Astrofisica Nucleare e Subnucleare TeV Astrophysics

Astrofisica Nucleare e Subnucleare Future detectors

Astrophysics with IACTs

COSMIC PARTICLE ACCELERATION

What are the sites and mechanisms of particle acceleration in the cosmos?

• EXTREME ASTROPHYSICAL ENVIRONMENTS

The physics of neutron stars, black holes and their energetic environments, such as relativistic jets, winds and stellar explosions.

• FUNDAMENTAL PHYSICS FRONTIERS

Probing the nature of Dark Matter, the existence of axion-like particles, and Lorentz invariance violation

U.Barres – COSPAR 2020

The Science of CTA

CTA will target major science questions in high-energy astrophysics, through a large observational programme.

Sky Surveys

- Galactic and X-Gal Scan
- Dark Matter Programme
- Magellanic Clouds

Deep Targeted Observations

- PeVatrons
- Star-forming Systems
- Radio Galaxies & Clusters

Follow-ups of Transient and Multi-messenger events Monitoring of Variability notably of AGN

U.Barres – COSPAR 2020

A Census of particle accelerators across all cosmic scales

Science with CTA

cherenkov telescope array

with the

Science

Cherenkov

Telescope

cta

CTA will have important synergies with many of the new generation of major astronomical and astroparticle observatories. Multi-wavelength and multi-messenger approaches combining CTA data with those from other instruments will lead to a deeper understanding of the broad-band non-thermal properties of target sources, elucidating the nature, environment, and distance of gamma-ray emitters. Details of synergies in each waveband are presented.

22 Jan 2018

https://arxiv.org/abs/1709.07997

Galactic Science with CTA

https://arxiv.org/pdf/2310.02828

The new window of VHE Gamma-ray Bursts

First time detection of a GRB at sub-TeV energies; MAGIC detects the GRB 190114C

ATel #12390; Razmik Mirzoyan on behalf of the MAGIC Collaboration on 15 Jan 2019; 01:03 UT

Credential Certification: Razmik Mirzoyan (Razmik.Mirzoyan@mpp.mpg.de)

Subjects: Gamma Ray, >GeV, TeV, VHE, Request for Observations, Gamma-Ray Burst

Referred to by ATel #: 12395, 12475

Tweet

The MAGIC telescopes performed a rapid follow-up observation of GRB 190114C (Gropp et al., GCN 23688; Tyurina et al., GCN 23690, de Ugarte Postigo et al., GCN 23692, Lipunov et al. GCN 23693, Selsing et al. GCN 23695) This observation was triggered by the Swift-BAT alert: we started

Three long GRBs detections announced in the past two years:

GRB 180720B (z=0.65) GRB 190114C (z=0.42) Afterglow detected > 300 GeV Huge statistics (1000s gammas) Sub-minute timescale spectra GRB 190829A (z=0.08)

+ GRB 201216C (z = 1.1)

Strong MWL and MM synergies for spectral and variability studies

U.Barres – COSPAR 2020

Transients & Variable Sources: CTA Sensitivity vs. Time (CTA Collab 2019)

CTA >10,000 times more sensitive than Fermi-LAT in multi-GeV range → GRBs, AGN, giant pulses, FRBs, GW, SGR bursts... G. Rowell – COSPAR

CTA Transients Science

Shower image, 100 GeV y-ray adapted from: F. Schmidt, J. Knapp, "CORSIKA Shower Images", 2005, https://www-zeuthen.desy.de/~jknapp/fs/showerimages.html

Gamma-ray Astronomy

The Southern Wide-field Gamma-ray Observatory

Shower image, 100 GeV ;>ray adapted from: F. Schmidt, J. Knapp, "CORSIKA Shower Images", 2005, https://www-zeuthen.desy.de/~jknapp/fs/showerimages.html

Astonishing variety of TeV* emitters

- + Within the Milky Way
 - + Supernova remnants
 - + Bombarded molecular clouds
 - + Stellar binaries colliding wind & X-ray
 - + Massive stellar clusters
 - + Pulsars and pulsar wind nebulae
 - + Supermassive black hole Sgr A*
- + Extragalactic
 - + Starburst galaxies
 - + MW satellites
 - + Radio galaxies
 - + Flat-spectrum radio quasars
 - + 'BL Lac' objects
 - + Gamma-ray bursts
- Acceleration to TeV energies is common, gamma-rays are an effective probe
 - + Strongly complementary to sync. measurements

*0.05-50 TeV

Observational Panorama

The Southern Wide-field Gamma-ray Observatory

Cherenkov Atmospheric Telescopes

- 20% duty-cycle
- Pointing (few degrees FoV)
- Energy threshold down to 10s GeV
- Good energy and angular resolution

WC LHASO

Particle Detector Arrays

- → 100% duty-cycle
- → Wide-field of View (~ steradian)
- \rightarrow Energy range 100s GeV up to 100s TeV
- → Continual view and accurate background determination

Broadband panorama of highenergy Astrophysics

Point source sensitivity for X- and gamma-ray instruments

GO The high-altitude frontier

The Southern Wide-field

The Andes provides a number of highaltitude plateaus and high-altitude lakes that constitute suitable sites for a particle array aiming to extend the low-energy frontier for Wide-Field Observatories.

Candidate Sites

Gamma-ray Observatory

19

Peru

The SWGO Concept

The Southern Wide-field Gamma-ray Observatory

• 'Strawman' - reference detector layout

The SWGO Concept

Multiple detector options to be investigated

- Detector units
- Ore unit is a water-Cherenkov Detector
 - Options being investigated based on tanks (HAWC-like), ponds (Milagro-like) and lake-base (test pool under construction at MPIK-Heidelberg)
- Simulations currently ongoing to constrain all aspects of the detectors

• Design strongly dependent on site choice

 Water access, construction costs, infrastructure feasibility, compatibility with scientific driven main design goals...

Performance goals

Gamma-ray Observatory

Detection Area

Annual Exposure

Potentially more sensitive than CTA over several years integration time provided good background suppression is achieved.

Southern Wide-Field Gamma-ray Observatory

+ higher altitude (4400+ m asl) and larger area

 \rightarrow

+ more efficient detector units + muon tagging capability improved sensitivity and lower E threshold

Institutes

Argentina*, Brazil, Chile, Czech Republic, Germany*, Italy, Mexico, Peru, Portugal, South Korea, United Kingdom, United States*

Member institutes signed the Sol.

Supporting scientists Australia, Bolivia, Costa Rica, France, Japan, Poland, Slovenia, Spain, Switzerland *also supporting scientists

Any interested individual can become supporting scientist.

Astrofisica Nucleare e Subnucleare Astrophysical Neutrinos

Summary of neutrino production modes

From Physics Today

Astrophysical Neutrinos

