.etamap>

• class : the character string "model.ergm"

ergm.getnetwork returns:

• the network from the formula IF (i) the formula was correctly structured and (ii) the network
is found within the formula’s enviornment

ergm.getterms returns:

• the terms object associated with the formula and returned by the native R function terms>.
see terms.object for details about the components

terms.list.formula returns a list of formula terms, each of witch having an additional attribute
"sign".

ergm.update.formula, remove.offset.formula and

86 ergm.geodistdist

ergm.geodistdist calculate geodesic distance distribution for a network or edgelist

Description

ergm.geodistdist calculates geodesic distance distribution for a given network and returns it as
a vector.

ergm.geodistn calculates geodesic deistance distribution based on an input edgelist, and has very
little error checking so should not normally be called by users. The C code requires the edgelist to
be directed and sorted correctly.

Usage

ergm.geodistdist(nw, directed = is.directed(nw))

ergm.geodistn(edgelist, n = max(edgelist), directed = FALSE)

Arguments

nw network object over which distances should be calculated

directed logical, should the network be treated as directed

edgelist an edgelist representation of a network as an mx2 matrix

n integer, size of the network

Details

ergm.geodistdist is a network wrapper for ergm.geodistn, which calculates and returns the
geodesic distance distribution for a given network via full_geodesic_distribution.C

Value

a vector ans with length equal to the size of the network where

• ans[i], i=1, ..., n-1 is the number of pairs of geodesic length i

• ans[n] is the number of pairs of geodesic length infinity.

See Also

See also the sna package geodist function

Examples

data(faux.mesa.high)
ergm.geodistdist(faux.mesa.high)

ergm.getglobalstats 87

ergm.getglobalstats internal function to return global statistics for a given network

Description

The ergm.getglobalstats function is a low-level function not normally called by the user. It
calculates and returns the global statistics for a given network and model.

Usage

ergm.getglobalstats(nw, m, response = NULL)

Arguments

nw a network object

m the model in use with network nw, as returned by ergm.getmodel

response character name of an edge attribute to be used (for weighted ergm models)

Details

Calculates and returns the global statistics for a given network via ergm.Cprepare and network_stats_wrapper.C
or wt_network_stats_wrapper.C if the model is weighted. It is called by summary.statistics.network
which is generally the better way to access the functionality.

Value

returns a vector of the global statistics

See Also

summary.statistics.network

ergm.getMCMCsample Internal Function to Sample Networks Using C Wrapper

Description

This is an internal function, not normally called directly by the user. The ergm.getMCMCsample
function samples networks using an MCMC algorithm via MCMC_wrapper.C and is caple of running
in multiple threads using ergm.mcmcslave.

The ergm.mcmcslave function is that which the slave nodes in a parallel process will call to perform
a validation on the mcmc equal to their slave number. It also returns an MCMC sample.

88 ergm.getMCMCsample

Usage

ergm.getMCMCsample(nw, model, MHproposal, eta0, control, verbose, response = NULL, ...)

ergm.mcmcslave(Clist, MHproposal, eta0, control, verbose, ..., prev.run = NULL,
burnin = NULL, samplesize = NULL, interval = NULL, maxedges = NULL)

Arguments

nw a network object

model a model for the given ’nw’ as returned by <ergm.getmodel>

MHproposal a list of the parameters needed for Metropolis-Hastings proposals and the result
of calling <MHproposal>

eta0 the initial eta coefficients

control list of MCMC tuning parameters; (see control.ergm)

verbose whether the C functions should be verbose; default=FALSE

response characher, name of an edge attribute

... additional arugments?

Clist the list of parameters returned by ergm.Cprepare

prev.run output stats from previous run ???

burnin number of proposals before any MCMC sampling is done. see control.ergm
MCMC.burnin

samplesize number of network statistics, randomly drawn from a given distribution on the
set of all networks, returned by the Metropolis-Hastings algorithm. see con-
trol.ergm MCMC.samplesize

interval number of proposals between sampled statistics. see control.ergm MCMC.interval

maxedges maximum number of edges expected in network. see control.ergm MCMC.init.maxedges

Details

Note that the returned stats will be relative to the original network, i.e., the calling function must
shift the statistics if required. The calling function must also attach column names to the statistics
matrix if required.

Value

for ergm.getMCMCsample,the sample as a list containing:

• statsmatrix: the stats matrix for the sampled networks, RELATIVE TO THE ORIGINAL
NETWORK!

• newnetwork : the edgelist of the final sampled network

• nedges : the number of edges in the ’newnetwork’

for ergm.mcmcslave the MCMC sample as a list of the following:

• s : the statsmatrix

ergm.init.methods 89

• newnwtails: the vector of tails for the new network- is this the final network sampled? - is this
the original nw if ’maxedges’ is 0

• newnwheads: the vector of heads for the new network - same q’s

ergm.init.methods Set up the initial fitting methods for reference measure and query avail-
able methods for that reference measure

Description

This is a low-level function not intended to be called directly by end users. This function sets up
the available initial fitting methods for each reference measure and queries them.

Usage

ergm.init.methods(reference, new.methods)

Arguments

reference The reference measure used in the model.

new.methods If passed, prepends the new initial fitting methods to the list for that reference
measure.

Value

A character vector listing initial methods for the reference measure specified. (If new.methods is
passed, does so invisibly.)

ergm.MHP.table Table mapping reference,constraints, etc. to Metropolis Hastings Pro-
posals (MHP)

Description

This is a low-level function not intended to be called directly by end users. For information on
Metropolis-Hastings proposal methods, ergm_MH_proposals. This function sets up the table map-
ping constraints, references, etc. to MHproposals. (It is defined in the scope of local environment)

Usage

ergm.MHP.table(Class, Reference, Constraints, Priority, Weights, MHP)

90 ergm.mple

Arguments

Class default to "c"

Reference The reference measure used in the model. For the list of reference measures, see
ergm-references

Constraints The constraints used in the model. For the list of constraints, see ergm-constraints

Priority On existence of multiple qualifying MHPs, specifies the priority (-1,0,1) of
MHPs to be used.

Weights The sampling weights on selecting toggles (random, TNT, etc).

MHP The matching MHP from the previous arguments.

ergm.mple Find a maximizer to the psuedolikelihood function

Description

The ergm.mple function finds a maximizer to the psuedolikelihood function (MPLE). It is the
default method for finding the ERGM starting coefficient values. It is normally called internally the
ergm process and not directly by the user. Generally ergmMPLE would be called by users instead.

ergm.pl is an even more internal workhorse function that prepares many of the components needed
by ergm.mple for the regression rountines that are used to find the MPLE estimated ergm. It should
not be called directly by the user.

Usage

ergm.mple(Clist, Clist.miss, m, init = NULL, MPLEtype = "glm", family = "binomial",
maxMPLEsamplesize = 1e+06, save.glm = TRUE, theta1 = NULL, conddeg = NULL,
control = NULL, MHproposal = NULL, verbose = FALSE, ...)

ergm.pl(Clist, Clist.miss, m, theta.offset=NULL,
maxMPLEsamplesize=1e+6,
conddeg=NULL, control, MHproposal,
verbose=FALSE)

Arguments

Clist a list of parameters used for fitting and returned by ergm.Cprepare

Clist.miss the corresponding ’Clist’ for the network of missing edges returned by ergm.design

m the model, as returned by ergm.getmodel

init a vector a vector of initial theta coefficients

MPLEtype the method for MPL estimation as "penalized", "glm" or "logitreg"; default="glm"

family the family to use in the R native routine glm; only applicable if "glm" is the
’MPLEtype’; default="binomial"

ergm.mple 91

maxMPLEsamplesize

the sample size to use for endogenous sampling in the psuedo-likelihood com-
putation; default=1e6

save.glm whether the mple fit and the null mple fit should be returned (T or F); if false,
NULL is returned for both; default==TRUE

theta1 the independence theta; if specified and non-NULL, this is ignored except to
return its value in the returned ergm; default=NULL, in which case ’theta1’ is
computed

conddeg an indicator of whether the MPLE should be conditional on degree; non-NULL
values indicate yes, NULL no; default=NULL.

control a list of MCMC related parameters; recognized components include: samplesize
: the number of networks to sample Clist.miss : see ’Clist.miss’ above; some of
the code uses this Clist.miss,

MHproposal an MHproposal object, as returned by MHproposal

verbose whether this and the C routines should be verbose (T or F); default=FALSE

theta.offset a logical vector specifying which of the model coefficients are offset, i.e. fixed

... additional parameters passed from within; all will be ignored

Details

According to Hunter et al. (2008): "The maximizer of the pseudolikelihood may thus easily be
found (at least in principle) by using logistic regression as a computational device." In order for
this to work, the predictors of the logistic regression model must be calculated. These are the
change statistics as described in Section 3.2 of Hunter et al. (2008), put into matrix form so that
each pair of nodes is one row whose values are the vector of change statistics for that node pair.
The ergm.pl function computes these change statistics and the ergm.mple function implements the
logistic regression using R’s glm function. Generally, neither ergm.mple nor ergm.pl should be
called by users if the logistic regression output is desired; instead, use the ergmMPLE function.

In the case where the ERGM is a dyadic independence model, the MPLE is the same as the MLE.
However, in general this is not the case and, as van Duijn et al. (2009) warn, the statistical properties
of MPLEs in general are somewhat mysterious.

MPLE values are used even in the case of dyadic dependence models as starting points for the
MCMC algorithm.

Value

ergm.mple returns an ergm object as a list containing several items; for details see the return list in
the ergm

ergm.pl returns a list containing:

• xmat : the compressed and possibly sampled matrix of change statistics

• zy : the corresponding vector of responses, i.e. tie values

• foffset : ??

• wend : the vector of weights for ’xmat’ and ’zy’

• numobs : the number of dyads

92 ergmMPLE

• xmat.full: the ’xmat’ before sampling; if no sampling is needed, this is NULL

• zy.full : the ’zy’ before sampling; if no sampling is needed, this is NULL

• foffset.full : ??

• theta.offset : a numeric vector whose ith entry tells whether the the ith curved coefficient??
was offset/fixed; -Inf implies the coefficient was fixed, 0 otherwise; if the model hasn’t
any curved terms, the first entry of this vector is one of log(Clist$nedges/(Clist$ndyads-
Clist$nedges)) log(1/(Clist$ndyads-1)) depending on ’Clist$nedges’

• maxMPLEsamplesize: the ’maxMPLEsamplesize’ inputted to ergm.pl

References

Hunter DR, Handcock MS, Butts CT, Goodreau SM, Morris and Martina (2008). "ergm: A Package
to Fit, Simulate and Diagnose Exponential-Family Models for Networks." _Journal of Statistical
Software_, *24*(3), pp. 1-29. http://www.jstatsoft.org/article/view/v024i03

van Duijn MAJ, Gile K, Handcock MS (2009). "Comparison of Maximum Pseudo Likelihood and
Maximum Likelihood Estimation of Exponential Family Random Graph Models." _Social Net-
works_, *31*, pp. 52-62.

See Also

ergmMPLE, ergm,control.ergm

ergmMPLE ERGM Predictors and response for logistic regression calculation of
MPLE

Description

Return the predictor matrix, response vector, and vector of weights that can be used to calculate the
MPLE for an ERGM.

Usage

ergmMPLE(formula, fitmodel=FALSE, output=c("matrix","array", "fit"),
as.initialfit = TRUE, control=control.ergm(),
verbose=FALSE, ...)

Arguments

formula An ERGM formula. See ergm.

fitmodel Deprecated. Use output="fit" instead.

output Character, partially matched. See Value.

as.initialfit Logical. Specifies whether terms are initialized with argument initialfit==TRUE
(the default). Generally, if TRUE, all curved ERGM terms will be treated as hav-
ing their curved parameters fixed. See Example.

http://www.jstatsoft.org/article/view/v024i03

ergmMPLE 93

control A list of control parameters for tuning the fitting of an ERGM. Most of these
parameters are irrelevant in this context. See control.ergm for details about all
of the control parameters.

verbose Logical; if TRUE, the program will print out some additional information.

... Additional arguments, to be passed to lower-level functions.

Details

The MPLE for an ERGM is calculated by first finding the matrix of change statistics. Each row
of this matrix is associated with a particular pair (ordered or unordered, depending on whether the
network is directed or undirected) of nodes, and the row equals the change in the vector of network
statistics (as defined in formula) when that pair is toggled from a 0 (no edge) to a 1 (edge), holding
all the rest of the network fixed. The MPLE results if we perform a logistic regression in which the
predictor matrix is the matrix of change statistics and the response vector is the observed network
(i.e., each entry is either 0 or 1, depending on whether the corresponding edge exists or not).

Using output="matrix", note that the result of the fit may be obtained from the glm function, as
shown in the examples below.

When output="array", the MPLE.max.dyad.types control parameter must be greater than network.dyadcount(.)
of the response network, or not all elements of the array that ought to be filled in will be.

Value

If output=="matrix" (the default), then only the response, predictor, and weights are returned;
thus, the MPLE may be found by hand or the vector of change statistics may be used in some
other way. To save space, the algorithm will automatically search for any duplicated rows in the
predictor matrix (and corresponding response values). ergmMPLE function will return a list with
three elements, response, predictor, and weights, respectively the response vector, the predictor
matrix, and a vector of weights, which are really counts that tell how many times each corresponding
response, predictor pair is repeated.

If output=="array", a list with similarly named three elements is returned, but response is for-
matted into a sociomatrix; predictor is a 3-dimensional array of with cell predictor[t,h,k]
containing the change score of term k for dyad (t,h); and weights is also formatted into a socioma-
trix, with an element being 1 if it is to be added into the pseudolikelihood and 0 if it is not.

In particular, for a unipartite network, cells corresponding to self-loops, i.e., predictor[i,i,k]
will be NA and weights[i,i] will be 0; and for a unipartite undirected network, lower triangle of
each predictor[,,k] matrix will be set to NA, with the lower triangle of weights being set to 0.

If output=="fit", then ergmMPLE simply calls the ergm function with the estimate="MPLE" op-
tion set, returning an object of class ergm that gives the fitted pseudolikelihood model.

See Also

ergm, glm

Examples

data(faux.mesa.high)
formula <- faux.mesa.high ~ edges + nodematch("Sex") + nodefactor("Grade")

94 ergm_deprecated

mplesetup <- ergmMPLE(formula)

Obtain MPLE coefficients "by hand":
glm(mplesetup$response ~ . - 1, data = data.frame(mplesetup$predictor),

weights = mplesetup$weights, family="binomial")$coefficients

Check that the coefficients agree with the output of the ergm function:
ergmMPLE(formula, output="fit")$coef

We can also format the predictor matrix into an array:
mplearray <- ergmMPLE(formula, output="array")

The resulting matrices are big, so only print the first 5 actors:
mplearray$response[1:5,1:5]
mplearray$predictor[1:5,1:5,]
mplearray$weights[1:5,1:5]

formula2 <- faux.mesa.high ~ gwesp(0.5,fix=FALSE)

The term is treated as fixed: only the gwesp term is returned:
colnames(ergmMPLE(formula2, as.initialfit=TRUE)$predictor)

The term is treated as curved: individual esp# terms are returned:
colnames(ergmMPLE(formula2, as.initialfit=FALSE)$predictor)

ergm_deprecated Functions that will no longer be supported in future releases of the
package

Description

Functions that have been superceed, were never documented, or will be removed from the package
for other reasons

• delete.isolates

• central.network

• largest.components

• degreedistfactor

• sociality.default

• sociality.ergm

• sociality.formula

• sociality.network

• rspartnerdist

• espartnerdist

• dspartnerdist

ergm_MH_proposals 95

• twopathdist

• ostar2deg

• drawpie

• invert.network

• is.invertible

• mvmodel

• mvmodel.default

• mvmodel.ergm

• mvmodel.formula

• ergm.mahalanobis

• robust.inverse

ergm_MH_proposals Metropolis-Hastings Proposal Methods for ERGM MCMC

Description

ergm uses a Metropolis-Hastings (MH) algorithm to control the behavior of the Markov Chain
Monte Carlo (MCMC) for sampling networks. The MCMC chain is intended to step around the
sample space of possible networks, selecting a network at regular intervals to evaluate the statistics
in the model. For each MCMC step, n (n = 1 in the simple case) toggles are proposed to change
the dyad(s) to the opposite value. The probability of accepting the proposed change is determined
by the MH acceptance ratio. The role of the different MH methods implemented in ergm is to vary
how the sets of dyads are selected for toggle proposals. This is used in some cases to improve the
performance (speed and mixing) of the algorithm, and in other cases to constrain the sample space.

MH proposal methods implemented in the ergm package

MH proposals for non-constrained ergm models

InitMHP.randomtoggle Propose a randomly selected dyad to toggle.

InitMHP.TNT Default MH algorithm. Stratifies the population of dyads by edge status: those
having ties and those having no ties (hence T/NT). This is useful for improving performance
in sparse networks, because it gives at least 50% chance of proposing a toggle of an existing
edge.

MH proposals for constrained ergm models

InitMHP.blockdiag MHp for constraints = ˜blockdiag. Select a diagonal block according to
the weight, then randomly select a dayd within the block for the toggle proposal.

InitMHP.blockdiagNonObserved MHp for constraints = ˜blockdiag + observed. Similar to
InitMHP.blockdiag, but applied only to missing dyads.

96 ergm_MH_proposals

InitMHP.blockdiagNonObservedTNT Similar to InitMHP.blockdiagNonObserved, except that it
selects ties and non-ties for proposed toggles (in the block by construction) with equal prob-
ability. Like the unconstrained TNT proposal, this is useful for improving performance in
sparse networks.

InitMHP.blockdiagTNT MHp for constraints = ˜blockdiag. Similar to InitMHP.blockdiag,
except that it selects ties and non-ties for proposed toggles (in the block by construction)
with equal probability. Like the unconstrained TNT proposal, this is useful for improving
performance in sparse networks.

InitMHP.CondB1Degree MHp for constraints = ˜b1degrees. For bipartite networks, randomly
select an edge B1i, B2j and an empty dyad with the same node B1i, B1i, B2k, and propose to
toggle both B1i, B2j and B1i, B2k. This ensures that the degrees of individual nodes in mode
1 are preserved.

InitMHP.CondB2Degree MHp for constraints = ˜b2degrees. For bipartite network, randomly
select an edge B1j, B2i and an empty dyad with the same node B2i, B1k, B2i, and propose to
toggle both B1j, B2i and B1k, B2i. This ensures that the degrees of individual nodes in mode
2 are preserved.

InitMHP.CondDegree MHp for constraints = ˜degree. Propose either 4 toggles (MH_CondDegreeTetrad)
or 6 toggles (MH_CondDegreeHexad) at once. For undirected networks, propose 4 toggles
(MH_CondDegreeTetrad). MH_CondDegreeTetrad selects two edges with no nodes in com-
mon, A1-A2 and B1-B2, s.t. A1-B2 and B1-A2 are not edges, and propose to replace the
former two by the latter two. MH_CondDegreeHexad selects three edges A1->A2, B1->B2,
C1->C2 at random and rotate them to A1->B2, B1->C2, and C1->A2.

InitMHP.CondDegreeDist MHp for constraints = ˜degreedist. Randomly select a node (T)
and its edge (E). If the head node of the edge (H) has 1 degree more than another randomly
select node (A), and A is disconnected to both T and H, then propose to toggle E and the dyad
between T and A.

InitMHP.CondDegreeMix MHp for constraints = ˜degreesmix. Similar to InitMHP.CondDegree,
except that the toggle is proposed only if the mixing matrix of degrees is preserved before and
after the toggle.

InitMHP.ConstantEdges MHp for constraints = ˜edges. Propose pairs of toggles that keep
number of edges the same. This is done by (a) choosing an existing edge at random; (b)
repeatedly choosing dyads at random until one is found that does not have an edge; and (c)
proposing toggling both these dyads. Note that step (b) will be very inefficient if the network
is nearly complete, so this proposal is NOT recommended for such networks. However, most
network datasets are sparse, so this is not likely to be an issue.

InitMHP.CondInDegreeDist MHp for constraints = ˜idegreedist. For directed networks, sim-
ilar to InitMHP.CondDegreeDist, except for indegree case

InitMHP.CondOutDegreeDist MHp for constraints = ˜odegreedist. For directed networks,
similar to InitMHP.CondDegreeDist, except for outdegree case

InitMHP.fixedas MHp for constraints = ˜fixedas(present, absent). Select a random dyad
that is not in either ’present’ edgelist or ’absent’ edgelist to toggle. Edges in ’present’ and
empty dyads in ’absent’ are remained fixed.

InitMHP.fixedasTNT Similar to InitMHP.fixedas, except that it selects ties and non-ties for pro-
posed toggles with equal probability. Like the unconstrained TNT proposal, this is useful for
improving performance in sparse networks.

eut-upgrade 97

InitMHP.fixallbut MHp for constraints = ˜fixallbut(free.dyads). Select a random dyad that
is in free.dyads edgelist to toggle.

InitMHP.fixallbutTNT Similar to InitMHP.fixallbut, except that it selects ties and non-ties for
proposed toggles with equal probability. Like the unconstrained TNT proposal, this is useful
for improving performance in sparse networks.

InitMHP.randomtoggleNonObserved MHp for constraints = ˜observed. Randomly select a
missing/non-observed dyad and propose a toggle.

InitMHP.NonObservedTNT Similar to InitMHP.randomtoggleNonObserved, except that it se-
lects ties and non-ties for proposed toggles with equal probability. Like the unconstrained
TNT proposal, this is useful for improving performance in sparse networks.

InitMHP.CondInDegree MHp for constraints = ˜idegrees. For directed networks, randomly
select two dyads with a common head node, one having an edge one not, and propose to swap
the tie from one tail to the other.

InitMHP.CondOutDegree MHp for constraints = ˜odegrees. For directed networks, randomly
select two dyads with a common tail node, one having an edge and one not, and propose to
swap the tie from one head to the other.

References

Goodreau SM, Handcock MS, Hunter DR, Butts CT, Morris M (2008a). A statnet Tutorial. Journal
of Statistical Software, 24(8). http://www.jstatsoft.org/v24/i08/.

Hunter, D. R. and Handcock, M. S. (2006) Inference in curved exponential family models for net-
works, Journal of Computational and Graphical Statistics.

Hunter DR, Handcock MS, Butts CT, Goodreau SM, Morris M (2008b). ergm: A Package to Fit,
Simulate and Diagnose Exponential-Family Models for Networks. Journal of Statistical Software,
24(3). http://www.jstatsoft.org/v24/i03/.

Krivitsky PN (2012). Exponential-Family Random Graph Models for Valued Networks. Electronic
Journal of Statistics, 2012, 6, 1100-1128. doi:10.1214/12-EJS696

Morris M, Handcock MS, Hunter DR (2008). Specification of Exponential-Family Random Graph
Models: Terms and Computational Aspects. Journal of Statistical Software, 24(4). http://www.
jstatsoft.org/v24/i04/.

See Also

ergm package, ergm, ergm-constraints, MHproposal

eut-upgrade Updating ergm.userterms prior to 3.1

Description

Explanation and instructions for updating custom ERGM terms developed prior to the release of
ergm version 3.1 (including 3.0–999 preview release) to be used with versions 3.1 or later.

http://www.jstatsoft.org/v24/i08/
http://www.jstatsoft.org/v24/i03/
http://dx.doi.org/10.1214/12-EJS696
http://www.jstatsoft.org/v24/i04/
http://www.jstatsoft.org/v24/i04/

98 faux.desert.high

Explanation

ergm.userterms — Statnet’s mechanism enabling users to write their own ERGM terms — comes
in a form of an R package containing files for the user to put their own statistics into (i.e., changestats.user.h,
changestats.user.c, and InitErgmTerm.user.R), as well as some boilerplate to support them
(e.g., edgetree.h, edgetree.c, changestat.h, changestat.c, etc.).

Although the ergm.userterms API is stable, recent developments in ergm have necessitated the
boilerplate files in ergm.userterms to be updated. To reiterate, the user-written statistic source code
(changestats.user.h, changestats.user.c, and InitErgmTerm.user.R) can be used without
modification, but other files that came with the package need to be changed.

To make things easier in the future, we have implemented a mechanism (using R’s LinkingTo API,
in case you are wondering) that will keep things in sync in releases after the upcoming one. How-
ever, for the upcoming release, we need to transition to this new mechanism.

Instructions

The transition entails the following steps. They only need to be done once for a package. Future
releases will keep up to date automatically.

1. Download the up-to-date ergm.userterms source from CRAN using, e.g., download.packages
and unpack it.

2. Copy the R and C files defining the user-written terms (usually changestats.user.h, changestats.user.c,
and InitErgmTerm.user.R) and only those files from the old ergm.userterms source code
to the new. Do not copy the boilerplate files that you did not modify.

3. If you have customized the package DESCRIPTION file (e.g., to change the package name) or
zzz.R (e.g., to change the startup message), modify them as needed in the updated ergm.userterms,
but do not simply overwrite them with their old versions.

4. Make sure that your ergm installation is up to date, and rebuild ergm.userterms.

faux.desert.high Faux desert High School as a network object

Description

This data set represents a simulation of a directed in-school friendship network. The network is
named faux.desert.high.

Usage

data(faux.desert.high)

faux.desert.high 99

Format

faux.desert.high is a network object with 107 vertices (students, in this case) and 439 di-
rected edges (friendship nominations). To obtain additional summary information about it, type
summary(faux.desert.high).

The vertex attributes are Grade, Sex, and Race. The Grade attribute has values 7 through 12, indi-
cating each student’s grade in school. The Race attribute is based on the answers to two questions,
one on Hispanic identity and one on race, and takes six possible values: White (non-Hisp.), Black
(non-Hisp.), Hispanic, Asian (non-Hisp.), Native American, and Other (non-Hisp.)

Licenses and Citation

If the source of the data set does not specified otherwise, this data set is protected by the Creative
Commons License http://creativecommons.org/licenses/by-nc-nd/2.5/.

When publishing results obtained using this data set, the original authors (Resnick et al, 1997)
should be cited. In addition this package should be cited as:

Mark S. Handcock, David R. Hunter, Carter T. Butts, Steven M. Goodreau, and Martina Morris.
2003 statnet: Software tools for the Statistical Modeling of Network Data
statnet.org.

Source

The data set is simulation based upon an ergm model fit to data from one school community from
the AddHealth Study, Wave I (Resnick et al., 1997). It was constructed as follows:

The school in question (a single school with 7th through 12th grades) was selected from the Add
Health "structure files." Documentation on these files can be found here: http://www.cpc.unc.
edu/projects/addhealth/codebooks/wave1/structur.zip.

The stucture file contains directed out-ties representing each instance of a student who named an-
other student as a friend. Students could nominate up to 5 male and 5 female friends. Note that
registered students who did not take the AddHealth survey or who were not listed by name on the
schools’ student roster are not included in the stucture files. In addition, we removed any students
with missing values for race, grade or sex.

The following ergm model was fit to the original data:

desert.fit <- ergm(original.net ~ edges + mutual + absdiff("grade") +
nodefactor("race", base=5) + nodefactor("grade", base=3) +
nodefactor("sex") + nodematch("race", diff = TRUE) +
nodematch("grade", diff = TRUE) + nodematch("sex", diff = FALSE) +
idegree(0:1) + odegree(0:1) + gwesp(0.1,fixed=T),

constraints = ~bd(maxout=10),
control = control.ergm(MCMLE.steplength = .25, MCMC.burnin = 100000,
MCMC.interval = 10000, MCMC.samplesize = 2500,

MCMLE.maxit = 100),
verbose=T)

Then the faux.desert.high dataset was created by simulating a single network from the above model
fit:

http://creativecommons.org/licenses/by-nc-nd/2.5/
statnet.org
http://www.cpc.unc.edu/projects/addhealth/codebooks/wave1/structur.zip
http://www.cpc.unc.edu/projects/addhealth/codebooks/wave1/structur.zip

100 faux.dixon.high

faux.desert.high <- simulate(desert.fit, nsim=1, burnin=1e+8,
constraint = "edges")

References

Resnick M.D., Bearman, P.S., Blum R.W. et al. (1997). Protecting adolescents from harm. Find-
ings from the National Longitudinal Study on Adolescent Health, Journal of the American Medical
Association, 278: 823-32.

See Also

network, plot.network, ergm, faux.desert.high, faux.mesa.high, faux.magnolia.high

faux.dixon.high Faux dixon High School as a network object

Description

This data set represents a simulation of a directed in-school friendship network. The network is
named faux.dixon.high.

Usage

data(faux.dixon.high)

Format

faux.dixon.high is a network object with 248 vertices (students, in this case) and 1197 di-
rected edges (friendship nominations). To obtain additional summary information about it, type
summary(faux.dixon.high).

The vertex attributes are Grade, Sex, and Race. The Grade attribute has values 7 through 12, indi-
cating each student’s grade in school. The Race attribute is based on the answers to two questions,
one on Hispanic identity and one on race, and takes six possible values: White (non-Hisp.), Black
(non-Hisp.), Hispanic, Asian (non-Hisp.), Native American, and Other (non-Hisp.)

Licenses and Citation

If the source of the data set does not specified otherwise, this data set is protected by the Creative
Commons License http://creativecommons.org/licenses/by-nc-nd/2.5/.

When publishing results obtained using this data set, the original authors (Resnick et al, 1997)
should be cited. In addition this package should be cited as:

Mark S. Handcock, David R. Hunter, Carter T. Butts, Steven M. Goodreau, and Martina Morris.
2003 statnet: Software tools for the Statistical Modeling of Network Data
statnet.org.

http://creativecommons.org/licenses/by-nc-nd/2.5/
statnet.org

faux.dixon.high 101

Source

The data set is simulation based upon an ergm model fit to data from one school community from
the AddHealth Study, Wave I (Resnick et al., 1997). It was constructed as follows:

The school in question (a single school with 7th through 12th grades) was selected from the Add
Health "structure files." Documentation on these files can be found here: http://www.cpc.unc.
edu/projects/addhealth/codebooks/wave1/structur.zip.

The stucture file contains directed out-ties representing each instance of a student who named an-
other student as a friend. Students could nominate up to 5 male and 5 female friends. Note that
registered students who did not take the AddHealth survey or who were not listed by name on the
schools’ student roster are not included in the stucture files. In addition, we removed any students
with missing values for race, grade or sex.

The following ergm model was fit to the original data:

dixon.fit <- ergm(original.net ~ edges + mutual + absdiff("grade") +
nodefactor("race", base=5) + nodefactor("grade", base=3) +
nodefactor("sex") + nodematch("race", diff = TRUE) +
nodematch("grade", diff = TRUE) + nodematch("sex", diff = FALSE) +
idegree(0:1) + odegree(0:1) + gwesp(0.1,fixed=T),
constraints = ~bd(maxout=10),
control = control.ergm(MCMLE.steplength = .25, MCMC.burnin = 100000,
MCMC.interval = 10000, MCMC.samplesize = 2500,
MCMLE.maxit = 100),
verbose=T)

Then the faux.dixon.high dataset was created by simulating a single network from the above model
fit:

faux.dixon.high <- simulate(dixon.fit, nsim=1, burnin=1e+8,
constraint = "edges")

References

Resnick M.D., Bearman, P.S., Blum R.W. et al. (1997). Protecting adolescents from harm. Find-
ings from the National Longitudinal Study on Adolescent Health, Journal of the American Medical
Association, 278: 823-32.

See Also

network, plot.network, ergm, faux.desert.high, faux.mesa.high, faux.magnolia.high

http://www.cpc.unc.edu/projects/addhealth/codebooks/wave1/structur.zip
http://www.cpc.unc.edu/projects/addhealth/codebooks/wave1/structur.zip

102 faux.magnolia.high

faux.magnolia.high Goodreau’s Faux Magnolia High School as a network object

Description

This data set represents a simulation of an in-school friendship network. The network is named
faux.magnolia.high because the school commnunities on which it is based are large and located in
the southern US.

Usage

data(faux.magnolia.high)

Format

faux.magnolia.high is a network object with 1461 vertices (students, in this case) and 974
undirected edges (mutual friendships). To obtain additional summary information about it, type
summary(faux.magnolia.high).

The vertex attributes are Grade, Sex, and Race. The Grade attribute has values 7 through 12, indi-
cating each student’s grade in school. The Race attribute is based on the answers to two questions,
one on Hispanic identity and one on race, and takes six possible values: White (non-Hisp.), Black
(non-Hisp.), Hispanic, Asian (non-Hisp.), Native American, and Other (non-Hisp.)

Licenses and Citation

If the source of the data set does not specified otherwise, this data set is protected by the Creative
Commons License http://creativecommons.org/licenses/by-nc-nd/2.5/.

When publishing results obtained using this data set, the original authors (Resnick et al, 1997)
should be cited. In addition this package should be cited as:

Mark S. Handcock, David R. Hunter, Carter T. Butts, Steven M. Goodreau, and Martina Morris.
2003 statnet: Software tools for the Statistical Modeling of Network Data
statnet.org.

Source

The data set is based upon a model fit to data from two school communities from the AddHealth
Study, Wave I (Resnick et al., 1997). It was constructed as follows:

The two schools in question (a junior and senior high school in the same community) were com-
bined into a single network dataset. Students who did not take the AddHealth survey or who were
not listed on the schools’ student rosters were eliminated, then an undirected link was established
between any two individuals who both named each other as a friend. All missing race, grade, and
sex values were replaced by a random draw with weights determined by the size of the attribute
classes in the school.

The following ergm model was fit to the original data:

http://creativecommons.org/licenses/by-nc-nd/2.5/
statnet.org

faux.mesa.high 103

magnolia.fit <- ergm (magnolia ~ edges + nodematch("Grade",diff=T)
+ nodematch("Race",diff=T) + nodematch("Sex",diff=F)
+ absdiff("Grade") + gwesp(0.25,fixed=T), burnin=10000,
interval=1000, MCMCsamplesize=2500, maxit=25,
control=control.ergm(steplength=0.25))

Then the faux.magnolia.high dataset was created by simulating a single network from the above
model fit:

faux.magnolia.high <- simulate (magnolia.fit, nsim=1, burnin=100000000,
constraint = "edges")

References

Resnick M.D., Bearman, P.S., Blum R.W. et al. (1997). Protecting adolescents from harm. Find-
ings from the National Longitudinal Study on Adolescent Health, Journal of the American Medical
Association, 278: 823-32.

See Also

network, plot.network, ergm, faux.mesa.high

faux.mesa.high Goodreau’s Faux Mesa High School as a network object

Description

This data set (formerly called “fauxhigh”) represents a simulation of an in-school friendship net-
work. The network is named faux.mesa.high because the school commnunity on which it is based
is in the rural western US, with a student body that is largely Hispanic and Native American.

Usage

data(faux.mesa.high)

Format

faux.mesa.high is a network object with 205 vertices (students, in this case) and 203 undirected
edges (mutual friendships). To obtain additional summary information about it, type summary(faux.mesa.high).

The vertex attributes are Grade, Sex, and Race. The Grade attribute has values 7 through 12, indi-
cating each student’s grade in school. The Race attribute is based on the answers to two questions,
one on Hispanic identity and one on race, and takes six possible values: White (non-Hisp.), Black
(non-Hisp.), Hispanic, Asian (non-Hisp.), Native American, and Other (non-Hisp.)

104 faux.mesa.high

Licenses and Citation

If the source of the data set does not specified otherwise, this data set is protected by the Creative
Commons License http://creativecommons.org/licenses/by-nc-nd/2.5/.

When publishing results obtained using this data set, the original authors (Resnick et al, 1997)
should be cited. In addition this package should be cited as:

Mark S. Handcock, David R. Hunter, Carter T. Butts, Steven M. Goodreau, and Martina Morris.
2003 statnet: Software tools for the Statistical Modeling of Network Data
statnet.org.

Source

The data set is based upon a model fit to data from one school community from the AddHealth
Study, Wave I (Resnick et al., 1997). It was constructed as follows:

A vector representing the sex of each student in the school was randomly re-ordered. The same was
done with the students’ response to questions on race and grade. These three attribute vectors were
permuted independently. Missing values for each were randomly assigned with weights determined
by the size of the attribute classes in the school.

The following ergm formula was used to fit a model to the original data:

~ edges + nodefactor("Grade") + nodefactor("Race") + nodefactor("Sex")
+ nodematch("Grade",diff=TRUE) + nodematch("Race",diff=TRUE)
+ nodematch("Sex",diff=FALSE) + gwdegree(1.0,fixed=TRUE)
+ gwesp(1.0,fixed=TRUE) + gwdsp(1.0,fixed=TRUE)

The resulting model fit was then applied to a network with actors possessing the permuted attributes
and with the same number of edges as in the original data.

The processes for handling missing data and defining the race attribute are described in Hunter,
Goodreau \& Handcock (2008).

References

Hunter D.R., Goodreau S.M. and Handcock M.S. (2008). Goodness of Fit of Social Network Mod-
els, Journal of the American Statistical Association.

Resnick M.D., Bearman, P.S., Blum R.W. et al. (1997). Protecting adolescents from harm. Find-
ings from the National Longitudinal Study on Adolescent Health, Journal of the American Medical
Association, 278: 823-32.

See Also

network, plot.network, ergm, faux.magnolia.high

http://creativecommons.org/licenses/by-nc-nd/2.5/
statnet.org

fix.curved 105

fix.curved Convert a curved ERGM into a corresponding “fixed” ERGM.

Description

The generic fix.curved converts an ergm object or formula of a model with curved terms to the
variant in which the curved parameters are fixed. Note that each term has to be treated as a special
case.

Usage

S3 method for class 'ergm'
fix.curved(object, ...)
S3 method for class 'formula'
fix.curved(object, theta, response = NULL, ...)

Arguments

object An ergm object or an ERGM formula. The curved terms of the given formula
(or the formula used in the fit) must have all of their arguments passed by name.

theta Curved model parameter configuration.

response For valued ERGM, an edge attribute used as the response variable.

... Unused at this time.

Details

Some ERGM terms such as gwesp and gwdegree have two forms: a curved form, for which their de-
cay or similar parameters are to be estimated, and whose canonical statistics is a vector of the term’s
components (esp(1), esp(2), . . . and degree(1), degree(2), . . . , respectively) and a "fixed" form
where the decay or similar parameters are fixed, and whose canonical statistic is just the term itself.
It is often desirable to fit a model estimating the curved parameters but simulate the "fixed" statistic.

This function thus takes in a fit or a formula and performs this mapping, returning a “fixed” model
and parameter specification. It only works for curved ERGM terms included with the ergm package.
It does not work with curved terms not included in ergm.

Value

A list with the following components:

formula The “fixed” formula.

theta The “fixed” parameter vector.

See Also

ergm, simulate.ergm

106 flobusiness

Examples

data(sampson)
gest<-ergm(samplike~edges+gwesp(alpha=.5,fixed=FALSE),

control=control.ergm(MCMLE.maxit=3))
summary(gest)
A statistic for esp(1),...,esp(16)
simulate(gest,statsonly=TRUE)

tmp<-fix.curved(gest)
tmp
A gwesp() statistic only
simulate(tmp$formula, coef=tmp$theta, statsonly=TRUE)

flobusiness Florentine Family Business Ties Data as a “network" object

Description

This is a data set of business ties among Renaissance Florentine families. The data is originally
from Padgett (1994) via UCINET and stored as a network object.

Breiger \& Pattison (1986), in their discussion of local role analysis, use a subset of data on the so-
cial relations among Renaissance Florentine families (person aggregates) collected by John Padgett
from historical documents. The relations are business ties (flobusiness - specifically, recorded
financial ties such as loans, credits and joint partnerships).

As Breiger \& Pattison point out, the original data are symmetrically coded. This is acceptable
perhaps for marital ties, but is unfortunate for the financial ties (which are almost certainly directed).
To remedy this, the financial ties can be recoded as directed relations using some external measure
of power - for instance, a measure of wealth. Vertex information is provided (1) wealth each
family’s net wealth in 1427 (in thousands of lira); (2) priorates the number of priorates (seats
on the civic council) held between 1282- 1344; and (3) totalties the total number of business or
marriage ties in the total dataset of 116 families (see Breiger \& Pattison (1986), p 239).

Substantively, the data include families who were locked in a struggle for political control of the
city of Florence around 1430. Two factions were dominant in this struggle: one revolved around
the infamous Medicis (9), the other around the powerful Strozzis (15).

Usage

data(florentine)

Source

Padgett, John F. 1994. Marriage and Elite Structure in Renaissance Florence, 1282-1500. Paper
delivered to the Social Science History Association.

flomarriage 107

References

Wasserman, S. and Faust, K. (1994) Social Network Analysis: Methods and Applications, Cam-
bridge University Press, Cambridge, England.

Breiger R. and Pattison P. (1986). Cumulated social roles: The duality of persons and their alge-
bras, Social Networks, 8, 215-256.

See Also

flo, network, plot.network, ergm, flomarriage

flomarriage Florentine Family Marriage Ties Data as a “network" object

Description

This is a data set of marriage ties among Renaissance Florentine families. The data is originally
from Padgett (1994) via UCINET and stored as a network object.

Breiger \& Pattison (1986), in their discussion of local role analysis, use a subset of data on the
social relations among Renaissance Florentine families (person aggregates) collected by John Pad-
gett from historical documents. The relations are marriage alliances (flomarriage betwween the
families.

As Breiger \& Pattison point out, the original data are symmetrically coded. This is perhaps accept-
able perhaps for marital ties. Vertex information is provided on (1) wealth each family’s net wealth
in 1427 (in thousands of lira); (2) priorates the number of priorates (seats on the civic council)
held between 1282- 1344; and (3) totalties the total number of business or marriage ties in the
total dataset of 116 families (see Breiger \& Pattison (1986), p 239).

Substantively, the data include families who were locked in a struggle for political control of the
city of Florence around 1430. Two factions were dominant in this struggle: one revolved around
the infamous Medicis (9), the other around the powerful Strozzis (15).

Usage

data(florentine)

Source

Padgett, John F. 1994. Marriage and Elite Structure in Renaissance Florence, 1282-1500. Paper
delivered to the Social Science History Association.

References

Wasserman, S. and Faust, K. (1994) Social Network Analysis: Methods and Applications, Cam-
bridge University Press, Cambridge, England.

Breiger R. and Pattison P. (1986). Cumulated social roles: The duality of persons and their alge-
bras, Social Networks, 8, 215-256.

108 florentine

See Also

flobusiness, flo, network, plot.network, ergm

florentine Florentine Family Marriage and Business Ties Data as a “network"
object

Description

This is a data set of marriage and business ties among Renaissance Florentine families. The data is
originally from Padgett (1994) via UCINET and stored as a network object.

Breiger \& Pattison (1986), in their discussion of local role analysis, use a subset of data on the so-
cial relations among Renaissance Florentine families (person aggregates) collected by John Padgett
from historical documents. The two relations are business ties (flobusiness - specifically, recorded
financial ties such as loans, credits and joint partnerships) and marriage alliances (flomarriage).

As Breiger \& Pattison point out, the original data are symmetrically coded. This is acceptable
perhaps for marital ties, but is unfortunate for the financial ties (which are almost certainly directed).
To remedy this, the financial ties can be recoded as directed relations using some external measure
of power - for instance, a measure of wealth. Both graphs provide vertex information on (1) wealth
each family’s net wealth in 1427 (in thousands of lira); (2) priorates the number of priorates (seats
on the civic council) held between 1282- 1344; and (3) totalties the total number of business or
marriage ties in the total dataset of 116 families (see Breiger \& Pattison (1986), p 239).

Substantively, the data include families who were locked in a struggle for political control of the
city of Florence around 1430. Two factions were dominant in this struggle: one revolved around
the infamous Medicis (9), the other around the powerful Strozzis (15).

Usage

data(florentine)

Source

Padgett, John F. 1994. Marriage and Elite Structure in Renaissance Florence, 1282-1500. Paper
delivered to the Social Science History Association.

References

Wasserman, S. and Faust, K. (1994) Social Network Analysis: Methods and Applications, Cam-
bridge University Press, Cambridge, England.

Breiger R. and Pattison P. (1986). Cumulated social roles: The duality of persons and their alge-
bras, Social Networks, 8, 215-256.

See Also

flo, network, plot.network, ergm

g4 109

g4 Goodreau’s four node network as a “network" object

Description

This is an example thought of by Steve Goodreau. It is a directed network of four nodes and five
ties stored as a network object.

It is interesting because the maximum likelihood estimator of the model with out degree 3 in it
exists, but the maximum psuedolikelihood estimator does not.

Usage

data(g4)

Source

Steve Goodreau

See Also

florentine, network, plot.network, ergm

Examples

data(g4)
summary(ergm(g4 ~ odegree(3), estimate="MPLE"))
summary(ergm(g4 ~ odegree(3), control=control.ergm(init=0)))

get.free.dyads Create a network containing only edges meeting a specific criteria

Description

get.free.dyads will create a network object with only edges that are not targeted by ergm-
constraints. get.miss.dyads creates a network object with only edges that are missing/not present
(not missing in the NA sense) in a network subject to constraints

Usage

get.free.dyads(constraints)

get.miss.dyads(constraints, constraints.obs)

110 get.node.attr

Arguments

constraints, constraints.obs

A list of initialized constraints produced by InitConstraint.* functions for
the model of interest and the same list with +observed constraint appended if
missing dyads are present.

Value

A network object containing the specified set of edges

See Also

ergm-constraints

get.node.attr Retrieve and check assumptions about vertex attributes (nodal covari-
ates) in a network

Description

The get.node.attr function returns the vector of nodal covariates for the given network and spec-
ified attribute if the attribute exists - execution will halt if the attribute is not correctly given as a
single string or is not found in the vertex attribute list; optionally get.node.attr will also check
that return vector is numeric, halting execution if not. The purpose is to validate assumptions before
passing attribute data into an ergm term.

Usage

get.node.attr(nw, attrname, functionname = NULL, numeric = FALSE)

Arguments

nw a network object

attrname the name of a nodal attribute, as a character string

functionname the name of the calling function a character string; this is only used for the
warning messages that accompany a halt

numeric logical, whether to halt execution if the return vector is not numeric; default=FALSE

Value

returns the vector of ’attrname’ covariates for the vertices in the network

See Also

get.vertex.attribute for a version without the checking functionality

Getting.Started 111

Examples

data(faux.mesa.high)
get.node.attr(faux.mesa.high,'Grade')

Getting.Started Getting Started with "ergm": Fit, simulate and diagnose exponential-
family models for networks

Description

ergm is a collection of functions to plot, fit, diagnose, and simulate from random graph models. For
a list of functions type: help(package=’ergm’)

For a complete list of the functions, use library(help="ergm") or read the rest of the manual. For
a simple demonstration, use demo(packages="ergm").

When publishing results obtained using this package the original authors are to be cited as given in
citation("ergm"):

Mark S. Handcock, David R. Hunter, Carter T. Butts, Steven M. Goodreau, and Martina Morris.
2003 ergm: Fit, simulate and diagnose exponential-family models for networks
statnet.org.

All published work derived from this package must cite it. For complete citation information, use
citation(package="ergm").

Details

Recent advances in the statistical modeling of random networks have had an impact on the empirical
study of social networks. Statistical exponential family models (Strauss and Ikeda 1990) are a gen-
eralization of the Markov random network models introduced by Frank and Strauss (1986), which
in turn derived from developments in spatial statistics (Besag, 1974). These models recognize the
complex dependencies within relational data structures. To date, the use of stochastic network mod-
els for networks has been limited by three interrelated factors: the complexity of realistic models,
the lack of simulation tools for inference and validation, and a poor understanding of the inferential
properties of nontrivial models.

This manual introduces software tools for the representation, visualization, and analysis of network
data that address each of these previous shortcomings. The package relies on the network package
which allows networks to be represented in R. The ergm package allows maximum likelihood es-
timates of exponential random network models to be calculated using Markov Chain Monte Carlo.
The package also provides tools for plotting networks, simulating networks and assessing model
goodness-of-fit.

For detailed information on how to download and install the software, go to the ergm website:
statnet.org. A tutorial, support newsgroup, references and links to further resources are provided
there.

statnet.org
statnet.org

112 Getting.Started

Author(s)

Mark S. Handcock <handcock@stat.ucla.edu>,
David R. Hunter <dhunter@stat.psu.edu>,
Carter T. Butts <buttsc@uci.edu>,
Steven M. Goodreau <goodreau@u.washington.edu>,
Pavel N. Krivitsky <krivitsky@stat.psu.edu>, and
Martina Morris <morrism@u.washington.edu>

Maintainer: David R. Hunter <dhunter@stat.psu.edu>

References

Admiraal R, Handcock MS (2007). networksis: Simulate bipartite graphs with fixed marginals
through sequential importance sampling. Statnet Project, Seattle, WA. Version 1, statnet.org.

Bender-deMoll S, Morris M, Moody J (2008). Prototype Packages for Managing and Animating
Longitudinal Network Data: dynamicnetwork and rSoNIA. Journal of Statistical Software, 24(7).
http://www.jstatsoft.org/v24/i07/.

Besag, J., 1974, Spatial interaction and the statistical analysis of lattice systems (with discussion),
Journal of the Royal Statistical Society, B, 36, 192-236.

Boer P, Huisman M, Snijders T, Zeggelink E (2003). StOCNET: an open software system for the
advanced statistical analysis of social networks. Groningen: ProGAMMA / ICS, version 1.4 edition.

Butts CT (2007). sna: Tools for Social Network Analysis. R package version 2.3-2. http://CRAN.
R-project.org/package=sna.

Butts CT (2008). network: A Package for Managing Relational Data in R. Journal of Statistical
Software, 24(2). http://www.jstatsoft.org/v24/i02/.

Butts C (2015). network: The Statnet Project (http://www.statnet.org). R package version 1.12.0,
http://CRAN.R-project.org/package=network.

Frank, O., and Strauss, D.(1986). Markov graphs. Journal of the American Statistical Association,
81, 832-842.

Goodreau SM, Handcock MS, Hunter DR, Butts CT, Morris M (2008a). A statnet Tutorial. Journal
of Statistical Software, 24(8). http://www.jstatsoft.org/v24/i08/.

Goodreau SM, Kitts J, Morris M (2008b). Birds of a Feather, or Friend of a Friend? Using Ex-
ponential Random Graph Models to Investigate Adolescent Social Networks. Demography, 45, in
press.

Handcock, M. S. (2003) Assessing Degeneracy in Statistical Models of Social Networks, Working
Paper \#39, Center for Statistics and the Social Sciences, University of Washington. www.csss.
washington.edu/Papers/wp39.pdf

Handcock MS (2003b). degreenet: Models for Skewed Count Distributions Relevant to Networks.
Statnet Project, Seattle, WA. Version 1.0, statnet.org.

Handcock MS, Hunter DR, Butts CT, Goodreau SM, Morris M (2003a). ergm: A Package to Fit,
Simulate and Diagnose Exponential-Family Models for Networks. Statnet Project, Seattle, WA.
Version 2, statnet.org.

Handcock MS, Hunter DR, Butts CT, Goodreau SM, Morris M (2003b). statnet: Software Tools for
the Statistical Modeling of Network Data. Statnet Project, Seattle, WA. Version 2, statnet.org.

statnet.org
http://www.jstatsoft.org/v24/i07/
http://CRAN.R-project.org/package=sna
http://CRAN.R-project.org/package=sna
http://www.jstatsoft.org/v24/i02/
http://CRAN.R-project.org/package=network
http://www.jstatsoft.org/v24/i08/
www.csss.washington.edu/Papers/wp39.pdf
www.csss.washington.edu/Papers/wp39.pdf
statnet.org
statnet.org
statnet.org

gof 113

Hunter, D. R. and Handcock, M. S. (2006) Inference in curved exponential family models for net-
works, Journal of Computational and Graphical Statistics, 15: 565-583.

Hunter DR, Handcock MS, Butts CT, Goodreau SM, Morris M (2008b). ergm: A Package to Fit,
Simulate and Diagnose Exponential-Family Models for Networks. Journal of Statistical Software,
24(3). http://www.jstatsoft.org/v24/i03/.

Krivitsky PN, Handcock MS (2007). latentnet: Latent position and cluster models for statistical
networks. Seattle, WA. Version 2, statnet.org.

Morris M, Handcock MS, Hunter DR (2008). Specification of Exponential-Family Random Graph
Models: Terms and Computational Aspects. Journal of Statistical Software, 24(4). http://www.
jstatsoft.org/v24/i04/.

Strauss, D., and Ikeda, M.(1990). Pseudolikelihood estimation for social networks. Journal of the
American Statistical Association, 85, 204-212.

gof Conduct Goodness-of-Fit Diagnostics on a Exponential Family Ran-
dom Graph Model

Description

gof calculates p-values for geodesic distance, degree, and reachability summaries to diagnose the
goodness-of-fit of exponential family random graph models. See ergm for more information on
these models.

Usage

Default S3 method:
gof(object,...)
S3 method for class 'formula'
gof(object,

...,
coef=NULL,
GOF=NULL,
constraints=~.,
control=control.gof.formula(),

unconditional=TRUE,
verbose=FALSE)

S3 method for class 'ergm'
gof(object,

...,
coef=NULL,
GOF=NULL,
constraints=NULL,
control=control.gof.ergm(),
verbose=FALSE)

http://www.jstatsoft.org/v24/i03/
statnet.org
http://www.jstatsoft.org/v24/i04/
http://www.jstatsoft.org/v24/i04/

114 gof

Arguments

object an R object. Either a formula or an ergm object. See documentation for ergm.

... Additional arguments, to be passed to lower-level functions in the future.

coef When given either a formula or an object of class ergm, coef are the parameters
from which the sample is drawn. By default set to a vector of 0.

GOF formula; an R formula object, of the form ~ <model terms> specifying the
statistics to use to diagnosis the goodness-of-fit of the model. They do not need
to be in the model formula specified in formula, and typically are not. Currently
supported terms are the degree distribution (“degree” for undirected graphs,
or “idegree” and/or “odegree” for directed graphs), geodesic distances (“dis-
tance”), shared partner distributions (“espartners” and “dspartners”), the triad
census (“triadcensus”), and the terms of the original model (“model”). The de-
fault formula for undirected networks is ~ degree + espartners + distance,
and the default formula for directed networks is ~ idegree + odegree + espartners + distance.

constraints A one-sided formula specifying one or more constraints on the support of the
distribution of the networks being modeled. See the help for similarly-named
argument in ergm for more information. For gof.formula, defaults to uncon-
strained. For gof.ergm, defaults to the constraints with which object was fit-
ted.

control A list to control parameters, constructed using control.gof.formula or control.gof.ergm
(which have different defaults).

unconditional logical; if TRUE, the simulation is unconditional on the observed dyads. if not
TRUE, the simulation is conditional on the observed dyads. This is primarily used
internally when the network has missing data and a conditional GoF is produced.

verbose Provide verbose information on the progress of the simulation.

Details

A sample of graphs is randomly drawn from the specified model. The first argument is typically the
output of a call to ergm and the model used for that call is the one fit.

A plot of the summary measures is plotted. More information can be found by looking at the
documentation of ergm.

For GOF = ~model, the model’s observed sufficient statistics are plotted as quantiles of the simulated
sample. In a good fit, the observed statistics should be near the sample median (0.5).

For gof.ergm and gof.formula, default behavior depends on the directedness of the network in-
volved; if undirected then degree, espartners, and distance are used as default properties to examine.
If the network in question is directed, “degree” in the above is replaced by idegree and odegree.

Value

gof, gof.ergm, and gof.formula return an object of class gofobject. This is a list of the tables
of statistics and p-values. This is typically plotted using plot.gofobject.

See Also

ergm, network, simulate.ergm, summary.ergm, plot.gofobject

is.curved 115

Examples

data(florentine)
gest <- ergm(flomarriage ~ edges + kstar(2))
gest
summary(gest)

test the gof.ergm function
gofflo <- gof(gest)
gofflo
summary(gofflo)

Plot all three on the same page
with nice margins
par(mfrow=c(1,3))
par(oma=c(0.5,2,1,0.5))
plot(gofflo)

And now the log-odds
plot(gofflo, plotlogodds=TRUE)

Use the formula version of gof
gofflo2 <-gof(flomarriage ~ edges + kstar(2), coef=c(-1.6339, 0.0049))
plot(gofflo2)

is.curved Testing for curved exponential family

Description

These functions test whether an ERGM fit or formula is curved.

Usage

S3 method for class 'ergm'
is.curved(object, ...)
S3 method for class 'formula'
is.curved(object,

response=NULL,
basis=NULL,
...)

S3 method for class 'ergm.model'
is.curved(object, ...)
S3 method for class 'NULL'
is.curved(object, ...)

116 is.durational

Arguments

object An ergm object or an ERGM formula.
response, basis

Name of the edge attribute whose value is to be modeled. See ergm.

... Unused at this time.

Details

Curvature is checked by testing if all model parameters are canonical.

Value

TRUE if the model fit or one implied by the formula is curved; FALSE otherwise.

is.durational Testing for durational dependent models

Description

These functions test whether an ERGM model or formula is durational dependent or not. If the
formula or model does not include any terms that need information about the duration of existing
ties, the ergm proceass can use more efficient internal data structures.

Usage

S3 method for class 'character'
is.durational(object, ...)
S3 method for class 'ergm.model'
is.durational(object, ...)
S3 method for class 'formula'
is.durational(object,

response=NULL,
basis=NULL,
...)

Arguments

object An ergm object or an ERGM formula, or some characters, e.g., object="all" for
monitoring purpose.

response, basis

See ergm.

... Unused at this time.

Value

TRUE if the ERGM terms in the formula or model are durational dependent ; FALSE otherwise.

is.dyad.independent 117

is.dyad.independent Testing for dyad-independence

Description

These functions test whether an ERGM fit or formula is dyad-independent.

Usage

S3 method for class 'ergm'
is.dyad.independent(object, ...)
S3 method for class 'formula'
is.dyad.independent(object,

response=NULL,
basis=NULL,
...)

S3 method for class 'conlist'
is.dyad.independent(object,

object.obs = NULL,
...)

S3 method for class 'ergm.model'
is.dyad.independent(object, ...)
S3 method for class 'NULL'
is.dyad.independent(object, ...)

Arguments

object An ergm object or an ERGM formula.

response, basis

Name of the edge attribute whose value is to be modeled. See ergm.

object.obs

... Unused at this time.

Details

Dyad independence is determined by checking if all of the constituent parts of the object (formula,
ergm terms, etc) are flagged as dyad-independent.

Value

TRUE if the model fit or one implied by the formula is dyad-independent; FALSE otherwise.

118 is.inCH

is.inCH Determine whether a vector is in the closure of the convex hull of some
sample of vectors

Description

is.inCH returns TRUE if and only if p is contained in the convex hull of the points given as the rows
of M. If p is a matrix, each row is tested individually, and TRUE is returned if all rows are in the
convex hull.

Usage

is.inCH(p, M, verbose=FALSE, ...)

Arguments

p A d-dimensional vector or a matrix with d columns

M An r by d matrix. Each row of M is a d-dimensional vector.

verbose A logical vector indicating whether to print progress

... arguments passed directly to linear program solver

Details

The d-vector p is in the convex hull of the d-vectors forming the rows of M if and only if there exists
no separating hyperplane between p and the rows of M. This condition may be reworded as follows:

Letting q = (1p′)′ and L = (1M), if the maximum value of z′q for all z such that z′L ≤ 0
equals zero (the maximum must be at least zero since z=0 gives zero), then there is no separating
hyperplane and so p is contained in the convex hull of the rows of M. So the question of interest
becomes a constrained optimization problem.

Solving this problem relies on the package lpSolve to solve a linear program. We may put the
program in "standard form" by writing z = a − b, where a and b are nonnegative vectors. If we
write x = (a′b′)′, we obtain the linear program given by:

Minimize (−q′q′)x subject to x′(L − L) ≤ 0 and x ≥ 0. One additional constraint arises because
whenever any strictly negative value of (−q′q′)x may be achieved, doubling x arbitrarily many
times makes this value arbitrarily large in the negative direction, so no minimizer exists. Therefore,
we add the constraint (q′ − q′)x ≤ 1.

This function is used in the "stepping" algorithm of Hummel et al (2012).

Value

Logical, telling whether p is (or all rows of p are) in the closed convex hull of the points in M.

kapferer 119

References

• http://www.cs.mcgill.ca/~fukuda/soft/polyfaq/node22.html

• Hummel, R. M., Hunter, D. R., and Handcock, M. S. (2012), Improving Simulation-Based
Algorithms for Fitting ERGMs, Journal of Computational and Graphical Statistics, 21: 920-
939.

kapferer Kapferer’s tailor shop data

Description

This well-known social network dataset, collected by Bruce Kapferer in Zambia from June 1965 to
August 1965, involves interactions among workers in a tailor shop as observed by Kapferer himself.
Here, an interaction is defined by Kapferer as "continuous uninterrupted social activity involving the
participation of at least two persons"; only transactions that were relatively frequent are recorded.
All of the interactions in this particular dataset are "sociational", as opposed to "instrumental".
Kapferer explains the difference (p. 164) as follows:

"I have classed as transactions which were sociational in content those where the activity was
markedly convivial such as general conversation, the sharing of gossip and the enjoyment of a drink
together. Examples of instrumental transactions are the lending or giving of money, assistance at
times of personal crisis and help at work."

Kapferer also observed and recorded instrumental transactions, many of which are unilateral (di-
rected) rather than reciprocal (undirected), though those transactions are not recorded here. In
addition, there was a second period of data collection, from September 1965 to January 1966, but
these data are also not recorded here. All data are given in Kapferer’s 1972 book on pp. 176-179.

During the first time period, there were 43 individuals working in this particular tailor shop; how-
ever, the better-known dataset includes only those 39 individuals who were present during both time
collection periods. (Missing are the workers named Lenard, Peter, Lazarus, and Laurent.) Thus,
we give two separate network datasets here: kapferer is the well-known 39-individual dataset,
whereas kapferer2 is the full 43-individual dataset.

Usage

data(kapferer)

Format

Two network objects, kapferer and kapferer2. The kapferer dataset contains only the 39 indi-
viduals who were present at both data-collection time periods. However, these data only reflect data
collected during the first period. The individuals’ names are included as a nodal covariate called
names.

Source

Original source: Kapferer, Bruce (1972), Strategy and Transaction in an African Factory, Manch-
ester University Press.

http://www.cs.mcgill.ca/~fukuda/soft/polyfaq/node22.html

120 logLik.ergm

lasttoggle Storing last toggle information in a network

Description

An informal extension to network objects allowing some limited temporal information to be stored.

Details

WARNING: THIS DOCUMENTATION IS PROVIDED AS A COURTESY, AND THE API DE-
SCRIBED IS SUBJECT TO CHANGE WITHOUT NOTICE, DOWN TO COMPLETE REMOVAL.
NOT ALL FUNCTIONS THAT COULD SUPPORT IT DO. USE AT YOUR OWN RISK.

While networkDynamic provides a flexible, consistent method for storing dynamic networks, the C
routines of ergm and tergm required a simpler and more lightweight representation.

This representation consisted of a single integer representing the time stamp and an integer vector
of length to network.dyadcount(nw) — the number of potential ties in the network, giving the
last time point during which each of the dyads in the network had changed.

Though this is an API intended for internal use, some functions, like stergm (for EGMME),
simulate, and summary can be passed networks with this information using the following network
(i.e., %n%) attributes:

time the time stamp associated with the network

lasttoggle a vector of length network.dyadcount(nw), giving the last change time associated
with each dyad. See the source code of ergm internal functions to.matrix.lasttoggle,
ergm.el.lasttoggle, and to.lasttoggle.matrix for how they are serialized.

For technical reasons, the tergm routines treat the lasttoggle time points as shifted by −1.

Again, this API is subject to change without notice.

logLik.ergm A logLik method for ergm.

Description

A function to return the log-likelihood associated with an ergm fit, evaluating it if necessary.
logLikNull computes, when possible (see Value), the log-probability of observing the observed,
unconstrained dyads of the network observed under the null model.

logLik.ergm 121

Usage

S3 method for class 'ergm'
logLik(object,

add=FALSE,
force.reeval=FALSE,
eval.loglik=add || force.reeval,
control=control.logLik.ergm(),
...)

logLikNull(object, ...)

S3 method for class 'ergm'
logLikNull(object,

control=control.logLik.ergm(),
...)

Arguments

object An ergm fit, returned by ergm.

add Logical: If TRUE, instead of returning the log-likelihood, return object with
log-likelihood value set.

force.reeval Logical: If TRUE, reestimate the log-likelihood even if object already has an
estiamte.

eval.loglik Logical: If TRUE, evaluate the log-likelihood if not set on object.

control A list of control parameters for algorithm tuning. Constructed using control.logLik.ergm.

... Other arguments to the likelihood functions.

Details

If the log-likelihood was not computed for object, produces an error unless eval.loglik=TRUE

Value

The form of the output of logLik.ergm depends on add: add=FALSE (the default), a logLik object.
If add=TRUE (the default), an ergm object with the log-likelihood set.

logLikNull returns an object of type logLik if it is able to compute the null model probability, and
NA otherwise.

As of version 3.1, all likelihoods for which logLikNull is not implemented are computed relative
to the reference measure. (I.e., a null model, with no terms, is defined to have likelihood of 0, and
all other models are defined relative to that.)

References

Hunter, D. R. and Handcock, M. S. (2006) Inference in curved exponential family models for net-
works, Journal of Computational and Graphical Statistics.

122 mcmc.diagnostics

See Also

logLik, ergm.bridge.llr, ergm.bridge.dindstart.llk

Examples

See help(ergm) for a description of this model. The likelihood will
not be evaluated.
data(florentine)
Not run:
The default maximum number of iterations is currently 20. We'll only
use 2 here for speed's sake.
gest <- ergm(flomarriage ~ kstar(1:2) + absdiff("wealth") + triangle, eval.loglik=FALSE)

gest <- ergm(flomarriage ~ kstar(1:2) + absdiff("wealth") + triangle, eval.loglik=FALSE,
control=control.ergm(MCMLE.maxit=2))

Log-likelihood is not evaluated, so no deviance, AIC, or BIC:
summary(gest)
Evaluate the log-likelihood and attach it to the object.

The default number of bridges is currently 20. We'll only use 3 here
for speed's sake.
gest.logLik <- logLik(gest, add=TRUE)

gest.logLik <- logLik(gest, add=TRUE, control=control.logLik.ergm(nsteps=3))
Deviances, AIC, and BIC are now shown:
summary(gest.logLik)
Null model likelihood can also be evaluated, but not for all constraints:
logLikNull(gest) # == network.dyadcount(flomarriage)*log(1/2)

End(Not run)

mcmc.diagnostics Conduct MCMC diagnostics on an ergm fit

Description

This function prints diagnistic information and creates simple diagnostic plots for the MCMC sam-
pled statistics produced from a fit.

Usage

S3 method for class 'ergm'
mcmc.diagnostics(object,

center=TRUE,
esteq=TRUE,
vars.per.page=3,
...)

S3 method for class 'mcmc.list.ergm'
plot(x,

mcmc.diagnostics 123

main = NULL,
vars.per.page = 3,
...)

Arguments

object An ergm object. See documentation for ergm.

center Logical: If TRUE, ; center the samples on the observed statistics.

esteq Logical: If TRUE, for statistics corresponding to curved ERGM terms, summa-
rize the curved statistics by their estimating equation values (evaluated at the
MLE of any curved parameters) (i.e., η′I(θ̂) · gI(y) for I being indices of the
canonical parameters in question), rather than the canonical (sufficient) vectors
of the curved statistics (gI(y)).

vars.per.page Number of rows (one variable per row) per plotting page. Ignored if latticeExtra
package is not installed.

x an mcmc.list object containing the mcmc diagnostic samples

main character, main plot heading title

... Additional arguments, to be passed to plotting functions.

Details

A pair of plots are produced for each statistic:a trace of the sampled output statistic values on the
left and density estimate for each variable in the MCMC chain on the right. Diagnostics printed to
the console include correlations and convergence diagnostics.

Recent changes in the ergm estimation algorithm mean that these plots can no longer be used to
ensure that the mean statistics from the model match the observed network statistics. For that
functionality, please use the GOF command: gof(object, GOF=~model).

In fact, an ergm output object contains the matrix of statistics from the MCMC run as component
$sample. This matrix is actually an object of class mcmc and can be used directly in the coda
package to assess MCMC convergence. Hence all MCMC diagnostic methods available in coda
are available directly. See the examples and http://www.mrc-bsu.cam.ac.uk/software/bugs/
the-bugs-project-winbugs/coda-readme/.

More information can be found by looking at the documentation of ergm.

Value

mcmc.diagnostics.ergm returns some degeneracy information, if it is included in the original
object. The function is mainly used for its side effect, which is to produce plots and summary
output based on those plots.

References

Raftery, A.E. and Lewis, S.M. (1992). One long run with diagnostics: Implementation strategies
for Markov chain Monte Carlo. Statistical Science, 7, 493-497.

Raftery, A.E. and Lewis, S.M. (1995). The number of iterations, convergence diagnostics and
generic Metropolis algorithms. In Practical Markov Chain Monte Carlo (W.R. Gilks, D.J. Spiegel-
halter and S. Richardson, eds.). London, U.K.: Chapman and Hall.

http://www.mrc-bsu.cam.ac.uk/software/bugs/the-bugs-project-winbugs/coda-readme/
http://www.mrc-bsu.cam.ac.uk/software/bugs/the-bugs-project-winbugs/coda-readme/

124 MHproposal

This function is based on the coda package It is based on the the R function raftery.diag in
coda. raftery.diag, in turn, is based on the FORTRAN program gibbsit written by Steven
Lewis which is available from the Statlib archive.

See Also

ergm, network package, coda package, summary.ergm

Examples

Not run:
#
data(florentine)
#
test the mcmc.diagnostics function
#
gest <- ergm(flomarriage ~ edges + kstar(2))
summary(gest)

#
Plot the probabilities first
#
mcmc.diagnostics(gest)
#
Use coda directly
#
library(coda)
#
plot(gest$sample, ask=FALSE)
#
A full range of diagnostics is available
using codamenu()
#

End(Not run)

MHproposal Functions to initialize the MHproposal object

Description

S3 Functions that initialize the Metropolis-Hastings Proposal (MHproposal) object using the InitMHP.*
function that corresponds to the name given in ’object’. These functions are not generally called di-
rectly by the user. See ergm_MH_proposals for general explanation and lists of available Metropolis-
Hastings proposal types.

MHproposal 125

Usage

S3 method for class 'character'
MHproposal(object,

arguments,
nw, ...,
response=NULL,
reference=reference
)

S3 method for class 'formula'
MHproposal(object,

arguments,
nw,
weights="default",
class="c",
reference=~Bernoulli,
response=NULL,
...)

S3 method for class 'ergm'
MHproposal(object, ...,

constraints=NULL,
arguments=NULL,
nw=NULL,
weights=NULL,
class="c",
reference=NULL,
response=NULL)

Arguments

object Either a character, a formula or an ergm object. The formula should be of the
form y ~ <model terms>, where y is a network object or a matrix that can be
coerced to a network object.

nw The network object originally given to ergm via ’formula’

weights Specifies the method used to allocate probabilities of being proposed to dyads;
options are "TNT", "TNT10", "random", "nonobserved" and "default"; default="default"

arguments A list of parameters used by the Init.MHP routines

response EXPERIMENTAL. Name of the edge attribute whose value is to be modeled.
Defaults to NULL for simple presence or absence.

reference EXPERIMENTAL. One-sided formula whose RHS gives the reference measure
to be used. (Defaults to ~Bernoulli.)

class The class of the proposal; choices include "c", "f", and "d" default="c".

126 molecule

constraints A one-sided formula specifying one or more constraints on the support of the
distribution of the networks being simulated. See the documentation for a simi-
lar argument for ergm and see list of implemented constraints for more informa-
tion.

... Further arguments passed to other functions.

Value

Returns an MHproposal object: a list with class 'MHProposal' containing the following named
elements:

• name : the C name of the proposal

• inputs : NULL (I think - the only non-null value returned by the InitMH is for <nobetween-
groupties>, but this isn’t included in the look-up table

• package: shared library name where the proposal can be found (usually "ergm")

• arguments: list of arguments passed to the InitMHP function; in particular,

– constraints: list of constraints
– constraints$bd: the list of parameters to bound degree in the fitting process and returned

by ergm.bounddeg

See Also

InitMHP

molecule Synthetic network with 20 nodes and 28 edges

Description

This is a synthetic network of 20 nodes that is used as an example within the ergm documentation.
It has an interesting elongated shape - reminencent of a chemical molecule. It is stored as a network
object.

Usage

data(molecule)

See Also

florentine, sampson, network, plot.network, ergm

network.update 127

network.update Replaces the sociomatrix in a network object

Description

Replaces the edges in a network object with the edges corresponding to the sociomatrix specified
by newmatrix. See ergm for more information.

Usage

network.update(nw, newmatrix, matrix.type=NULL, output="network",
ignore.nattr = c("bipartite", "directed", "hyper",
"loops", "mnext", "multiple", "n"), ignore.vattr = c())

Arguments

nw a network object. See documentation for the network package.

newmatrix Either an adjacency matrix (a matrix of zeros and ones indicating the presence of
a tie from i to j) or an edgelist (a two-column matrix listing origin and destination
node numbers for each edge; note that in an undirected matrix, the first column
should be the smaller of the two numbers).

matrix.type One of "adjacency" or "edgelist" telling which type of matrix newmatrix is.
Default is to use the which.matrix.type function.

output Currently unused.

ignore.nattr character vector of the names of network-level attributes to ignore when updat-
ing network objects (defaults to standard network properties)

ignore.vattr character vector of the names of vertex-level attributes to ignore when updating
network objects

Value

network.update returns a new network object with the edges specified by newmatrix and network
and vertex attributes copied from the input network nw. Input network is not modified.

See Also

ergm, network

Examples

#
data(florentine)
#
test the network.update function
#
Create a Bernoulli network
rand.net <- network(network.size(flomarriage))

128 newnw.extract

store the sociomatrix
rand.mat <- rand.net[,]
Update the network
network.update(flomarriage, rand.mat, matrix.type="adjacency")
Try this with an edgelist
rand.mat <- as.matrix.network.edgelist(flomarriage)[1:5,]
network.update(flomarriage, rand.mat, matrix.type="edgelist")

newnw.extract Internal function to create a new network from the ergm MCMC sam-
ple output

Description

An internal function to generate a new network object using the output (lists of toggled heads and
tail vertices) from an ergm MCMC or SAN process.

Usage

newnw.extract(oldnw, z, output = "network", response = NULL)

Arguments

oldnw a network object (presumably input to the ergm process) from which the network-
and vertex-level attributes will be copied

z a list having either a component named newedgelist or two components newtails
and newheads containing the ids of the head and tails vertices of the edges. Op-
tionall newweights containing edgewights.

output passed to network.update, which claims not to use it

response optional character string giving the name of the edge attribute where the edge
values (weight/count) should be stored.

Value

a network object with properties copied from oldnw and edges corresponding to the lists of tails
and head vertex ids in z

Note

This is an internal ergm function, it most cases with edgelists to be converted to networks it will
probably be simpler to use network.edgelist

See Also

network.edgelist, network.update

nvattr.copy.network 129

nvattr.copy.network Copy network- and vertex-level attributes between two network objects

Description

An internal ergm utility function to copy the network-level attributes and vertex-level attributes
from one network object to another, ignoring some standard properties by default.

Usage

nvattr.copy.network(to, from, ignore = c("bipartite", "directed",
"hyper", "loops", "mnext",
"multiple", "n"))

Arguments

to the network that attributes should be copied to

from the network that attributes should be copied to

ignore vector of charcter names of network attributes that should not be copied. Default
is the standard list of network properties created by network.initialize

Value

returns the to network, with attributes copied from from

Note

does not check that networks are of the same size, etc

See Also

set.vertex.attribute, set.network.attribute

plot.ergm Plotting Method for class ergm

Description

plot.ergm is the plotting method for ergm objects.

It plots the MCMC diagnostics via the mcmc.diagnostics function.

See ergm for more information on how to fit these models.

130 plot.ergm

Usage

S3 method for class 'ergm'
plot(x, ..., mle=FALSE, comp.mat = NULL,

label = NULL, label.col = "black",
xlab, ylab, main, label.cex = 0.8, edge.lwd = 1,
edge.col=1, al = 0.1,
contours=0, density=FALSE, only.subdens = FALSE,
drawarrows=FALSE,
contour.color=1, plotnetwork=FALSE, pie = FALSE, piesize=0.07,
vertex.col=1, vertex.pch=19, vertex.cex=2,
mycol=c("black","red","green","blue","cyan",

"magenta","orange","yellow","purple"),
mypch=15:19, mycex=2:10)

Arguments

x an R object of class ergm. See documentation for ergm.

mle Plots the network using the MLE of the positions for latent models.

pie For latent clustering models, each node is drawn as a pie chart representing the
probabilities of cluster membership.

piesize The size of the pie charts.

contours For latent models, plots a contours by contours array of the network with one
contour per network corresponding to the posterior distribution of each of the
nodes.

contour.color Color of the contour lines.

density If density=TRUE, plots the density of the posterior position of the nodes. If
density=c(nr,nc), plots a nr by nc array of density estimates for each cluster.

only.subdens If density=c(nr,nc), only plots the densities of the clusters, not the overall den-
sity.

drawarrows If density=TRUE, draws the ties on the density plot.

plotnetwork If density=c(nr,nc), a plot of the network is also shown.

comp.mat For latent models, the positions are Procrustes transformed to look like comp.mat.

label A vector of the same length as the number of nodes containing the labels of the
nodes.

label.col The color to be used for plotting the labels.

label.cex The size of the node labels.

xlab Title for the x axis.

ylab Title for the y axis.

main The main title for the network.

edge.lwd The line width for the arrows between nodes.

edge.col The color of the arrows between nodes.

plot.ergm 131

al The length of the arrow heads.

vertex.col The color of the nodes as defined by mycol. Can be specified as an attribute of
the network used in the model.

vertex.pch The plotting character of the nodes as defined by mypch. Can be specified as an
attribute of the network used in the model. By default it is 15 - a red square.

vertex.cex The size of the nodes as defined by mycex. Can be specified as an attribute of
the network used in the model.

mycol Vector of colors to be used. Defaults to: c("black","red","green","blue","cyan",
"magenta","orange","yellow","purple")

mypch Vector of plotting characters to be used. Defaults to:

mycex Vector of character expansion values.

... Other optional arguments to be used by the plot function.

Details

Plots the results of an ergm fit.

More information can be found by looking at the documentation of ergm.

Value

NULL

See Also

ergm, network, plot.network, plot, add.contours

Examples

Not run:
#
The example assumes you have the 'latentnet' package installed.
#
Using Sampson's Monk data, lets fit a
simple latent position model
#
data(sampson)
#
Get the group labels
#
samp.labs <- substr(get.vertex.attribute(samplike,"group"),1,1)
#
samp.fit <- ergm(samplike ~ latent(k=2), burnin=10000,

MCMCsamplesize=2000, interval=30)
#
See if we have convergence in the MCMC
mcmc.diagnostics(samp.fit)
#
Plot the fit
#

132 plot.gofobject

plot(samp.fit,label=samp.labs, vertex.col="group")
#
Using Sampson's Monk data, lets fit a latent clustering model
#
samp.fit <- ergm(samplike ~ latentcluster(k=2, ngroups=3), burnin=10000,

MCMCsamplesize=2000, interval=30)
#
See if we have convergence in the MCMC
mcmc.diagnostics(samp.fit)
#
Lets look at the goodness of fit:
#
plot(samp.fit,label=samp.labs, vertex.col="group")
plot(samp.fit,pie=TRUE,label=samp.labs)
plot(samp.fit,density=c(2,2))
plot(samp.fit,contours=5,contour.color="red")
plot(samp.fit,density=TRUE,drawarrows=TRUE)
add.contours(samp.fit,nlevels=8,lwd=2)
points(samp.fit$Z.mkl,pch=19,col=samp.fit$class)

End(Not run)

plot.gofobject Plot Goodness-of-Fit Diagnostics on a Exponential Family Random
Graph Model

Description

plot.gofobject plots diagnostics such as the degree distribution, geodesic distances, shared part-
ner distributions, and reachability for the goodness-of-fit of exponential family random graph mod-
els. See ergm for more information on these models.

Usage

S3 method for class 'gofobject'
plot(x, ...,

cex.axis=0.7, plotlogodds=FALSE,
main = "Goodness-of-fit diagnostics",
normalize.reachability=FALSE,
verbose=FALSE)

Arguments

x an object of class gofobject, typically produced by the gof.ergm or gof.formula
functions. See the documentation for these.

cex.axis Character expansion of the axis labels relative to that for the plot.

plotlogodds Plot the odds of a dyad having given characteristics (e.g., reachability, minimum
geodesic distance, shared partners). This is an alternative to the probability of a
dyad having the same property.

plot.gofobject 133

main Title for the goodness-of-fit plots.
normalize.reachability

Should the reachability proportion be normalized to make it more comparable
with the other geodesic distance proportions.

verbose Provide verbose information on the progress of the plotting.

... Additional arguments, to be passed to the plot function.

Details

gof.ergm produces a sample of networks randomly drawn from the specified model. This function
produces a plot of the summary measures.

Value

none

See Also

gof.ergm, gof.formula, ergm, network, simulate.ergm

Examples

Not run:
#
data(florentine)
#
test the gof.ergm function
#
gest <- ergm(flomarriage ~ edges + kstar(2))
gest
summary(gest)

#
Plot the probabilities first
#
gofflo <- gof(gest)
gofflo
plot(gofflo)
#
And now the odds
#
plot(gofflo, plotlogodds=TRUE)
#
Use the formula version
#
gof(flomarriage ~ edges + kstar(2), coef=c(-1.6339, 0.0049))

End(Not run)

134 plot.network.ergm

plot.network.ergm Two-Dimensional Visualization of Networks

Description

plot.network.ergm produces a simple two-dimensional plot of the network object x. A variety of
options are available to control vertex placement, display details, color, etc. The function is based on
the plotting capabilities of the network package with additional pre-processing of arguments. Some
of the capabilites require the latentnet package. See plot.network in the network package for
details.

Usage

S3 method for class 'ergm'
plot.network(x,

attrname=NULL,
label=network.vertex.names(x),
coord=NULL,
jitter=TRUE,
thresh=0,
usearrows=TRUE,
mode="fruchtermanreingold",
displayisolates=TRUE,
interactive=FALSE,
xlab=NULL,
ylab=NULL,
xlim=NULL,
ylim=NULL,
pad=0.2,
label.pad=0.5,
displaylabels=FALSE,
boxed.labels=TRUE,
label.pos=0,
label.bg="white",
vertex.sides=8,
vertex.rot=0,
arrowhead.cex=1,
label.cex=1,
loop.cex=1,
vertex.cex=1,
edge.col=1,
label.col=1,
vertex.col=2,
label.border=1,
vertex.border=1,
edge.lty=1,
label.lty=NULL,

plot.network.ergm 135

vertex.lty=1,
edge.lwd=0,
label.lwd=par("lwd"),
edge.len=0.5,
edge.curve=0.1,
edge.steps=50,
loop.steps=20,
object.scale=0.01,
uselen=FALSE,
usecurve=FALSE,
suppress.axes=TRUE,
vertices.last=TRUE,
new=TRUE,
layout.par=NULL,
cex.main=par("cex.main"),
cex.sub=par("cex.sub"),
seed=NULL,
latent.control=list(maxit=500,

trace=0,
dyadsample=10000,
penalty.sigma=c(5,0.5),
nsubsample=200),

colornames="rainbow",
verbose=FALSE,
latent=FALSE,
...)

Arguments

x an object of class network.

attrname an optional edge attribute, to be used to set edge values.

label a vector of vertex labels, if desired; defaults to the vertex labels returned by
network.vertex.names.

coord user-specified vertex coordinates, in an NCOL(dat)x2 matrix. Where this is
specified, it will override the mode setting.

jitter boolean; should the output be jittered?

thresh real number indicating the lower threshold for tie values. Only ties of value
>thresh are displayed. By default, thresh=0.

usearrows boolean; should arrows (rather than line segments) be used to indicate edges?

mode the vertex placement algorithm; this must correspond to a network.layout
function. These include "latent", "latentPrior", and "fruchtermanreingold".

displayisolates

boolean; should isolates be displayed?

interactive boolean; should interactive adjustment of vertex placement be attempted?

xlab x axis label.

ylab y axis label.

136 plot.network.ergm

xlim the x limits (min, max) of the plot.

ylim the y limits of the plot.

pad amount to pad the plotting range; useful if labels are being clipped.

label.pad amount to pad label boxes (if boxed.labels==TRUE), in character size units.

displaylabels boolean; should vertex labels be displayed?

boxed.labels boolean; place vertex labels within boxes?

label.pos position at which labels should be placed, relative to vertices. 0 results in labels
which are placed away from the center of the plotting region; 1, 2, 3, and 4
result in labels being placed below, to the left of, above, and to the right of
vertices (respectively); and label.pos>=5 results in labels which are plotted
with no offset (i.e., at the vertex positions).

label.bg background color for label boxes (if boxed.labels==TRUE); may be a vector, if
boxes are to be of different colors.

vertex.sides number of polygon sides for vertices; may be given as a vector or a vertex at-
tribute name, if vertices are to be of different types.

vertex.rot angle of rotation for vertices (in degrees); may be given as a vector or a vertex
attribute name, if vertices are to be rotated differently.

arrowhead.cex expansion factor for edge arrowheads.

label.cex character expansion factor for label text.

loop.cex expansion factor for loops; may be given as a vector or a vertex attribute name,
if loops are to be of different sizes.

vertex.cex expansion factor for vertices; may be given as a vector or a vertex attribute name,
if vertices are to be of different sizes.

edge.col color for edges; may be given as a vector, adjacency matrix, or edge attribute
name, if edges are to be of different colors.

label.col color for vertex labels; may be given as a vector or a vertex attribute name, if
labels are to be of different colors.

vertex.col color for vertices; may be given as a vector or a vertex attribute name, if vertices
are to be of different colors.

label.border label border colors (if boxed.labels==TRUE); may be given as a vector, if label
boxes are to have different colors.

vertex.border border color for vertices; may be given as a vector or a vertex attribute name, if
vertex borders are to be of different colors.

edge.lty line type for edge borders; may be given as a vector, adjacency matrix, or edge
attribute name, if edge borders are to have different line types.

label.lty line type for label boxes (if boxed.labels==TRUE); may be given as a vector, if
label boxes are to have different line types.

vertex.lty line type for vertex borders; may be given as a vector or a vertex attribute name,
if vertex borders are to have different line types.

edge.lwd line width scale for edges; if set greater than 0, edge widths are scaled by
edge.lwd*dat. May be given as a vector, adjacency matrix, or edge attribute
name, if edges are to have different line widths.

plot.network.ergm 137

label.lwd line width for label boxes (if boxed.labels==TRUE); may be given as a vector,
if label boxes are to have different line widths.

edge.len if uselen==TRUE, curved edge lengths are scaled by edge.len.

edge.curve if usecurve==TRUE, the extent of edge curvature is controlled by edge.curv.
May be given as a fixed value, vector, adjacency matrix, or edge attribute name,
if edges are to have different levels of curvature.

edge.steps for curved edges (excluding loops), the number of line segments to use for the
curve approximation.

loop.steps for loops, the number of line segments to use for the curve approximation.

object.scale base length for plotting objects, as a fraction of the linear scale of the plotting
region. Defaults to 0.01.

uselen boolean; should we use edge.len to rescale edge lengths?

usecurve boolean; should we use edge.curve?

suppress.axes boolean; suppress plotting of axes?

vertices.last boolean; plot vertices after plotting edges?

new boolean; create a new plot? If new==FALSE, vertices and edges will be added to
the existing plot.

layout.par parameters to the network.layout function specified in mode.

cex.main Character expansion for the plot title.

cex.sub Character expansion for the plot sub-title.

seed Integer for seeding random number generator. See set.seed.

latent.control A list of parameters to control the latent and latentPrior models, dyadsample
determines the size above which to sample the latent dyads; see ergm and optim
for details.

colornames A vector of color names that can be selected by index for the plot. By default it
is colors().

verbose logical; if this is TRUE, we will print out more information as we run the function.

latent logical; use a two-dimensional latent space model based on the MLE fit. See
documentation for ergmm() in latentnet.

... additional arguments to plot.

Details

plot.network is a version of the standard network visualization tool within the sna package. By
means of clever selection of display parameters, a fair amount of display flexibility can be obtained.
Network layout – if not specified directly using coord – is determined via one of the various avail-
able algorithms. These are (briefly) as follows:

1. latentPrior: Use a two-dimensional latent space model based on a Bayesian minimum
Kullback-Leibler fit. See documentation for latent() in ergm.

2. random: Vertices are placed (uniformly) randomly within a square region about the origin.

3. circle: Vertices are placed evenly about the unit circle.

138 plot.network.ergm

4. circrand: Vertices are placed in a “Gaussian donut,” with distance from the origin following
a normal distribution and angle relative to the X axis chosen (uniformly) randomly.

5. eigen, princoord: Vertices are placed via (the real components of) the first two eigenvectors
of:

(a) eigen: the matrix of correlations among (concatenated) rows/columns of the adjacency
matrix

(b) princoord: the raw adjacency matrix.

6. mds, rmds, geodist, adj, seham: Vertices are placed by a metric MDS. The distance matrix
used is given by:

(a) mds: absolute row/column differences within the adjacency matrix
(b) rmds: Euclidean distances between rows of the adjacency matrix
(c) geodist: geodesic distances between vertices within the network
(d) adj: (maxA)−A, where A is the raw adjacency matrix
(e) seham: structural (dis)equivalence distances (i.e., as per sedist in the package sna)

based on the Hamming metric

7. spring, springrepulse: Vertices are placed using a simple spring embedder. Parameters for
the embedding model are given by embedder.params, in the following order: vertex mass;
equilibrium extension; spring coefficient; repulsion equilibrium distance; and base coefficient
of friction. Initial vertex positions are in random order around a circle, and simulation pro-
ceeds – increasing the coefficient of friction by the specified base value per unit time – until
“motion” within the system ceases. If springrepulse is specified, then an inverse-cube repul-
sion force between vertices is also simulated; this force is calibrated so as to be exactly equal
to the force of a unit spring extension at a distance specified by the repulsion equilibrium
distance.

Value

None.

Requires

mva

Author(s)

Carter T. Butts <buttsc@uci.edu>

References

Wasserman, S., and Faust, K. (1994). “Social Network Analysis: Methods and Applications.”
Cambridge: Cambridge University Press.

See Also

plot

print.ergm 139

Examples

data(florentine)
plot(flomarriage) #Plot the Florentine Marriage data
plot(network(10)) #Plot a random network
Not run: plot(flomarriage,interactive="points")

print.ergm Exponential Random Graph Models

Description

print.ergm is the method used to print an ergm object created by the ergm function.

Usage

S3 method for class 'ergm'
print(x, digits = max(3, getOption("digits") - 3), ...)

Arguments

x An ergm object. See documentation for ergm.

digits Significant digits for coefficients

... Additional arguments, to be passed to lower-level functions in the future.

Details

Automatically called when an object of class ergm is printed. Currently, print.ergm summarizes

the size of the MCMC sample, the theta vector governing the selection of the sample, and the Monte
Carlo MLE.

Value

The value returned is the ergm object itself.

See Also

network, ergm

Examples

data(florentine)

x <- ergm(flomarriage ~ density)
class(x)
x

140 samplk

samplk Longitudinal networks of positive affection within a monastery as a
“network” object

Description

NOTE: It appears that as of ergm 3.6.0, the vertex labels are been permutted. This will be fixed in
the next release.

Sampson (1969) recorded the social interactions among a group of monks while resident as an
experimenter on vision, and collected numerous sociometric rankings. During his stay, a political
“crisis in the cloister” resulted in the expulsion of four monks (Nos. 2, 3, 17, and 18) and the
voluntary departure of several others - most immediately, Nos. 1, 7, 14, 15, and 16. (In the end,
only 5, 6, 9, and 11 remained). Of particular interest is the data on positive affect relations (“liking”),
in which each monk was asked if they had positive relations to each of the other monks.

The data were gathered at three times to capture changes in group sentiment over time: samplk1,
samplk2, and samplk3. They represent three time points in the period during which a new cohort
entered the monastery near the end of the study but before the major conflict began.

Each member ranked only his top three choices on “liking.”

(Some subjects offered tied ranks for their top four choices). A tie from monk A to monk B exists
if A nominated B as one of his three best friends at that that time point.

samplk3 is a data set of Hoff, Raftery and Handcock (2002).

See also the data set sampson containing the time-aggregated graph samplike.

It is the cumulative tie for “liking” over the three periods. For this, a tie from monk A to monk B
exists if A nominated B as one of his three best friends at any of the three time points.

All graphs are stored as network objects. They have three vertex attributes:

group Groups of novices as classified by Sampson: “Loyal”, “Outcasts”, and “Young Turks”.
There is also an interstitial group not represented here.

cloisterville An indicator if attendance the minor seminary of “Cloisterville” before coming to the
monastery.

vertex.names The given names of the novices.

This data set is standard in the social network analysis literature, having been modeled by Holland
and Leinhardt (1981), Reitz (1982), Holland, Laskey and Leinhardt (1983), and Fienberg, Meyer,
and Wasserman (1981), Hoff, Raftery, and Handcock (2002), etc. This is only a small piece of the
data collected by Sampson.

This dataset was updated for version 2.5 (March 2012) to add the cloisterville variable and
refine the names. This information is from de Nooy, Mrvar, and Batagelj (2005). The original
vertex names were: Romul_10, Bonaven_5, Ambrose_9, Berth_6, Peter_4, Louis_11, Victor_8,
Winf_12, John_1, Greg_2, Hugh_14, Boni_15, Mark_7, Albert_16, Amand_13, Basil_3, Elias_17,
Simp_18.

sampson 141

Usage

data(samplk)

Source

Sampson, S.~F. (1968), A novitiate in a period of change: An experimental and case study of
relationships, Unpublished Ph.D. dissertation, Department of Sociology, Cornell University.

http://vlado.fmf.uni-lj.si/pub/networks/data/esna/sampson.htm

References

White, H.C., Boorman, S.A. and Breiger, R.L. (1976). Social structure from multiple networks. I.
Blockmodels of roles and positions. American Journal of Sociology, 81(4), 730-780.

Wouter de Nooy, Andrej Mrvar, Vladimir Batagelj (2005) Exploratory Social Network Analysis
with Pajek, Cambridge: Cambridge University Press

See Also

sampson, florentine, network, plot.network, ergm

sampson Cumulative network of positive affection within a monastery as a “net-
work” object

Description

NOTE: It appears that as of ergm 3.6.0, the vertex labels are been permutted. This will be fixed in
the next release.

Sampson (1969) recorded the social interactions among a group of monks while resident as an
experimenter on vision, and collected numerous sociometric rankings. During his stay, a political
“crisis in the cloister” resulted in the expulsion of four monks (Nos. 2, 3, 17, and 18) and the
voluntary departure of several others - most immediately, Nos. 1, 7, 14, 15, and 16. (In the end,
only 5, 6, 9, and 11 remained). Of particular interest is the data on positive affect relations (“liking”),
in which each monk was asked if they had positive relations to each of the other monks.

The data were gathered at three times to capture changes in group sentiment over time. They
represent three time points in the period during which a new cohort entered the monastery near the
end of the study but before the major conflict began.

Each member ranked only his top three choices on “liking”. (Some subjects offered tied ranks for
their top four choices). A tie from monk A to monk B exists if A nominated B as one of his three
best friends at that that time point.

samplike is the time-aggregated network. It is the cumulative tie for “liking” over the three periods.
For this, a tie from monk A to monk B exists if A nominated B as one of his three best friends at
any of the three time points.

The graph is stored as an network objects. It has three vertex attributes:

http://vlado.fmf.uni-lj.si/pub/networks/data/esna/sampson.htm

142 sampson

group Groups of novices as classified by Sampson: “loyal”, “outcasts”, and “Turks”. There is also
an interstitial group not represented here.

cloisterville An indicator of attendance the minor seminary of “Cloisterville” before coming to the
monastery.

vertex.names The given names of the novices and their IDs in the original dataset.

In addition, it has an edge attribute, nominations, giving the number of times (out of 3) that monk
A nominated monk B.

This data set is standard in the social network analysis literature, having been modeled by Holland
and Leinhardt (1981), Reitz (1982), Holland, Laskey and Leinhardt (1983), and Fienberg, Meyer,
and Wasserman (1981), Hoff, Raftery, and Handcock (2002), etc. This is only a small piece of the
data collected by Sampson.

This dataset was updated for version 2.5 (March 2012) to add the cloisterville variable and
refine the names. This information is from de Nooy, Mrvar, and Batagelj (2005). The original
vertex names were: Romul_10, Bonaven_5, Ambrose_9, Berth_6, Peter_4, Louis_11, Victor_8,
Winf_12, John_1, Greg_2, Hugh_14, Boni_15, Mark_7, Albert_16, Amand_13, Basil_3, Elias_17,
Simp_18.

Usage

data(sampson)

Source

Sampson, S.~F. (1968), A novitiate in a period of change: An experimental and case study of
relationships, Unpublished Ph.D. dissertation, Department of Sociology, Cornell University.

http://vlado.fmf.uni-lj.si/pub/networks/data/esna/sampson.htm

References

White, H.C., Boorman, S.A. and Breiger, R.L. (1976). Social structure from multiple networks. I.
Blockmodels of roles and positions. American Journal of Sociology, 81(4), 730-780.

Wouter de Nooy, Andrej Mrvar, Vladimir Batagelj (2005) Exploratory Social Network Analysis
with Pajek, Cambridge: Cambridge University Press

See Also

florentine, network, plot.network, ergm

http://vlado.fmf.uni-lj.si/pub/networks/data/esna/sampson.htm

san 143

san Use Simulated Annealing to attempt to match a network to a vector of
mean statistics

Description

This function attempts to find a network or networks whose statistics match those passed in via the
target.stats vector.

Usage

S3 method for class 'formula'
san(object,

response=NULL,
reference=~Bernoulli,
constraints=~.,
target.stats=NULL,
nsim=1,
basis=NULL,
sequential=TRUE,
control=control.san(),
verbose=FALSE,
...)

S3 method for class 'ergm'
san(object,

formula=object$formula,
constraints=object$constraints,
target.stats=object$target.stats,
nsim=1,
basis=NULL,
sequential=TRUE,
control=object$control$SAN.control,
verbose=FALSE,
...)

Arguments

object Either a formula or an ergm object. The formula should be of the form y ~ <model terms>,
where y is a network object or a matrix that can be coerced to a network object.
For the details on the possible <model terms>, see ergm-terms. To create a
network object in R, use the network() function, then add nodal attributes to it
using the %v% operator if necessary.

response EXPERIMENTAL. Name of the edge attribute whose value is to be modeled.
Defaults to NULL for simple presence or absence.

reference EXPERIMENTAL. One-sided formula whose RHS gives the reference measure
to be used. (Defaults to ~Bernoulli.)

144 search.ergmTerms

formula (By default, the formula is taken from the ergm object. If a different formula
object is wanted, specify it here.

constraints A one-sided formula specifying one or more constraints on the support of the
distribution of the networks being simulated. See the documentation for a simi-
lar argument for ergm and see list of implemented constraints for more informa-
tion. For simulate.formula, defaults to no constraints. For simulate.ergm,
defaults to using the same constraints as those with which object was fitted.

target.stats A vector of the same length as the number of terms implied by the formula,
which is either object itself in the case of san.formula or object$formula in
the case of san.ergm.

nsim Number of desired networks.
basis If not NULL, a network object used to start the Markov chain. If NULL, this is

taken to be the network named in the formula.
sequential Logical: If TRUE, the returned draws always use the prior draw as the starting

network; if FALSE, they always use the original network.
control A list of control parameters for algorithm tuning; see control.san.
verbose Logical: If TRUE, print out more detailed information as the simulation runs.
... Further arguments passed to other functions.

Value

A network or list of networks that hopefully have network statistics close to the target.stats
vector.

search.ergmTerms Search the ergm-terms documentation for appropriate terms

Description

Searches through the ergm.terms help page and prints out a list of terms appropriate for the spec-
ified network’s structural constraints, optionally restricting by additional categories and keyword
matches.

Usage

search.ergmTerms(keyword, net, categories, name)

Arguments

keyword optional character keyword to search for in the text of the term descriptions.
Only matching terms will be returned. Matching is case insensitive.

net a network object that the term would be applied to, used as template to determine
directedness, bipartite, etc

categories optional character vector of category tags to use to restrict the results (i.e. ’curved’,
’triad-related’)

name optional character name of a specific term to return

simulate.ergm 145

Details

Uses grep internally to match keywords against the term description, so keywords is currently
matched as a single phrase. Category tags will only return a match if all of the specified tags are
included in the term.

Value

prints out the name and short description of matching terms, and invisibly returns them as a list. If
name is specified, prints out the full definition for the named term.

Author(s)

skyebend@uw.edu

See Also

See also ergm.terms for the complete documentation

Examples

find all of the terms that mention triangles
search.ergmTerms('triangle')

two ways to search for bipartite terms:

search using a bipartite net as a template
myNet<-network.initialize(5,bipartite=3)
search.ergmTerms(net=myNet)

or request the bipartite category
search.ergmTerms(categories='bipartite')

search on multiple categories
search.ergmTerms(categories=c('bipartite','dyad-independent'))

print out the content for a specific term
search.ergmTerms(name='b2factor')

simulate.ergm Draw from the distribution of an Exponential Family Random Graph
Model

Description

simulate is used to draw from exponential family random network models in their natural param-
eterizations. See ergm for more information on these models.

146 simulate.ergm

Usage

S3 method for class 'formula'
simulate(object, nsim=1, seed=NULL,

coef,
response=NULL, reference=~Bernoulli,
constraints=~.,
monitor=NULL,
basis=NULL,
statsonly=FALSE,
esteq=FALSE,
sequential=TRUE,
control=control.simulate.formula(),
verbose=FALSE,
...)

S3 method for class 'ergm'
simulate(object, nsim=1, seed=NULL,

coef=object$coef,
response=object$response, reference=object$reference,
constraints=object$constraints,
monitor=NULL,
statsonly=FALSE,
esteq=FALSE,
sequential=TRUE,
control=control.simulate.ergm(),
verbose=FALSE,
...)

Arguments

object an R object. Either a formula or an ergm object. The formula should be of the
form y ~ <model terms>, where y is a network object or a matrix that can be
coerced to a network object. For the details on the possible <model terms>,
see ergm-terms. To create a network object in R, use the network() function,
then add nodal attributes to it using the %v% operator if necessary.

nsim Number of networks to be randomly drawn from the given distribution on the
set of all networks, returned by the Metropolis-Hastings algorithm.

seed Random number integer seed. See set.seed.

coef Vector of parameter values for the model from which the sample is to be drawn.
If object is of class ergm, the default value is the vector of estimated coeffi-
cients.

response EXPERIMENTAL. Name of the edge attribute whose value is to be modeled.
Defaults to NULL for simple presence or absence, modeled via binary ERGM
terms. Passing anything but NULL uses valued ERGM terms.

reference EXPERIMENTAL. A one-sided formula specifying the reference measure (h(y))
to be used. (Defaults to ~Bernoulli.) See help for ERGM reference measures
implemented in the ergm package.

simulate.ergm 147

constraints A one-sided formula specifying one or more constraints on the support of the
distribution of the networks being simulated. See the documentation for a simi-
lar argument for ergm and see list of implemented constraints for more informa-
tion. For simulate.formula, defaults to no constraints. For simulate.ergm,
defaults to using the same constraints as those with which object was fitted.

monitor A one-sided formula specifying one or more terms whose value is to be moni-
tored. These terms are appeneded to the model, along with a coefficient of 0, so
their statistics are returned.

basis An optional network object to start the Markov chain. If omitted, the default
is the left-hand-side of the formula. If neither a left-hand-side nor a basis is
present, an error results because the characteristics of the network (e.g., size and
directedness) must be specified.

statsonly Logical: If TRUE, return only the network statistics, not the network(s) them-
selves.

esteq Logical: If TRUE, compute the sample estimating equations of an ERGM: if
the model is non-curved, all non-offset statistics are returned either way, but if
the model is curved, the score estimating function values (3.1) by Hunter and
Handcock (2006) are returned instead.

sequential Logical: If FALSE, each of the nsim simulated Markov chains begins at the
initial network. If TRUE, the end of one simulation is used as the start of the
next. Irrelevant when nsim=1.

control A list of control parameters for algorithm tuning. Constructed using control.simulate.ergm
or control.simulate.formula, which have different defaults.

verbose Logical: If TRUE, extra information is printed as the Markov chain progresses.

... Further arguments passed to or used by methods.

Details

A sample of networks is randomly drawn from the specified model. The model is specified by the
first argument of the function. If the first argument is a formula then this defines the model. If the
first argument is the output of a call to ergm then the model used for that call is the one fit - and
unless coef is specified, the sample is from the MLE of the parameters. If neither of those are given
as the first argument then a Bernoulli network is generated with the probability of ties defined by
prob or coef.

Note that the first network is sampled after burnin + interval steps, and any subsequent networks
are sampled each interval steps after the first.

More information can be found by looking at the documentation of ergm.

Value

If statsonly==TRUE a matrix containing the simulated network statistics. If control$parallel>0,
the statistics from each Markov chain are stacked.

Otherwise, if nsim==1, an object of class network. If nsim>1, it returns an object of class network.list:
a list of networks with the following attr-style attributes on the list:

formula The formula used to generate the sample.

148 simulate.ergm

stats The nsim × p matrix of network statistics, where p is the number of network
statistics specified in the model.

control Control parameters used to generate the sample.

constraints Constraints used to generate the sample.

reference The reference measure for the sample.

monitor The monitoring formula.

response The edge attribute used as a response.

If statsonly==FALSE && control$parallel>0 the returned networks are "interleaved", in the
sense that for y[i,j] is the jth network from MCMC chain i, the sequence returned if control$parallel==2
is list(y[1,1], y[2,1], y[1,2], y[2,2], y[1,3], y[2,3], ...). This is different from
the behavior when statsonly==TRUE. This detail may change in the future.

This object has summary and print methods.

See Also

ergm, network

Examples

#
Let's draw from a Bernoulli model with 16 nodes
and density 0.5 (i.e., coef = c(0,0))
#
g.sim <- simulate(network(16) ~ edges + mutual, coef=c(0, 0))
#
What are the statistics like?
#
summary(g.sim ~ edges + mutual)
#
Now simulate a network with higher mutuality
#
g.sim <- simulate(network(16) ~ edges + mutual, coef=c(0,2))
#
How do the statistics look?
#
summary(g.sim ~ edges + mutual)
#
Let's draw from a Bernoulli model with 16 nodes
and tie probability 0.1
#
g.use <- network(16,density=0.1,directed=FALSE)
#
Starting from this network let's draw 3 realizations
of a edges and 2-star network
#
g.sim <- simulate(~edges+kstar(2), nsim=3, coef=c(-1.8,0.03),

basis=g.use, control=control.simulate(
MCMC.burnin=1000,
MCMC.interval=100))

summary.ergm 149

g.sim
summary(g.sim)
#
attach the Florentine Marriage data
#
data(florentine)
#
fit an edges and 2-star model using the ergm function
#
gest <- ergm(flomarriage ~ edges + kstar(2))
summary(gest)
#
Draw from the fitted model (satatistics only), and observe the number
of triangles as well.
#
g.sim <- simulate(gest, nsim=10,

monitor=~triangles, statsonly=TRUE,
control=control.simulate.ergm(MCMC.burnin=1000, MCMC.interval=100))

g.sim

summary.ergm Summarizing ERGM Model Fits

Description

summary method for class "ergm".

Usage

S3 method for class 'ergm'
summary(object, ...,

digits = max(3, getOption("digits") - 3),
correlation = FALSE, covariance = FALSE,
total.variation=TRUE)

Arguments

object an object of class "ergm", usually, a result of a call to ergm.
digits Significant digits for coefficients
correlation logical; if TRUE, the correlation matrix of the estimated parameters is returned

and printed.
covariance logical; if TRUE, the covariance matrix of the estimated parameters is returned

and printed.
total.variation

logical; if TRUE, the standard errors reported in the Std. Error column are
based on the sum of the likelihood variation and the MCMC variation. If FALSE
only the likelihood varuation is used. The p-values are based on this source of
variation.

150 summary.gofobject

... Arguments to logLik.ergm

Details

summary.ergm tries to be smart about formatting the coefficients, standard errors, etc.

Value

The function summary.ergm computes and returns a list of summary statistics of the fitted ergm
model given in object.

See Also

network, ergm, print.ergm. The model fitting function ergm, summary.

Function coef will extract the matrix of coefficients with standard errors, t-statistics and p-values.

Examples

data(florentine)

x <- ergm(flomarriage ~ density)
summary(x)

summary.gofobject Summaries the Goodness-of-Fit Diagnostics on a Exponential Family
Random Graph Model

Description

summary.gofobject summaries the diagnostics such as the degree distribution, geodesic distances,
shared partner distributions, and reachability for the goodness-of-fit of exponential family random
graph models. See ergm for more information on these models.

Usage

S3 method for class 'gofobject'
summary(object, ...)

Arguments

object an object of class gofobject, typically produced by the gof.ergm or gof.formula
functions. See the documentation for these.

... Additional arguments, to be passed to the plot function.

Details

gof.ergm produces a sample of networks randomly drawn from the specified model. This function
produces a print out the summary measures.

summary.network.list 151

Value

none

See Also

gof.ergm, gof.formula, ergm, network, simulate.ergm

Examples

Not run:
#
data(florentine)
#
test the gof.ergm function
#
gest <- ergm(flomarriage ~ edges + kstar(2))
gest
summary(gest)

#
Plot the probabilities first
#
gofflo <- gof(gest)
gofflo
summary(gofflo)

End(Not run)

summary.network.list Summarizing network.list objects

Description

summary and print methods for class network.list.

Usage

S3 method for class 'network.list'
summary(object,

stats.print=TRUE,
net.print=FALSE,
net.summary=FALSE,
...)

S3 method for class 'network.list'
print(x, stats.print=FALSE, ...)

152 summary.statistics

Arguments

object, x an object of class network.list, such as the output from simulate.ergm

stats.print Logical: If TRUE, print network statistics.

net.print Logical: If TRUE, print network overviews.

net.summary Logical: If TRUE, print network summaries.

... Additional arguments to be passed to lower-level functions.

Value

The summary.network.list function returns a summary.network object. The print.summary.list
function calls the summary.network.list function but returns the network.list object.

See Also

simulate.ergm

Examples

Draw from a Bernoulli model with 16 nodes
and tie probability 0.1
#
g.use <- network(16, density=0.1, directed=FALSE)
#
Starting from this network let's draw 3 realizations
of a model with edges and 2-star terms
#
g.sim <- simulate(~edges+kstar(2), nsim=3, coef=c(-1.8, 0.03),

basis=g.use, control=control.simulate(
MCMC.burnin=100000,
MCMC.interval=1000))

print(g.sim)
summary(g.sim)

summary.statistics Calculation of network or graph statistics

Description

Used to calculate the specified statistics for an observed network if its argument is a formula for an
ergm. See ergm-terms for more information on the statistics that may be specified.

summary.statistics 153

Usage

Default S3 method:
summary.statistics(object, response=NULL, ..., basis=NULL)
S3 method for class 'matrix'
summary.statistics(object, response=NULL, ..., basis=NULL)
S3 method for class 'network'
summary.statistics(object, response=NULL, ..., basis=NULL)
S3 method for class 'network.list'
summary.statistics(object, response=NULL, ..., basis=NULL)
S3 method for class 'formula'
summary.statistics(object, ..., basis=NULL)
S3 method for class 'ergm'
summary.statistics(object, ..., basis=NULL)

Arguments

object Either an R formula object (see above) or an ergm model object. In the latter
case, summary.statistics is called for the object$formula object. In the
former case, object is of the form y ~ <model terms>, where y is a network
object or a matrix that can be coerced to a network object. For the details on the
possible <model terms>, see ergm-terms. To create a network object in R, use
the network() function, then add nodal attributes to it using the %v% operator if
necessary.

response Name of the edge attribute whose value is to be modeled. Defaults to NULL for
simple presence or absence, modeled via binary ERGM terms. Passing anything
but NULL uses valued ERGM terms.

basis An optional network object relative to which the global statistics should be
calculated.

... further arguments passed to or used by methods.

Details

If object is of class formula, then summary may be used in lieu of summary.statistics because
summary.formula calls the summary.statistics function.

The function actually cumulates the change statistics when removing edges from the observed net-
work one by one until the empty network results. Since each model term has a prespecified value
(zero by default) for the corresponding statistic(s) on an empty network, these change statistics give
the absolute statistics on the original network.

summary.formula for networks understands the lasttoggle "API".

Value

A vector of statistics measured on the network.

See Also

ergm, network, ergm-terms

154 vcov.ergm

Examples

#
Lets look at the Florentine marriage data
#
data(florentine)
#
test the summary.statistics function
#
summary(flomarriage ~ edges + kstar(2))
m <- as.matrix(flomarriage)
summary(m ~ edges) # twice as large as it should be
summary(m ~ edges, directed=FALSE) # Now it's correct

vcov.ergm Extract Model Covariance Matrix

Description

vcov is a method which extracts the covariance matrix from the output object returned by the ergm
estimation.

Usage

S3 method for class 'ergm'
vcov(object, sources=c("all","model","estimation"), ...)

Arguments

object The ergm output object.

sources Specify whether to return the covariance matrix from the ERGM model, the
estimation process, or both combined.

... other arguments.

Value

Coefficients extracted from the model object object.

See Also

coef.ergm

Examples

data(florentine)
fit <- ergm(flomarriage ~ edges + concurrent)
vcov(fit, sources="model")
vcov(fit, sources="estimation")
vcov(fit, sources="all") # the default

wtd.median 155

wtd.median Weighted Median

Description

Compute weighted median.

Usage

wtd.median (x, na.rm = FALSE, weight=FALSE)

Arguments

x Vector of data, same length as weight

na.rm Logical: Should NAs be stripped before computation proceeds?

weight Vector of weights

Details

Uses a simple algorithm based on sorting.

Value

Returns an empirical .5 quantile from a weighted sample.

Index

∗Topic classes
as.network.numeric, 9

∗Topic datasets
ecoli, 35
faux.desert.high, 98
faux.dixon.high, 100
faux.magnolia.high, 102
faux.mesa.high, 103
flobusiness, 106
flomarriage, 107
florentine, 108
g4, 109
kapferer, 119
molecule, 126
samplk, 140
sampson, 141

∗Topic graphs
as.network.numeric, 9
plot.gofobject, 132
plot.network.ergm, 134
summary.gofobject, 150

∗Topic hplot
plot.network.ergm, 134

∗Topic models
anova.ergm, 6
approx.hotelling.diff.test, 7
coef.ergm, 12
coef.length.model, 13
control.ergm, 14
control.ergm.bridge, 24
control.gof, 26
control.logLik.ergm, 28
control.san, 30
control.simulate, 32
ergm, 37
ergm-constraints, 43
ergm-package, 4
ergm-references, 48
ergm-terms, 49

ergm.allstats, 72
ergm.exact, 82
ergm_MH_proposals, 95
ergmMPLE, 92
Getting.Started, 111
gof, 113
logLik.ergm, 120
mcmc.diagnostics, 122
MHproposal, 124
network.update, 127
plot.ergm, 129
print.ergm, 139
san, 143
simulate.ergm, 145
summary.ergm, 149
summary.network.list, 151
summary.statistics, 152

∗Topic model
enformulate.curved, 36
ergm.bridge.dindstart.llk, 75
ergm.bridge.llr, 76
fix.curved, 105
is.curved, 115
is.durational, 116
is.dyad.independent, 117

∗Topic package
ergm-package, 4
Getting.Started, 111

∗Topic regression
anova.ergm, 6
coef.ergm, 12
ergmMPLE, 92
summary.ergm, 149
summary.network.list, 151

∗Topic robust
wtd.median, 155

%n%, 71, 120
%v%, 71

absdiff (ergm-terms), 49

156

INDEX 157

absdiffcat (ergm-terms), 49
altkstar (ergm-terms), 49
anova, 7
anova.ergm, 6
anova.ergmlist, 7
anova.ergmlist (anova.ergm), 6
approx.hotelling.diff.test, 7
as.edgelist, 8, 8
as.matrix.network, 8
as.matrix.network.edgelist, 8
as.network.numeric, 9, 9
asymmetric (ergm-terms), 49
atleast (ergm-terms), 49
atmost (ergm-terms), 49
attr, 147

b1concurrent (ergm-terms), 49
b1cov (ergm-terms), 49
b1degrange (ergm-terms), 49
b1degree (ergm-terms), 49
b1factor (ergm-terms), 49
b1mindegree (ergm-terms), 49
b1nodematch (ergm-terms), 49
b1star (ergm-terms), 49
b1starmix (ergm-terms), 49
b1twostar (ergm-terms), 49
b2concurrent (ergm-terms), 49
b2cov (ergm-terms), 49
b2degrange (ergm-terms), 49
b2degree (ergm-terms), 49
b2factor (ergm-terms), 49
b2mindegree (ergm-terms), 49
b2nodematch (ergm-terms), 49
b2star (ergm-terms), 49
b2starmix (ergm-terms), 49
b2twostar (ergm-terms), 49
balance (ergm-terms), 49
Bernoulli (ergm-references), 48

central.network (ergm_deprecated), 94
check.ErgmTerm, 10
coef, 150
coef.ergm, 12, 154
coef.length.model, 13
coef.sublength.model

(coef.length.model), 13
coefficients.ergm (coef.ergm), 12
coincidence (ergm-terms), 49
colMeans, 13, 14

colMeans.mcmc.list, 13
concurrent (ergm-terms), 49
concurrentties (ergm-terms), 49
ConstraintImplications

(ergm-constraints), 43
constraints-ergm (ergm-constraints), 43
constraints.ergm (ergm-constraints), 43
control.ergm, 14, 28, 34, 38, 39, 41, 46, 47,

88, 92, 93
control.ergm.bridge, 23, 24, 75, 77
control.gof, 24, 26, 34
control.gof.ergm, 114
control.gof.formula, 114
control.logLik.ergm, 28, 121
control.san, 19, 30, 144
control.simulate, 24, 28, 32
control.simulate.ergm, 147
control.simulate.formula, 147
control$drop, 40
control$init.method, 17
ctriad (ergm-terms), 49
ctriple (ergm-terms), 49
cycle (ergm-terms), 49
cyclicalties (ergm-terms), 49
cyclicalweights (ergm-terms), 49

ddsp (ergm-terms), 49
degcor (ergm-terms), 49
degcrossprod (ergm-terms), 49
degrange (ergm-terms), 49
degree, 105
degree (ergm-terms), 49
degreedist, 34
degreedistfactor (ergm_deprecated), 94
degreepopularity (ergm-terms), 49
delete.isolates (ergm_deprecated), 94
density (ergm-terms), 49
desp (ergm-terms), 49
dgwdsp (ergm-terms), 49
dgwesp (ergm-terms), 49
dgwnsp (ergm-terms), 49
DiscUnif (ergm-references), 48
dnsp (ergm-terms), 49
download.packages, 98
drawpie (ergm_deprecated), 94
dsp (ergm-terms), 49
dspartnerdist (ergm_deprecated), 94
dyadcov (ergm-terms), 49

158 INDEX

ecoli, 35
ecoli1 (ecoli), 35
ecoli2 (ecoli), 35
edgecov (ergm-terms), 49
edges (ergm-terms), 49
enformulate.curved, 17, 36
equalto (ergm-terms), 49
ergm, 4, 6, 7, 12, 17–19, 21, 23–25, 27–29, 31,

33, 34, 36, 37, 37, 38–40, 43, 44,
46–50, 71, 75, 77, 80, 91–93, 95,
97–105, 111, 113, 114, 116, 117,
120, 121, 123–127, 129–132, 137,
139, 143–150, 152–154

ERGM constraints, 38
ERGM reference measures, 38, 146
ergm-constraints, 43, 109, 110
ergm-package, 4, 37
ergm-parallel, 46
ergm-references, 48
ergm-terms, 10, 49
ergm.allstats, 72, 83
ergm.bounddeg, 73, 126
ergm.bridge.0.llk (ergm.bridge.llr), 76
ergm.bridge.dindstart.llk, 25, 75, 76, 77,

122
ergm.bridge.llr, 25, 75, 76, 76, 122
ergm.checkargs (check.ErgmTerm), 10
ergm.checkbipartite (check.ErgmTerm), 10
ergm.checkconstraints.model

(check.ErgmTerm), 10
ergm.checkdegeneracy (check.ErgmTerm),

10
ergm.checkdirected (check.ErgmTerm), 10
ergm.checkextreme.model

(check.ErgmTerm), 10
ergm.cluster.started (ergm-parallel), 46
ergm.ConstraintImplications, 78
ergm.constraints (ergm-constraints), 43
ergm.count, 4
ergm.Cprepare, 78, 87, 88, 90
ergm.degeneracy, 80
ergm.design, 90
ergm.design (ergm.Cprepare), 78
ergm.el.lasttoggle (lasttoggle), 120
ergm.eta, 81
ergm.etagrad (ergm.eta), 81
ergm.etagradmult (ergm.eta), 81
ergm.etamap (ergm.eta), 81

ergm.exact, 72, 73, 82
ergm.formula.utils, 84
ergm.geodesicmatrix (ergm.geodistdist),

86
ergm.geodistdist, 86
ergm.geodistn (ergm.geodistdist), 86
ergm.getCluster (ergm-parallel), 46
ergm.getglobalstats, 87
ergm.getMCMCsample, 46, 87
ergm.getmodel, 79, 81, 85, 87, 90
ergm.getmodel (ergm.formula.utils), 84
ergm.getnetwork (ergm.formula.utils), 84
ergm.getterms (ergm.formula.utils), 84
ergm.init.methods, 18, 89
ergm.mahalanobis (ergm_deprecated), 94
ergm.mcmcslave (ergm.getMCMCsample), 87
ergm.MHP.table, 89
ergm.mple, 90
ergm.nodegeodesics (ergm.geodistdist),

86
ergm.pairgeodesic (ergm.geodistdist), 86
ergm.parallel (ergm-parallel), 46
ergm.pl (ergm.mple), 90
ergm.references (ergm-references), 48
ergm.stopCluster (ergm-parallel), 46
ergm.terms, 144, 145
ergm.terms (ergm-terms), 49
ergm.update.formula

(ergm.formula.utils), 84
ergm.userterms, 4, 49, 97, 98
ergm_deprecated, 94
ergm_MH_proposals, 74, 89, 95, 124
ergmMPLE, 42, 90–92, 92
esp, 105
esp (ergm-terms), 49
espartnerdist (ergm_deprecated), 94
eut-upgrade, 97

faux.desert.high, 98, 100, 101
faux.dixon.high, 100
faux.magnolia.high, 50, 100, 101, 102, 104
faux.mesa.high, 50, 100, 101, 103, 103
fauxhigh (faux.mesa.high), 103
fitted.values, 12
fix.curved, 105
flobusiness, 106, 106, 108
flomarriage, 107, 107, 108
florentine, 108
formula, 38, 39, 72, 125, 143, 146, 147, 153

INDEX 159

g4, 109
geodist, 86
get.free.dyads, 109
get.miss.dyads (get.free.dyads), 109
get.node.attr, 110
get.vertex.attribute, 110
Getting.Started, 111
glm, 12, 90, 93
gof, 24, 27, 28, 34, 113, 113, 114
gof.ergm, 4, 114, 132, 133, 150
gof.formula, 114, 132, 150
greaterthan (ergm-terms), 49
grep, 145
gwb1degree (ergm-terms), 49
gwb2degree (ergm-terms), 49
gwdegree, 105
gwdegree (ergm-terms), 49
gwdsp (ergm-terms), 49
gwesp, 105
gwesp (ergm-terms), 49
gwidegree (ergm-terms), 49
gwnsp (ergm-terms), 49
gwodegree (ergm-terms), 49

hamming (ergm-terms), 49
hammingmix (ergm-terms), 49

idegrange (ergm-terms), 49
idegree (ergm-terms), 49
idegreepopularity (ergm-terms), 49
ininterval (ergm-terms), 49
InitConstraint.b1degrees

(ergm-constraints), 43
InitConstraint.b2degrees

(ergm-constraints), 43
InitConstraint.bd (ergm-constraints), 43
InitConstraint.blockdiag

(ergm-constraints), 43
InitConstraint.degreedist

(ergm-constraints), 43
InitConstraint.degrees

(ergm-constraints), 43
InitConstraint.edges

(ergm-constraints), 43
InitConstraint.fixallbut

(ergm-constraints), 43
InitConstraint.fixedas

(ergm-constraints), 43

InitConstraint.hamming
(ergm-constraints), 43

InitConstraint.idegreedist
(ergm-constraints), 43

InitConstraint.idegrees
(ergm-constraints), 43

InitConstraint.nodedegrees
(ergm-constraints), 43

InitConstraint.observed
(ergm-constraints), 43

InitConstraint.odegreedist
(ergm-constraints), 43

InitConstraint.odegrees
(ergm-constraints), 43

InitErgmTerm, 10, 82
InitErgmTerm (ergm-terms), 49
InitMHP, 126
InitMHP (ergm_MH_proposals), 95
InitReference.Bernoulli

(ergm-references), 48
InitReference.DiscUnif

(ergm-references), 48
InitReference.StdNormal

(ergm-references), 48
InitReference.Unif (ergm-references), 48
InitWtMHP.DiscUnif (ergm-references), 48
InitWtMHP.DiscUnifNonObserved

(ergm-references), 48
InitWtMHP.StdNormal (ergm-references),

48
InitWtMHP.Unif (ergm-references), 48
InitWtMHP.UnifNonObserved

(ergm-references), 48
intransitive (ergm-terms), 49
invert.network (ergm_deprecated), 94
is.curved, 115
is.durational, 116
is.dyad.independent, 117
is.ergm (ergm), 37
is.inCH, 118
is.invertible (ergm_deprecated), 94
isolates (ergm-terms), 49
istar (ergm-terms), 49
istar(2), 65

kapferer, 119
kapferer2 (kapferer), 119
kstar (ergm-terms), 49
kstar(2), 64, 67

160 INDEX

largest.components (ergm_deprecated), 94
last-toggle (lasttoggle), 120
last.toggle (lasttoggle), 120
lasttoggle, 120, 153
latentnet, 134, 137
list of implemented constraints, 126,

144, 147
lm, 12
localtriangle (ergm-terms), 49
logLik, 120–122
logLik.ergm, 7, 29, 120, 150
logLikNull (logLik.ergm), 120

m2star (ergm-terms), 49
match (ergm-terms), 49
mcmc.diagnostics, 4, 122, 129
mcmc.diagnostics.ergm, 123
mcmc.list, 13, 14
meandeg (ergm-terms), 49
MHproposal, 91, 97, 124
molecule, 126
mutual (ergm-terms), 49
mvmodel (ergm_deprecated), 94

nearsimmelian (ergm-terms), 49
network, 4, 9, 10, 38, 49, 71, 72, 75, 77, 83,

86, 87, 99–104, 106–111, 120,
125–129, 134, 135, 140, 141, 143,
146–148, 153

network.dyadcount, 120
network.edgelist, 128
network.initialize, 129
network.list, 147
network.list (summary.network.list), 151
network.update, 127, 127, 128
network.vertex.names, 135
networkDynamic, 120
newnw.extract, 128
nodecov (ergm-terms), 49
nodecovar (ergm-terms), 49
nodefactor (ergm-terms), 49
nodeicov (ergm-terms), 49
nodeicovar (ergm-terms), 49
nodeifactor (ergm-terms), 49
nodeisqrtcovar (ergm-terms), 49
nodemain (ergm-terms), 49
nodematch (ergm-terms), 49
nodemix (ergm-terms), 49
nodeocov (ergm-terms), 49

nodeocovar (ergm-terms), 49
nodeofactor (ergm-terms), 49
nodeosqrtcovar (ergm-terms), 49
nodesqrtcovar (ergm-terms), 49
NonObservedTNT (ergm_MH_proposals), 95
nonsimp.update.formula, 85
nonzero (ergm-terms), 49
nsp (ergm-terms), 49
nvattr.copy.network, 129

odegrange (ergm-terms), 49
odegree (ergm-terms), 49
odegreepopularity (ergm-terms), 49
offset, 85
offset.info.formula

(ergm.formula.utils), 84
opentriad (ergm-terms), 49
optim, 137
ostar (ergm-terms), 49
ostar(2), 66
ostar2deg (ergm_deprecated), 94

parallel (ergm-parallel), 46
parallel processing, 23, 25, 27, 29, 31, 34
parallel-ergm (ergm-parallel), 46
parallel.ergm (ergm-parallel), 46
plot, 137, 138
plot.ergm, 129, 129
plot.gofobject, 114, 132, 132
plot.mcmc.list.ergm (mcmc.diagnostics),

122
plot.network, 100, 101, 103, 104, 134, 137
plot.network.ergm, 134, 134
print, 151
print.ergm, 40, 42, 139, 139
print.gofobject (summary.gofobject), 150
print.network.list

(summary.network.list), 151
print.summary.ergm (summary.ergm), 149

receiver (ergm-terms), 49
references-ergm (ergm-references), 48
references.ergm (ergm-references), 48
remove.offset.formula

(ergm.formula.utils), 84
residuals, 12
robust.inverse (ergm_deprecated), 94
rspartnerdist (ergm_deprecated), 94

samplike (sampson), 141

INDEX 161

samplk, 140
samplk1 (samplk), 140
samplk2 (samplk), 140
samplk3 (samplk), 140
sampson, 140, 141
san, 19, 31, 143
search.ergmTerms, 50, 71, 144
sender (ergm-terms), 49
set.network.attribute, 129
set.seed, 23, 25, 27, 29, 31, 137, 146
set.vertex.attribute, 129
simmelian (ergm-terms), 49
simmelianties (ergm-terms), 49
simulate, 34, 49, 120, 145
simulate.ergm, 4, 24, 28, 34, 37, 105, 145,

152
simulate.formula, 34
simulate.formula (simulate.ergm), 145
simulate.formula.ergm, 75–77
smalldiff (ergm-terms), 49
smallerthan (ergm-terms), 49
sna, 63, 69
sociality (ergm-terms), 49
sociality.default (ergm_deprecated), 94
sociality.ergm (ergm_deprecated), 94
sociality.formula (ergm_deprecated), 94
sociality.network (ergm_deprecated), 94
stergm, 120
sum (ergm-terms), 49
summary, 120, 149–151, 153
summary (summary.statistics), 152
summary.ergm, 40, 42, 124, 149, 150
summary.gofobject, 150, 150
summary.network, 152
summary.network.list, 151
summary.statistics, 152
summary.statistics.network, 87
sweep, 13, 14
sweep.mcmc.list (colMeans.mcmc.list), 13

tailor (kapferer), 119
tergm, 4, 120
terms, 85
terms-ergm (ergm-terms), 49
terms.ergm (ergm-terms), 49
terms.object, 85
threepath (ergm-terms), 49
threetrail (ergm-terms), 49
to.lasttoggle.matrix (lasttoggle), 120

to.matrix.lasttoggle (lasttoggle), 120
transitive (ergm-terms), 49
transitiveties (ergm-terms), 49
transitiveweights (ergm-terms), 49
triad.classify, 63, 69
triadcensus (ergm-terms), 49
triangle (ergm-terms), 49
triangles (ergm-terms), 49
tripercent (ergm-terms), 49
ttriad (ergm-terms), 49
ttriple (ergm-terms), 49
twopath (ergm-terms), 49
twopathdist (ergm_deprecated), 94

Unif (ergm-references), 48
update.formula, 85

vcov.ergm, 154

which.matrix.type, 127
wtd.median, 155

	ergm-package
	anova.ergm
	approx.hotelling.diff.test
	as.edgelist
	as.network.numeric
	check.ErgmTerm
	coef.ergm
	coef.length.model
	colMeans.mcmc.list
	control.ergm
	control.ergm.bridge
	control.gof
	control.logLik.ergm
	control.san
	control.simulate
	degreedist
	ecoli
	enformulate.curved
	ergm
	ergm-constraints
	ergm-parallel
	ergm-references
	ergm-terms
	ergm.allstats
	ergm.bounddeg
	ergm.bridge.dindstart.llk
	ergm.bridge.llr
	ergm.ConstraintImplications
	ergm.Cprepare
	ergm.degeneracy
	ergm.eta
	ergm.exact
	ergm.formula.utils
	ergm.geodistdist
	ergm.getglobalstats
	ergm.getMCMCsample
	ergm.init.methods
	ergm.MHP.table
	ergm.mple
	ergmMPLE
	ergm_deprecated
	ergm_MH_proposals
	eut-upgrade
	faux.desert.high
	faux.dixon.high
	faux.magnolia.high
	faux.mesa.high
	fix.curved
	flobusiness
	flomarriage
	florentine
	g4
	get.free.dyads
	get.node.attr
	Getting.Started
	gof
	is.curved
	is.durational
	is.dyad.independent
	is.inCH
	kapferer
	lasttoggle
	logLik.ergm
	mcmc.diagnostics
	MHproposal
	molecule
	network.update
	newnw.extract
	nvattr.copy.network
	plot.ergm
	plot.gofobject
	plot.network.ergm
	print.ergm
	samplk
	sampson
	san
	search.ergmTerms
	simulate.ergm
	summary.ergm
	summary.gofobject
	summary.network.list
	summary.statistics
	vcov.ergm
	wtd.median
	Index

