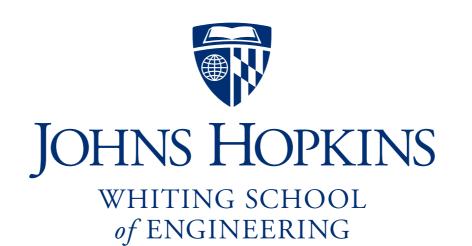
Ben Langmead



Department of Computer Science

Please sign guestbook (www.langmead-lab.org/teaching-materials) to tell me briefly how you are using the slides. For original Keynote files, email me (ben.langmead@gmail.com).

0.16
946
5581
8945
6145
8126
3887
8925
1246
8324
4549
9100
5598
8499
8970
3921
8575
4859
4960
42
6901
4336
9228
3317
399

3201

Cardinality: how many *distinct* values in a data stream?

5201
946
5581
8945
6145
8126
3887
8925
1246
8324
4549
9100
5598
8499
8970
3921
8575
4859
4960
42
6901
4336
9228
3317
399

3201

Strategies:

Quadratic scan, count

 $O(m^2)$ time for scan O(m) space for items

Sort, linear scan, count

 $O(m \log m)$ time for sort O(m) space for items

Strategies:

Direct-address the universe

Every universe item gets a slot in a bitvector initialized to all 0s

For each item, set corresponding bitvector item to 1. Count flips as we go.

O(|U|) bits of space

5201
946
5581
8945
6145
8126
3887
8925
1246
8324
4549
9100
5598
8499
8970
3921
8575
4859
4960
42
6901
4336
9228
3317
399

3201

Strategies:

Hash table

 $O(|\operatorname{distinct}(M)|)$ space

(If approximating, can use Bloom filter!)

I take cards labeled 1--1,000 and choose a random subset of size N to hide in my hat

You would like to estimate N

You may see **one representative** from the cards in the hat; which to pick?

35

831

792

Minimum, median, maximum? Something else?

What if **minimum** was 500? ...10? ... 4?

If minimum is 95, what's our estimate for N?

Informally: N points scattered randomly across interval divide it in N + 1 parts, each about $\frac{1000}{N + 1}$ long

 $95 \approx 1000/(N+1)$ $N+1 \approx 10.5$ $N \approx 9.5$

Minimum is very easy to calculate

Sampling	Sketching
Choose representatives randomly	Choose representatives deterministically
Sample statistics shed light on population statistics	Composable; unions are natural Can be designed not to miss extreme / informative items

Minimum is a *deterministic* choice made when sketching. Contrast with what we wold have learned from making a random choice.

With *minimum*, it doesn't matter whether input items are repeated

...contrast with sampling

91	
38	
46	
75	
82	
59	
78	
72	
98	
27	
77	
33	
86	
82	
2	
47	
31	
17	
69	
77	
18	
3	
3 22 2	
2	
54	

0

Let $M = \min(X_1, X_2, \dots, X_N)$, where each X_i is an independent uniform draw from the reals in [0, 1]

 X_i s model the hash values for the N items

Claim:
$$\mathbf{E}[M] = \frac{1}{N+1}$$

A hash with say 32-bit or 64-bit output can be thought of as outputting reals in [0, 1]

Say h_{64} is a 64-bit hash function;

$$\frac{h_{64}(x)}{2^{64}-1}$$

spreads outputs along [0, 1] with super fine resolution

Draws:
$$X_1 X_2 X_3 \cdots X_N$$

Min indicators: $I_1 I_2 I_3 \cdots I_N$
 $M = \min_{1 \le i \le N} X_i$

$$I_i = \begin{cases} 1 & \text{if } X_i < \min_{j \neq i} X_j \\ 0 & \text{otherwise} \end{cases}$$

Scenario 1

Scenario 2

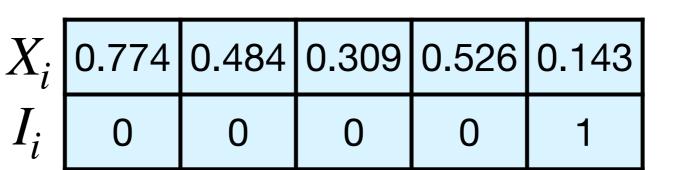
T7

X_i	0.455	0.220	0.951	0.236	0.979
I_i	0	1	0	0	0
X_i	0.968	0.234	0.835	0.642	0.349

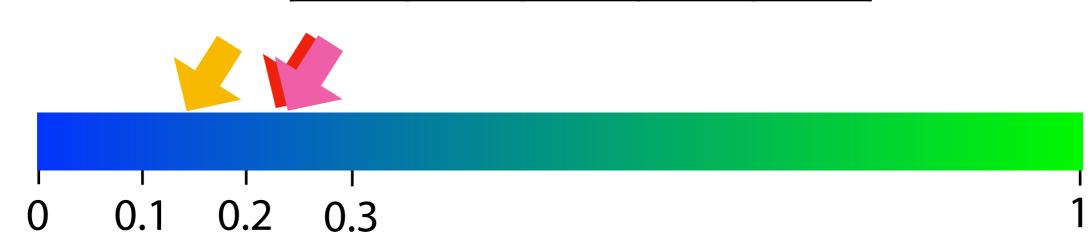
$$M = 0.220$$

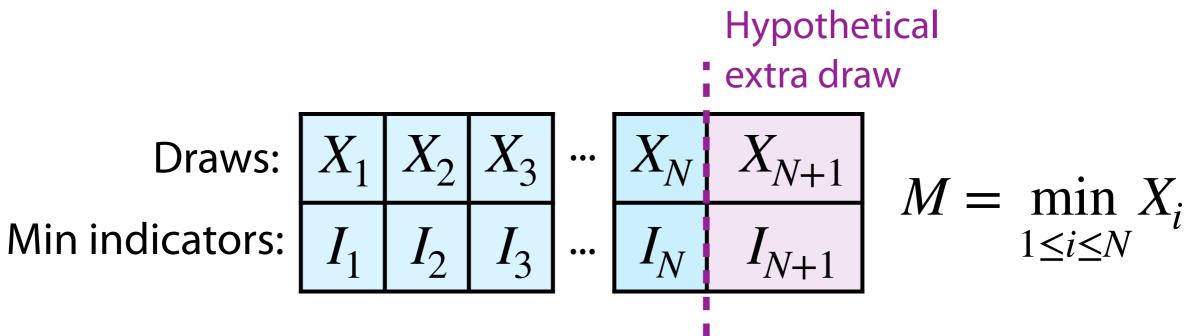
M = 0.234

Scenario 3



M = 0.143





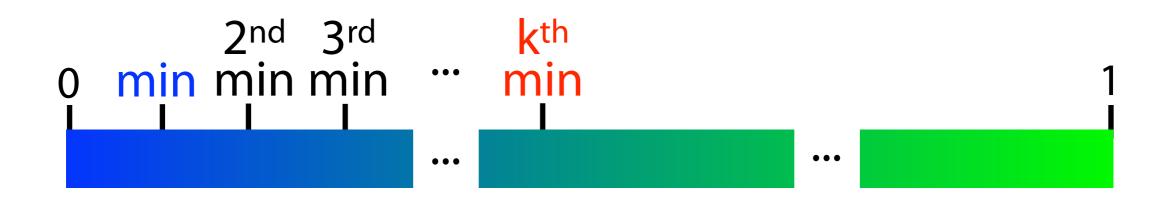
$$I_i = \begin{cases} 1 & \text{if } X_i < \min_{j \neq i} X_j \\ 0 & \text{otherwise} \end{cases}$$

By symmetry, for each *i*,
$$\mathbf{E}[I_i] = \frac{1}{N+1}$$

(Draws have equal chance of being minimum)

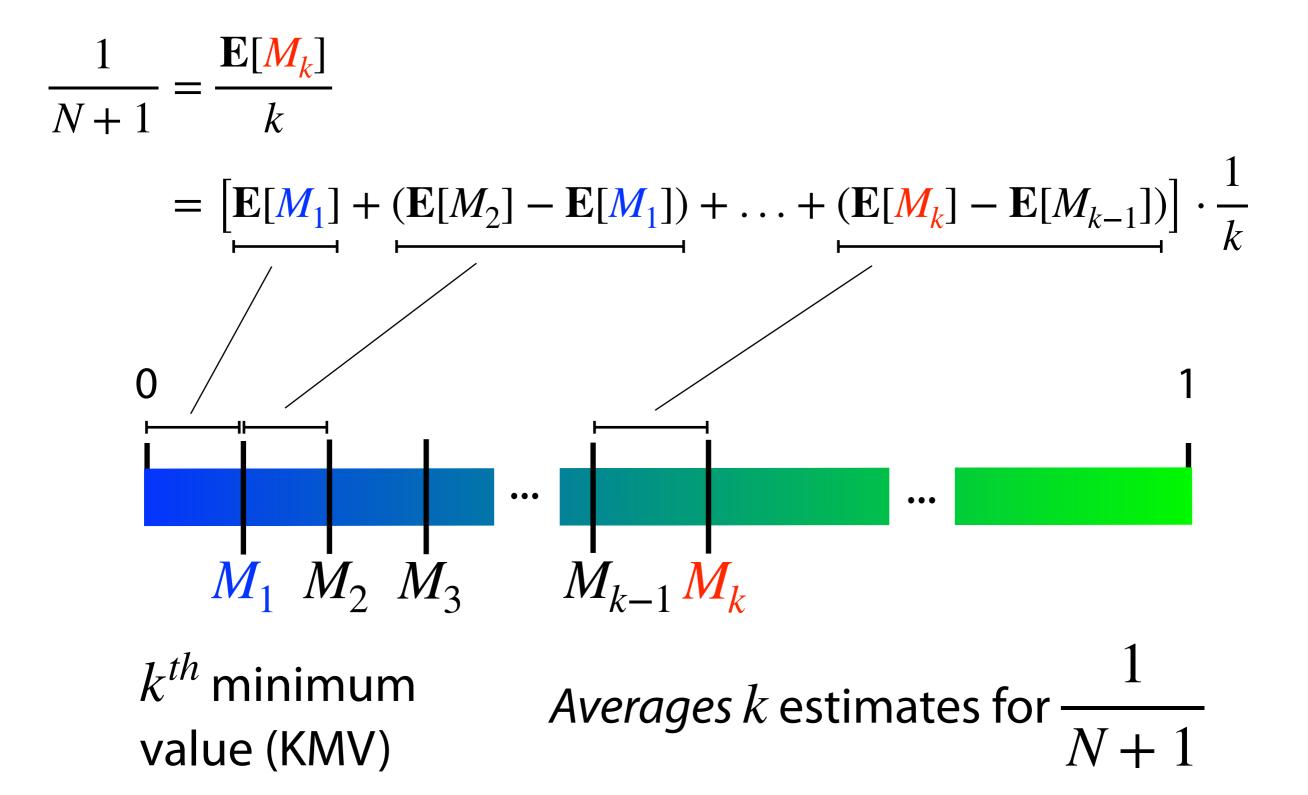
$$\frac{1}{N+1} = \mathbf{E}[I_{N+1}] = \Pr\left(X_{N+1} < \min_{1 \le i \le N} X_i\right) = \mathbf{E}[M]$$

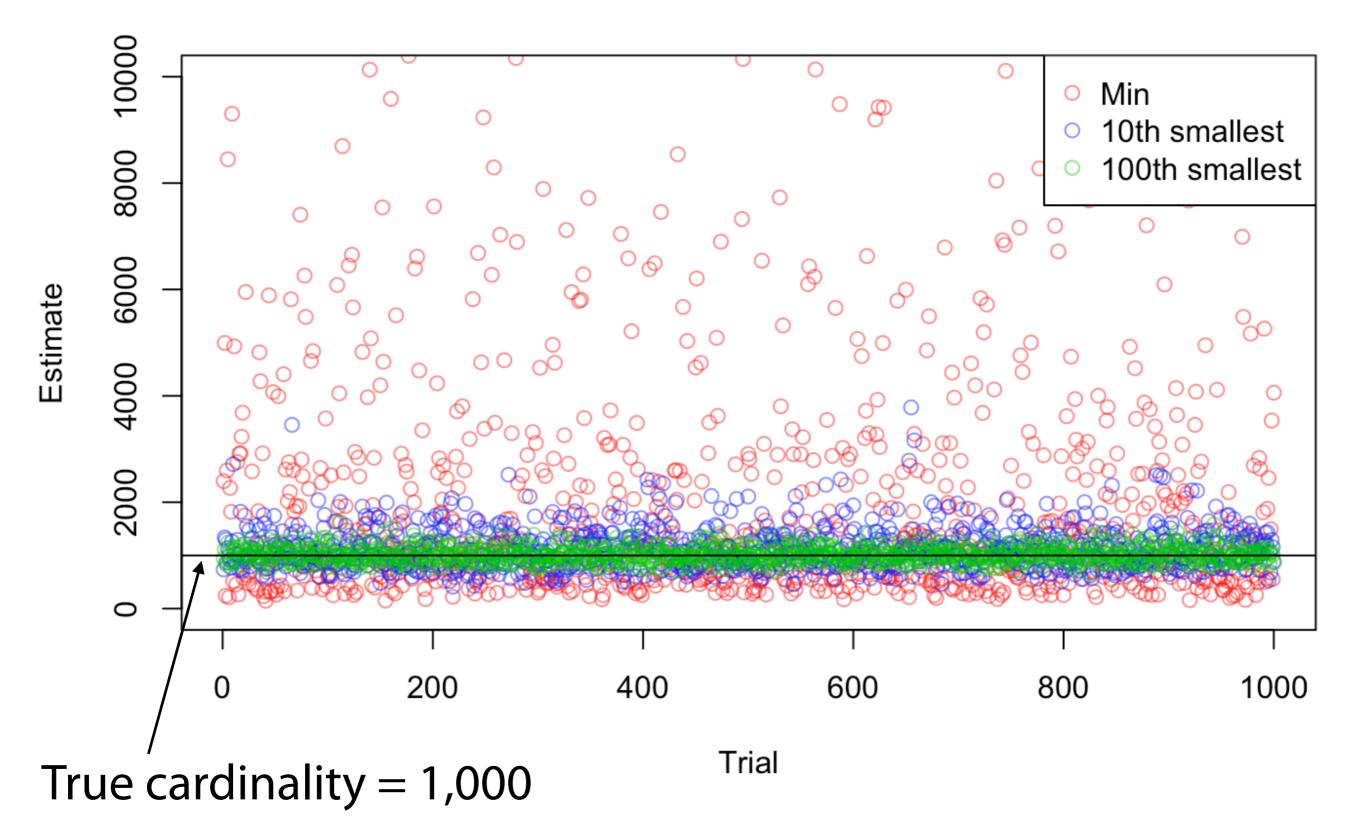
Can the k^{th} -smallest hash value estimate the cardinality better than the minimum?



Can the k^{th} -smallest hash value estimate the cardinality better than the minimum?

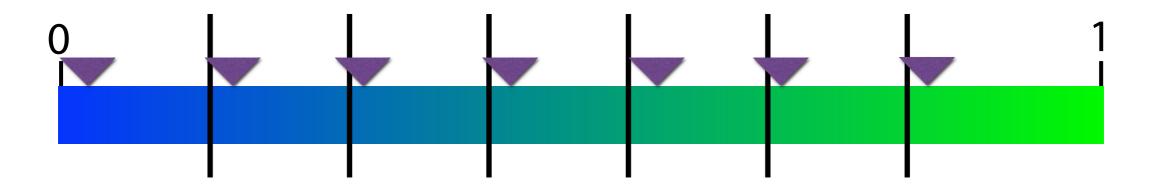
$$\mathbf{E}[M_{1}] = \frac{1}{N+1} \qquad \mathbf{E}[M_{k}] = \frac{k}{N+1}$$



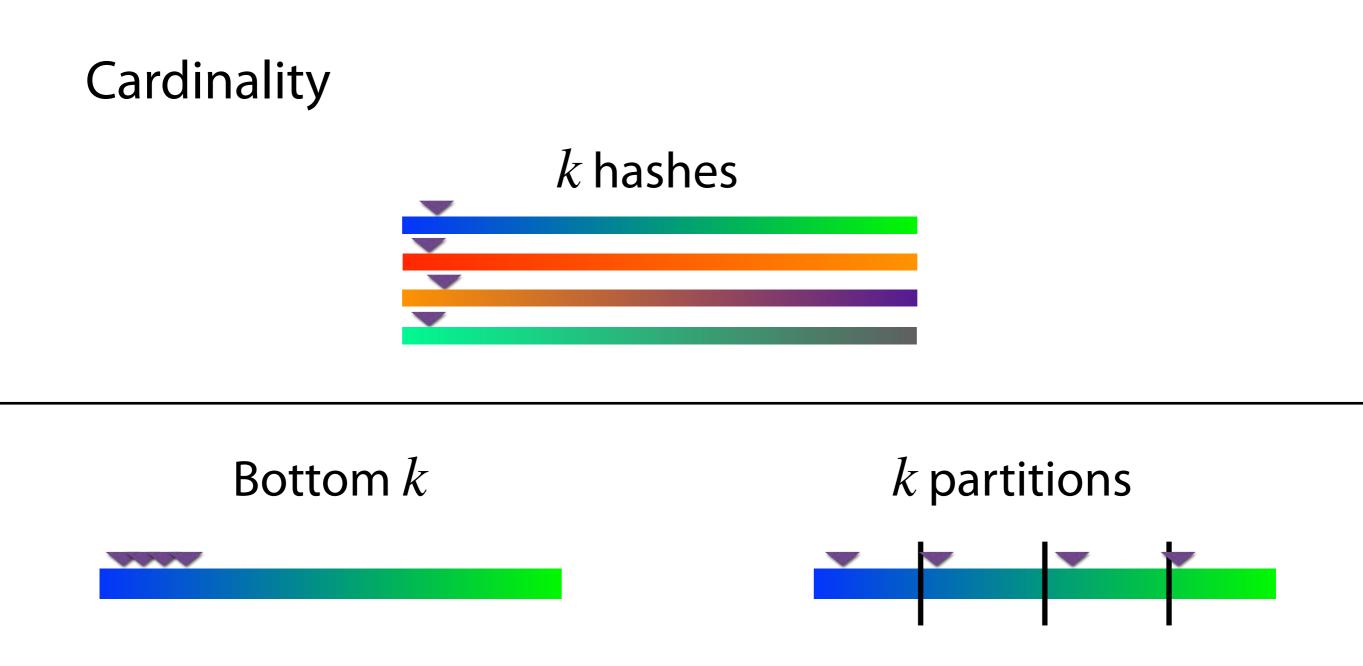


Tracking up to *k* minima squeezes more estimating power from a single hash function

Alternatively, we can partition the range of the function k ways and find a minimum in each



Or: use k hash functions, each giving a new ordering. Find minimum hash value using each.



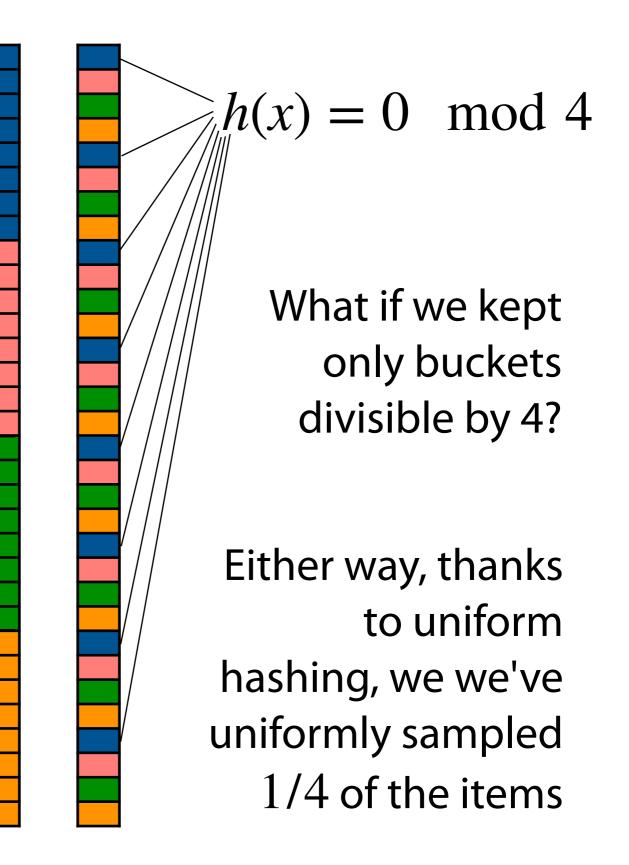
All benefit from averaging. Bottom-*k* and *k*-partitions need just 1 hash function, sacrificing a little accuracy & resolution.

With a full hash table, we can simply store the set.

What if we only stored items in a *partition* of the table?

$$\frac{n}{2} \le h(x) < \frac{3n}{4}$$

Where *n* is the range of the hash function



 k^{th} -minimum-value (KMV) is a strategy for estimating the cardinality of a set

Keeping minimal hash values is also a *sketching* strategy, enabling similarity comparisons later

to be or not to be that is the question whether tis nobler in the mind to suffer the slings...

 $h(x) \begin{array}{l} \{70, 112, \\ 332, 398 \} \end{array}$

