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8.2.2 Probabilistic error cancellation

The Probabilistic error cancellation (PEC) method cancels the e↵ects of the noise employing a map that acts
as the inverse of the noise map under suitable average.

Suppose the ideal circuit is performed by a unitary CPTP map U being the consecutive application of unitary
gates: Ûcircuit = Ûd . . . Û1, where d id the depth of the circuit. One can represent the corresponding noisy circuit
by substituting each unitary operation with its noisy counterpart, namely Ûi⇢̂Û

†
i ! Ûi⇤i[⇢̂]Û

†
i , where ⇤i is a

CPTP noisy map and ⇢̂ is the N -qubit state. If we focus on a single gate Ûi, the two corresponding circuits are
represented as

Ui
! ⇤i Ui

(8.98)

Now, the point is if we can invert the CPTP map ⇤i via the application of its inverse ⇤�1
i . In general, this is

not possible. Indeed, typically, ⇤�1
i is not a CPTP map and thus such an inverse operation of the noise cannot

be implemented. Nevertheless, such an operation can be implemented on average.
Consider the toy model of a single qubit, where the unitary noiseless operation is the identity: Û = 1̂, and

the noise channel is the bit-flip with a probability p. Thus, the corresponding map is

⇤(⇢̂) = (1 � p)1̂⇢̂1̂ + p�̂x⇢̂�̂x. (8.99)

This map corresponds to the unravelling with two components: with a probability p one applies an extra gate X,
and with probability (1�p) one does nothing, i.e. applies the gate 1. Notably, both these gates have an inverse.
Indeed, 1̂

�1 = 1̂ and �̂�1
x = �̂x. Then, we construct the inverse noise map ⇤�1 as having two components: with

a probability q we apply an X gate, and with a probability (1 � q) we apply an 1 gate. The corresponding total
circuit can be then decomposed in the four components:

⇤�1 ⇤ 1 =

8
>>>>>>>>>>><

>>>>>>>>>>>:

1 1 1 a), with prob = (1 � p)(1 � q),

X 1 1 b), with prob = (1 � p)q,

1 X 1 c), with prob = p(1 � q),

X X 1 d), with prob = pq.

(8.100)

Now, we want to fix q such that, under the ensemble average, the circuit b) occurs with a probability being the
opposite value of that of circuit c) occuring, and that the sum of the probabilities of having the circuit a) and
d) gives 1. This implies the following system of equations

PaPd = (1 � p)(1 � q) + pq = 1, and PbPc = (1 � p)q + p(1 � q) = 0. (8.101)

The solution is given by

q =
�p

1 � 2p
, (8.102)

which is a quasi-probability, since it can take negative values, and it is shown in the left panel of Fig. 8.3. Now,
the inverse noise map ⇤�1 is given by
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Fig. 8.3: Quasi-probability q (left panel) and renormalisation constant � (right panel) as a function of the
probability p of having an error.

⇤�1(⇢̂) = (1 � q)1̂⇢̂1̂ + q�̂x⇢̂�̂x,

= sgn(1 � q)|1 � q|1̂⇢̂1̂ + sgn(q)|q|�̂x⇢̂�̂x,

= �
⇥
S1P11̂⇢̂1̂ + SXPX �̂x⇢̂�̂x

⇤
,

(8.103)

where in the first line we used x = sgn(x)|x|, with sgn indicating the sign function, and in the second line we
introduced

� = |1 � q| + |q|, (8.104)

which is represented in the right panel of Fig. 8.3. Finally, we defined

S1 = sgn(1 � q), P1 =
|1 � q|

�
,

SX = sgn(q), PX =
|q|
�
.

(8.105)

Thus, independently from the unravelling of the noise map, i.e. without knowing if the bit-flip noise is applied
or not, we apply the map ⇤�1 in the last line of Eq. (8.103). This can be implemented with the following circuit:

⇤�1 ⇤ 1

hMi
CPP =

8
>>>>><

>>>>>:

1 ⇤ 1

M1

S1 a), with prob = P1,

X ⇤ 1

MX

SX b), with prob = PX .

(8.106)
A classical post-processing (CPP) is applied to multiplicate the outcome of the result by the proper sign factor.
Eventually, the mitigated result is given by

hMi = � (S1P1M1 + SXPXMX) . (8.107)

This is an unbiased estimator. The cost of the mitigation procedure goes in the variance, which grows by a
factor �2 compared to the unmitigated one.

Consider a more general case of the noise map ⇤ acting on a single qubit, which reads

⇤(⇢̂) = �0⇢̂ + �1�̂x⇢̂�̂x + �2�̂y⇢̂�̂y + �3�̂z ⇢̂�̂z, (8.108)
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where

�↵ � 0, and
3X

↵=0

�↵ = 1. (8.109)

Such a map is a CPTP map. Similarly as done above, we construct the inverse map ⇤�1 as

⇤�1(⇢̂) = q0⇢̂ + q1�̂x⇢̂�̂x + q2�̂y⇢̂�̂y + q3�̂z ⇢̂�̂z, (8.110)

where we require that
3X

↵=0

q↵ = 1, (8.111)

but we do not add any restriction on the sign of q↵. Then, in terms of unravellings, we have 4 possible evolutions
provided by ⇤ and 4 by ⇤�1 for a total of 16 possible mappings. Explicitly they give

⇤ ⇤�1 ⇢̂ ! ⇢̂0 probability P↵�

1̂ 1̂ ⇢̂ �0q0
1̂ �̂x �̂x⇢̂�̂x �0q1
1̂ �̂y �̂y⇢̂�̂y �0q2
1̂ �̂z �̂z ⇢̂�̂z �0q3
�̂x 1̂ �̂x⇢̂�̂x �1q0
�̂x �̂x �̂2

x⇢̂�̂
2
x �1q1

�̂x �̂y �̂x�̂y⇢̂�̂y�̂x �1q2
�̂x �̂z �̂x�̂z ⇢̂�̂z�̂x �1q3
�̂y 1̂ �̂y⇢̂�̂y �2q0
�̂y �̂x �̂y�̂x⇢̂�̂x�̂y �2q1
�̂y �̂y �̂2

y ⇢̂�̂
2
y �2q2

�̂y �̂z �̂y�̂z ⇢̂�̂z�̂y �2q3
�̂z 1̂ �̂z ⇢̂�̂z �3q0
�̂z �̂x �̂z�̂x⇢̂�̂x�̂z �3q1
�̂z �̂y �̂z�̂y⇢̂�̂y�̂z �3q2
�̂z �̂z �̂2

z ⇢̂�̂
2
z �3q3

(8.112)

However, we can exploit that �̂2
↵ = 1̂ and that �̂i�̂j = i✏ijk�̂k. Thus, the above table becomes
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⇤ ⇤�1 ⇢̂ ! ⇢̂0 probability P↵�

1̂ 1̂ ⇢̂ �0q0
1̂ �̂x �̂x⇢̂�̂x �0q1
1̂ �̂y �̂y⇢̂�̂y �0q2
1̂ �̂z �̂z ⇢̂�̂z �0q3
�̂x 1̂ �̂x⇢̂�̂x �1q0
�̂x �̂x ⇢̂ �1q1
�̂x �̂y �̂z ⇢̂�̂z �1q2
�̂x �̂z �̂y⇢̂�̂y �1q3
�̂y 1̂ �̂y⇢̂�̂y �2q0
�̂y �̂x �̂z ⇢̂�̂z �2q1
�̂y �̂y ⇢̂ �2q2
�̂y �̂z �̂x⇢̂�̂x �2q3
�̂z 1̂ �̂z ⇢̂�̂z �3q0
�̂z �̂x �̂y⇢̂�̂y �3q1
�̂z �̂y �̂x⇢̂�̂x �3q2
�̂z �̂z ⇢̂ �3q3

(8.113)

Finally, we impose that the sum of the probabilities of getting ⇢̂0 = ⇢̂ should be 1, and those such ⇢̂0 6= ⇢̂ should
be 0. Namely

P00 + P11 + P22 + P33 = �0q0 + �1q1 + �2q2 + �3q3 = 1,

P01 + P10 + P23 + P32 = �0q1 + �1q0 + �2q3 + �3q2 = 0,

P02 + P20 + P13 + P31 = �0q2 + �2q0 + �1q3 + �3q1 = 0,

P03 + P30 + P12 + P21 = �0q3 + �3q0 + �1q2 + �2q1 = 0.

(8.114)

The solution to this system of linear equations gives

q0 =
1

4

✓
1 +

1

1 � 2�1 � 2�2
+

1

1 � 2�1 � 2�3
+

1

1 � 2�2 � 2�2

◆
,

q1 =
1

4

✓
1 � 1

1 � 2�1 � 2�2
� 1

1 � 2�1 � 2�3
+

1

1 � 2�2 � 2�2

◆
,

q2 =
1

4

✓
1 � 1

1 � 2�1 � 2�2
+

1

1 � 2�1 � 2�3
� 1

1 � 2�2 � 2�2

◆
,

q3 =
1

4

✓
1 +

1

1 � 2�1 � 2�2
� 1

1 � 2�1 � 2�3
� 1

1 � 2�2 � 2�2

◆
.

(8.115)

The inverse map can be rewritten as

⇤�1(⇢̂) =
3X

↵=0

q↵�̂↵⇢̂�̂↵,

=
3X

↵=0

sgn(q↵)|q↵|�̂↵⇢̂�̂↵,

= �
3X

↵=0

S↵P↵�̂↵⇢̂�̂↵,

(8.116)

where

� =
3X

↵=0

|q↵|, S↵ = sgn(q↵), and P↵ =
|q↵|
�

. (8.117)
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Then, the mitigated result is given by

hMi = �
3X

↵=0

S↵P↵M↵, (8.118)

where M↵ is the outcome obtained from the measurement at the end of the circuit at whose beginning we
applied �̂↵.

The application of PEC mitigation works if one has an almost perfect knowledge of the noise. However, for
such a characterisation for N qubits, one needs to quantify 4N � 1 parameters, where 4 is the dimensions of the
single-qubit algebra and 1 degree of freedom is fixed as it corresponds to the map given by 1̂

⌦N whose associated
probability is given by the unity minus the sum of all the other probabilities. To be quantitative, for 2 qubits
one needs 15 parameters, for 10 qubits these become ⇠ 106, and for 50 qubits we have ⇠ 1030 parameters.
Therefore, it is an approach that requires too many classical processing to be used for a large number of qubits.
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