

# OBSERVATIONAL COSMOLOGY: INTRODUCTION TO MACHINE LEARNING

Credit: A.Asperti (Unibo); F. Villaescusa (Simon Foundation)

### Why Machine Learning?

There are problems that are difficult to address with traditional programming techniques:

- classify a document according to some criteria (e.g. spam, sentiment analysis, ...)
- compute the probability that a credit card transaction is fraudulent
- recognize an object in some image (possibly from an unusual point of view, in new lighting conditions, in a cluttered scene)
- ...

Typically the result depends on a non-linear combination of a large number of parameters, each one contributing to the solution in a small degree

### The Machine Learning approach:

Suppose to have a set of input-output pairs (training set):

$$\{x,y\}$$

the problem consists in understanding the map between **x** and **y** 

#### The M.L. approach:

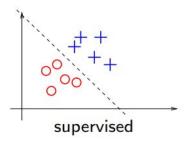
- describe the problem with a model depending on some parameters ⊖ (i.e. choose a parametric class of functions)
- define a loss function to compare the results of the model with the expected (experimental) values
- optimize (fit) the parameters Θ to reduce the loss to a minimum

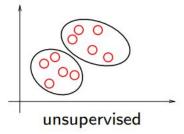
### The Machine Learning approach:

- Machine Learning problems are in fact optimization problems! So, why talking about learning?
- The point is that the solution to the optimization problem is not given in an analytical form (we don't have a theoretical/analytical model to explain the data, and often there is no closed form solution).
- So, we use iterative techniques (typically, gradient descent) to progressively approximate the result.
- This form of iteration over data can be understood as a way of progressive learning of the objective function based on the experience of past observations.

## Different types of learning tasks

- supervised learning:
   inputs + outputs (labels)
  - classification
  - regression
- unsupervised learning: just inputs
  - clustering
  - component analysis
  - autoencoding
- reinforcement learning actions and rewards
  - learning long-term gains
  - planning



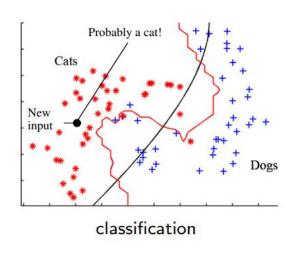


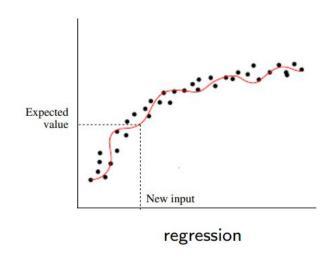


reinforcement

## Classification vs. Regression

Two forms of supervised learning:  $\{\langle x_i, y_i \rangle\}$ 





y is discete:  $y \in \{\bullet, +\}$  y is (conceptually) continuous

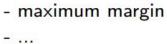
### Many different techniques

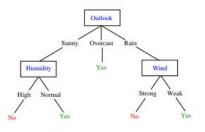
#### Different ways to define the models:

- decision trees
- linear models
- neural networks
- ...

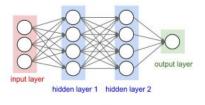
### Different error (loss) functions

- mean squared errors
- logistic loss
- cross entropy
- cosine distance

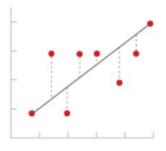




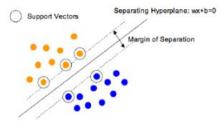
decision tree



neural net

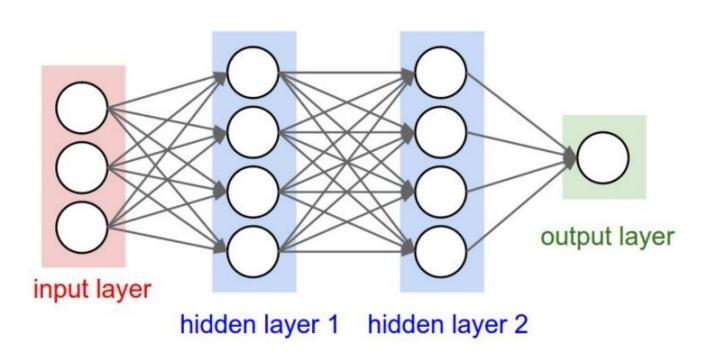


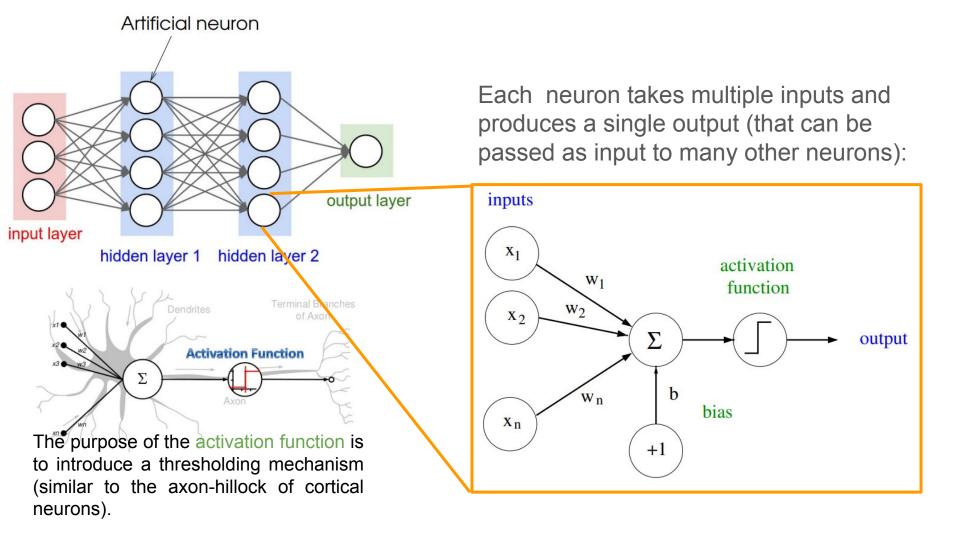
mean squared errors

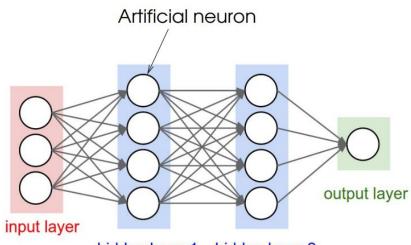


maximum margin

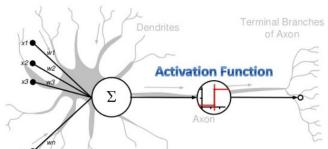
# Neural Networks







hidden layer 1 hidden layer 2



The purpose of the activation function is to introduce a thresholding mechanism (similar to the axon-hillock of cortical neurons).

NOTE: Composing linear transformations makes no sense, since we still get a linear transformation!

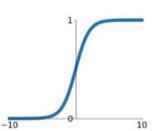
The activation function provides the source of NON LINEARTY in the neural networks

## f(x)

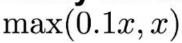
## **Activation Functions**

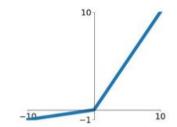
## **Sigmoid**

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$



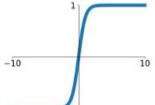
## Leaky ReLU





#### tanh

tanh(x)

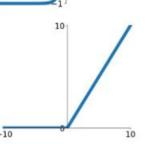


### **Maxout**

 $\max(w_1^T x + b_1, w_2^T x + b_2)$ 

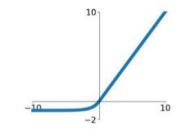
#### ReLU

 $\max(0, x)$ 

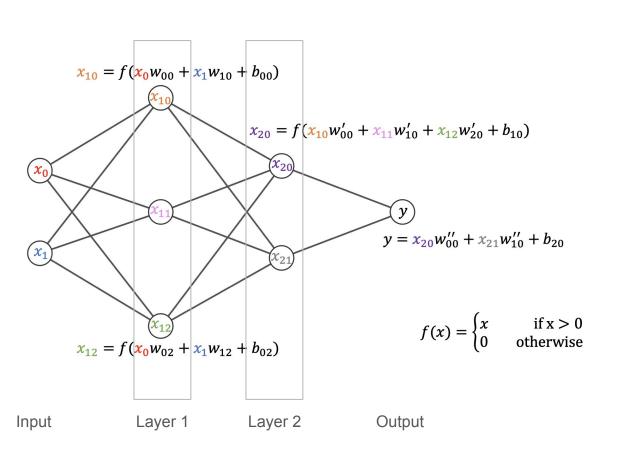


#### **ELU**

 $\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$ 



#### Dense Feed-Forward NN

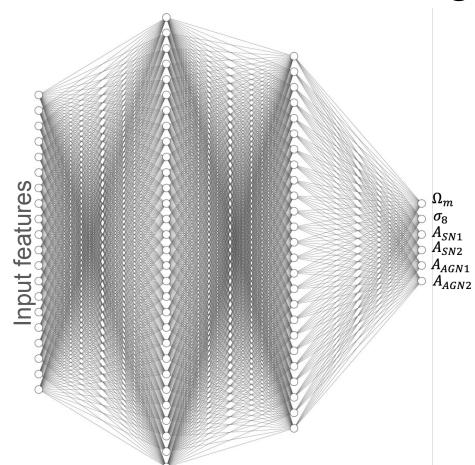


The most typical feed-forward network is a dense (i.e. w/ more than 1 hidden layer) network where each neuron at layer k – 1 is connected to each neuron at layer k.

The network is defined by a matrix of parameters (weights)  $\mathbf{w}^k$  for each layer (+ biases). The matrix  $\mathbf{w}^k$  has dimension  $\mathbf{L}_k \times \mathbf{L}_{k+1}$  where  $\mathbf{L}_k$  is the number of neurons at layer k.

The weights w<sup>k</sup> and biases are the parameters of the model: they are learned during the training phase.

# Training the NN



**Goal:** tune the value of the network parameters to get the most accurate predictions on the parameters.

**Accuracy** defined in the *loss function* 

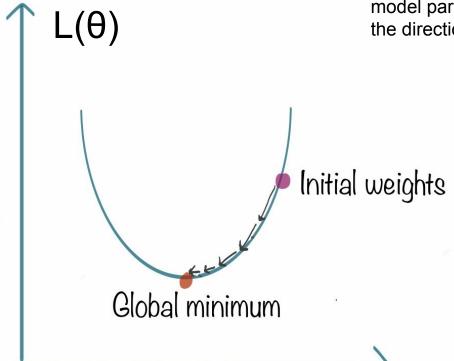
$$L = \frac{1}{N} \sum_{i=1}^{N} (\theta_{NN} - \theta_{True})^2$$

In other words we want to "learn" the parameters which minimize the loss function (optimization problem!)

#### **Gradient Descent**

The objective is to minimize the loss function over (fixed) training samples by suitably adjusting the parameters  $\vartheta_i$ .

To do so we compute the gradient of the loss function w.r.t. the model parameters  $\vartheta_{\rm i}$ ,  $\nabla_{\vartheta} {\sf L}$ . The gradient is the vector pointing in the direction of steepest ascent.



We can reach a minimal configuration for  $L(\vartheta)$  by iteratively taking small steps in the direction opposite to the gradient (gradient descent).

$$\theta_{i+1} = \theta_i - \lambda \nabla_{\theta} L$$
 learning rate

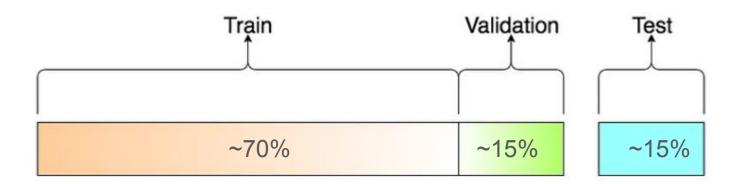
## Stochastic Gradient Descent

$$\theta_{i+1} = \theta_i - \lambda \nabla_{\theta} L$$

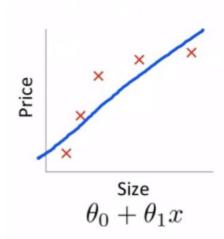
- Compute the derivative using all available data?
   Derivative will be smooth. Fast convergence but you may end up in a local minima
- Compute the derivative using a single data point?
   Derivative will be noisy. Will help escaping local minima, but hard to get convergence
- Compute the derivative using a batch of point?
   Good trade between fast convergence and escape saddle points; also efficient for memory usage

#### Training, validation and test data:

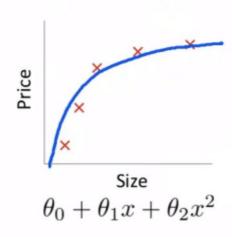
- Training Dataset: The actual dataset that we use to train the model (weights and biases in the case of a Neural Network). The model sees and learns from this data.
- Validation Dataset: The sample of data used to provide an unbiased evaluation of a model fit on the training dataset. The model see this data but doesn't learn from it.
- Test Dataset: The sample of data used to provide an unbiased evaluation of a final model fit on the training dataset. The model doesn't see or learn from this data.



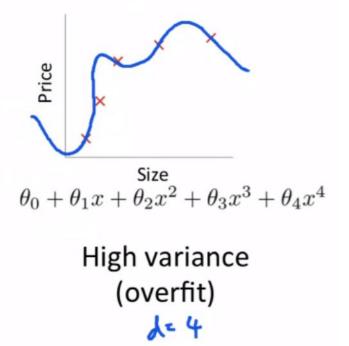
# Regularization



High bias (underfit)



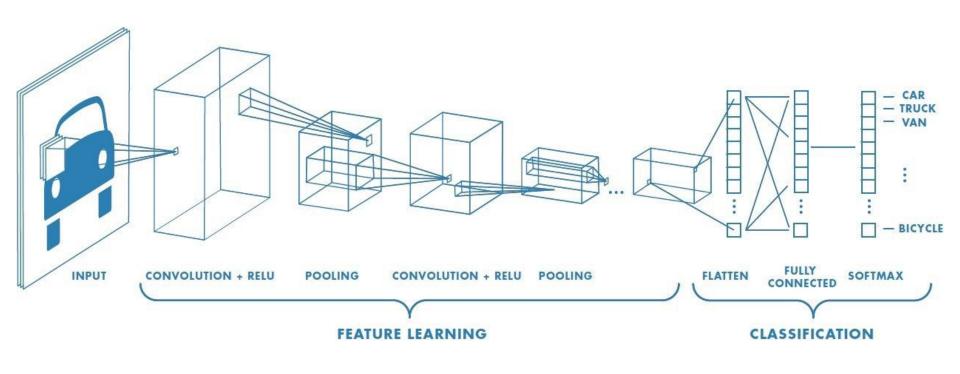
"Just right"



# Regularization

| Weight decay                                                                                 | Dropout |
|----------------------------------------------------------------------------------------------|---------|
| $L = \frac{1}{N} \sum_{i=1}^{N} (\theta_{NN} - \theta_{True})^2 + \eta \sum_{i=1}^{N} w_i^2$ |         |

# Convolutional Neural Networks (CNN)



# **CNN** layers

| 1 | 1 | 1 | 0 | 0 |
|---|---|---|---|---|
| 0 | 1 | 1 | 1 | 0 |
| 0 | 0 | 1 | 1 | 1 |
| 0 | 0 | 1 | 1 | 0 |
| 0 | 1 | 1 | 0 | 0 |



| 1 | 0 | 1 |
|---|---|---|
| 0 | 1 | 0 |
| 1 | 0 | 1 |

5 x 5 - Image Matrix

3 x 3 - Filter Matrix

1\*Gcl7G-JLAQiEoCON7xFbhq.qif

| Operation                        | Filter                                                                           | Convolved<br>Image |
|----------------------------------|----------------------------------------------------------------------------------|--------------------|
| Identity                         | $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$              |                    |
|                                  | $\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$            |                    |
| Edge detection                   | $\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$             |                    |
|                                  | $\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$      |                    |
| Sharpen                          | $\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$          |                    |
| Box blur<br>(normalized)         | $\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$  |                    |
| Gaussian blur<br>(approximation) | $\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$ | 4                  |

# **Padding**

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|---|
| 0 | 3 | 3 | 4 | 4 | 7 | 0 | 0 |
| 0 | 9 | 7 | 6 | 5 | 8 | 2 | 0 |
| 0 | 6 | 5 | 5 | 6 | 9 | 2 | 0 |
| 0 | 7 | 1 | 3 | 2 | 7 | 8 | 0 |
| 0 | 0 | 3 | 7 | 1 | 8 | 3 | 0 |
| 0 | 4 | 0 | 4 | 3 | 2 | 2 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

|   | 1 | 0     | -1 |
|---|---|-------|----|
| * | 1 | 0     | -1 |
|   | 1 | 0     | -1 |
|   | 3 | 3 × 3 | }  |

| -10 | -13 | 1 |  |  |
|-----|-----|---|--|--|
| -9  | 3   | 0 |  |  |
|     |     |   |  |  |
|     |     |   |  |  |
|     |     |   |  |  |
|     |     |   |  |  |

 $6 \times 6$ 

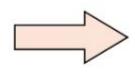
$$6 \times 6 \rightarrow 8 \times 8$$

1\*1VJDP6qDY9-ExTuQVEOIVg.qif

## **Strides**

| 1  | 2  | 3  | 4  | 5  | 6  | 7  |
|----|----|----|----|----|----|----|
| 11 | 12 | 13 | 14 | 15 | 16 | 17 |
| 21 | 22 | 23 | 24 | 25 | 26 | 27 |
| 31 | 32 | 33 | 34 | 35 | 36 | 37 |
| 41 | 42 | 43 | 44 | 45 | 46 | 47 |
| 51 | 52 | 53 | 54 | 55 | 56 | 57 |
| 61 | 62 | 63 | 64 | 65 | 66 | 67 |
| 71 | 72 | 73 | 74 | 75 | 76 | 77 |

Convolve with 3x3 filters filled with ones



| 108 | 126 |  |
|-----|-----|--|
| 288 | 306 |  |
|     |     |  |

$$S_{ ext{out}} = rac{S_{ ext{in}} + 2 ext{Padding} - ext{Kernel\_size} - 2}{ ext{Stride}} + 1$$

# **Pooling**

max pooling average pooling 12 100 

1\*uoWYsCV5vBU8SHFPAPao-w.gif

## **BatchNorm**

$$y = rac{x - \mathrm{E}[x]}{\sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + eta$$

