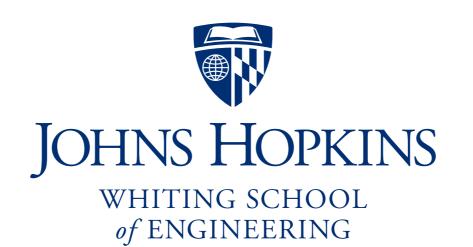
# CountMin sketch

**Ben Langmead** 



**Department of Computer Science** 



Please sign guestbook (www.langmead-lab.org/teaching-materials) to tell me briefly how you are using the slides. For original Keynote files, email me (ben.langmead@gmail.com).

#### Counting

Input is a "stream" of items  $\{a_1, a_2, \ldots, a_m\}$ , each from universe of size *n*.

Number of times a value x appears is its "count" or "frequency"  $f_x$ 

Stream of zip-code digits: 2, 1, 2, 1, 8, 2, 6, 8, 2

$$m = 9$$
  
 $n = | \{0, 1, ..., 9\} | = 10$   
 $f_1 = 2$   $f_2 = 4$ 

#### Aside on notation

Defining variables like *n*, *m*, *N*, *M*, and having to specify "distinct" versus not, can get tiresome

An alternative is to pick a variable for the input data stream, say **a** 

Then use double bars to express "moments"

$$\|\mathbf{a}\|_{1} = \sum_{x \in distinct(\mathbf{a})} f_{x} \qquad \|\mathbf{a}\|_{0} = \sum_{x \in distinct(\mathbf{a})} (f_{x})^{0}$$
  
# items in stream # distinct items in stream

#### Aside on notation

We can also consider higher moments like 2:

$$\| \mathbf{a} \|_{2} = \sum_{x \in distinct(\mathbf{a})} (f_{x})^{2}$$

Or, more generally, *k*:

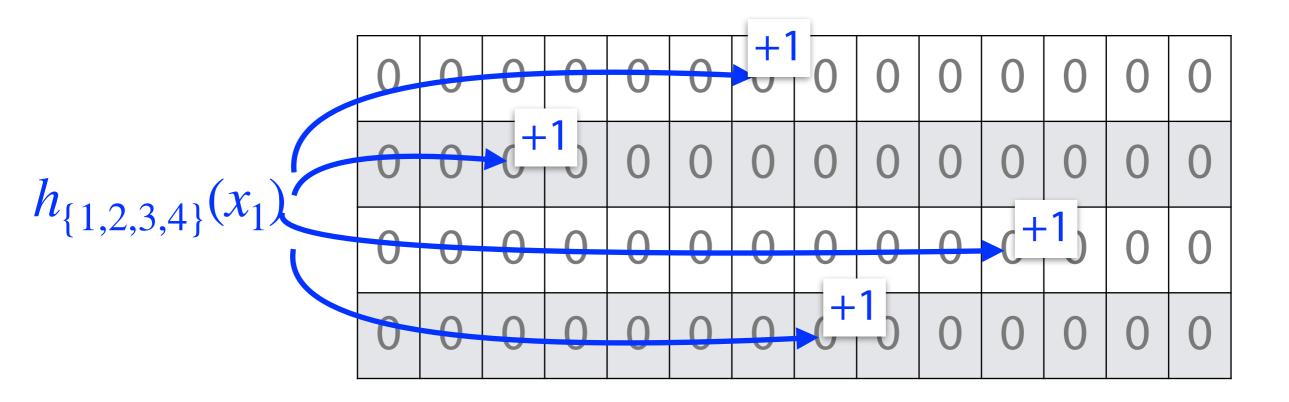
$$\| \mathbf{a} \|_{k} = \sum_{x \in distinct(\mathbf{a})} (f_{x})^{k}$$

Today we're concerned with  $f_{\chi}$ , not its powers

#### Matrix of counters, all initially 0

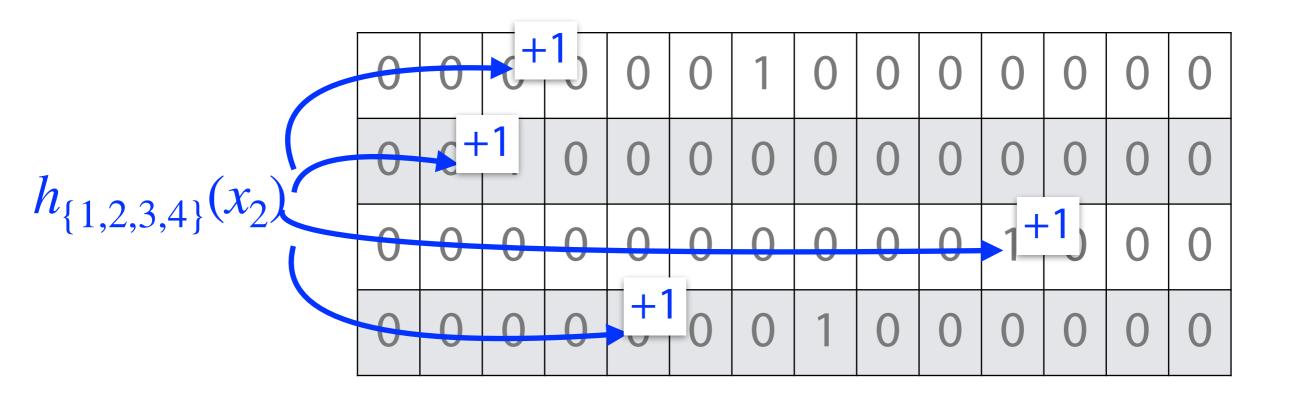
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

#### Insert:



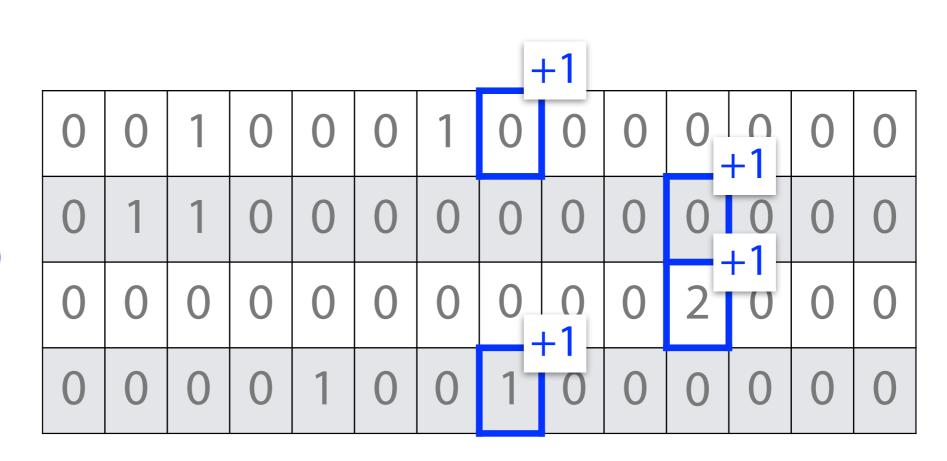
| 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |

#### Insert:



| 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |

Insert:



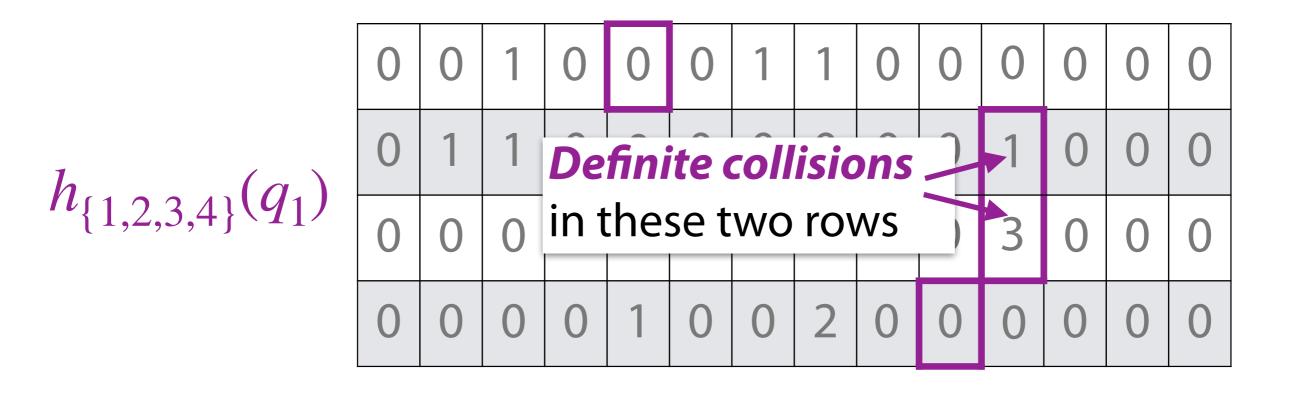
$$h_{\{1,2,3,4\}}(x_3)$$

| 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |

#### Point query:

What should the estimate  $\tilde{f}_x$  be? **()** 

#### Point query:

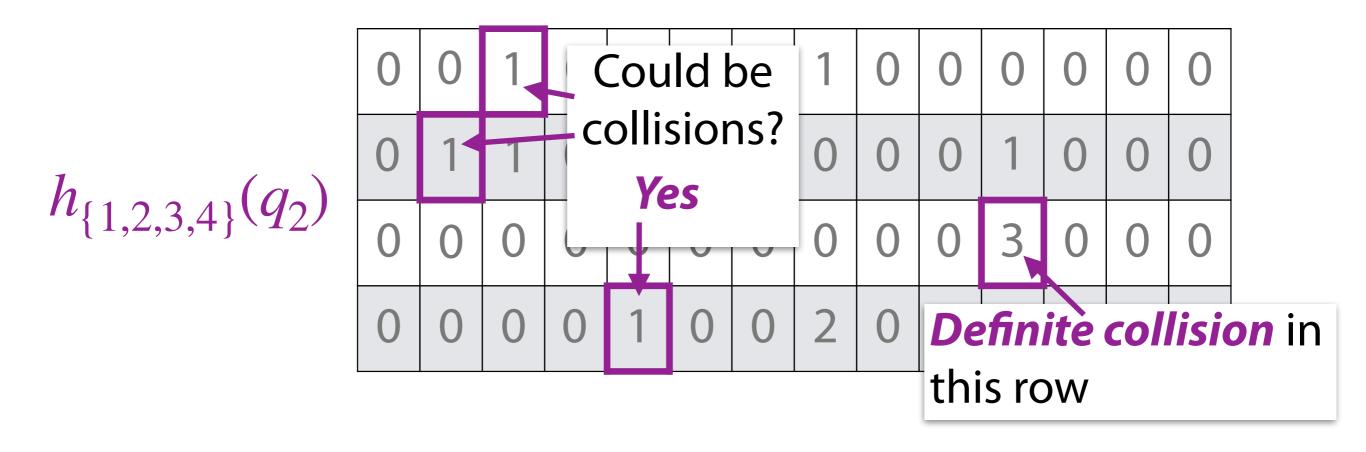


#### How much is due to collisions?

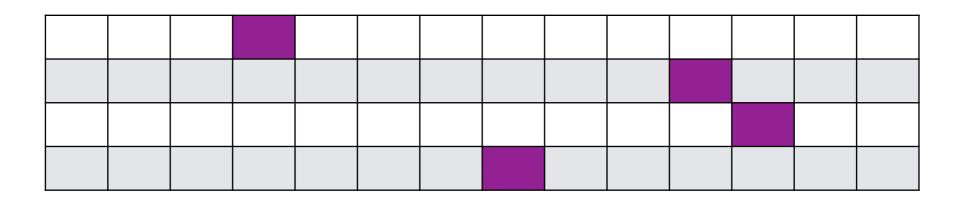
#### Point query:

What should the estimate  $\tilde{f}_x$  be? 1

#### Point query:



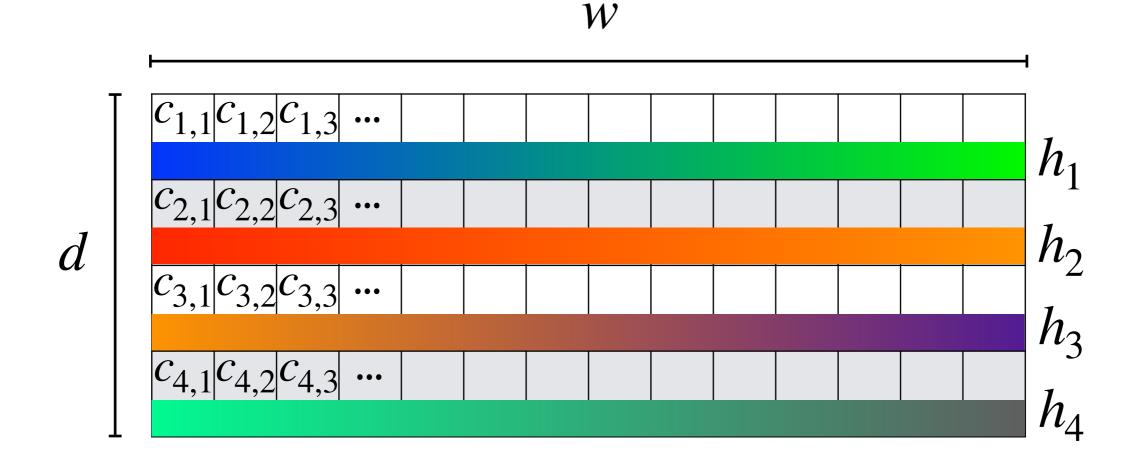
How much is due to collisions?



Query for item x returns **minimum** of the selected elements; call this estimate  $\tilde{f}_x$ 

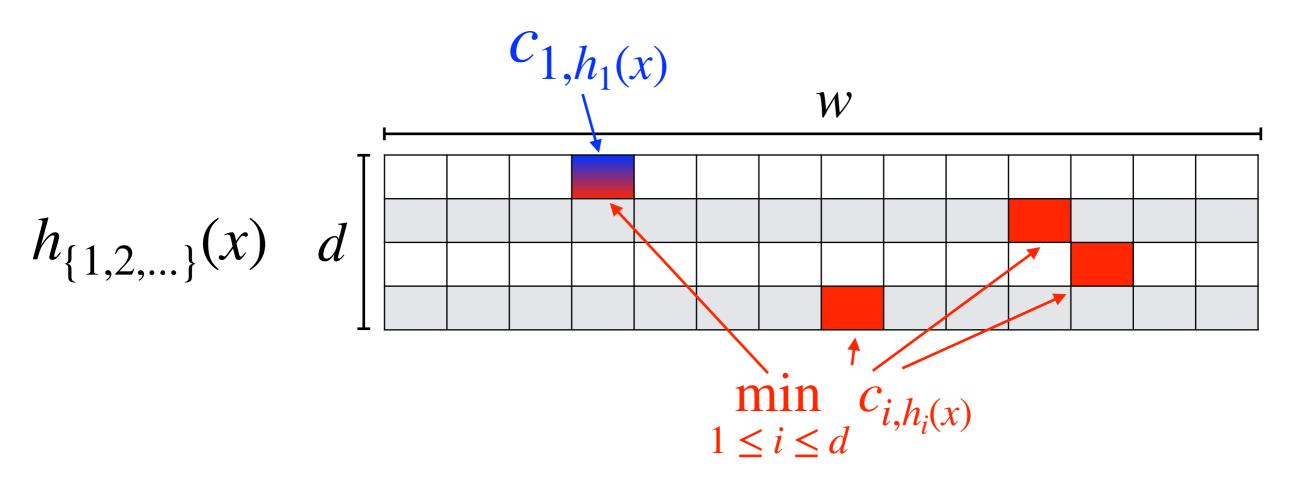
Collisions can make us overestimate  $f_{\chi}$ , but not underestimate; i.e.  $\tilde{f}_{\chi} \ge f_{\chi}$ 

Can we argue  $\tilde{f}_x$  is **probably not too far** from  $f_x$ ?



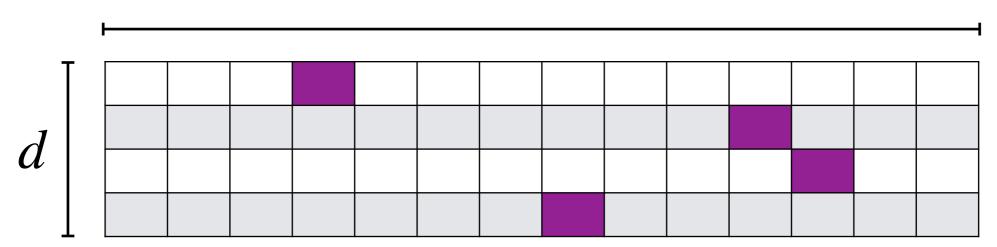
We use functions  $h_1, h_2, \ldots, h_d$  drawn from family H, each ranging over  $\{1, 2, \ldots, w\}$ 

Let  $c_{i,j}$  be the number of items x such that  $h_i(x) = j$ 



What's the relationship between:  $f_x c_{1,h_1(x)} \min_{1 \le i \le d} c_{i,h_i(x)}$ 

$$f_x \leq \min_{1 \leq i \leq d} c_{i,h_i(x)} \leq c_{1,h_1(x)}$$



Recall m = # of items in stream Claim: if  $w = 2/\epsilon$  and  $d = \log_2 \delta^{-1}$ , then  $\Pr\left(\tilde{f}_x \le f_x + \epsilon m\right) \ge 1 - \delta$  $\tilde{f}_x$  is **probably not too far** from  $f_x$ 

W

Pick item *x* and define r.v.s  $\{Z_1, Z_2, \ldots, Z_d\}$ such that  $Z_i = c_{i,h_i(x)} - f_x$ 

 $Z_i$  is the amount we over-counted in row i due to collisions

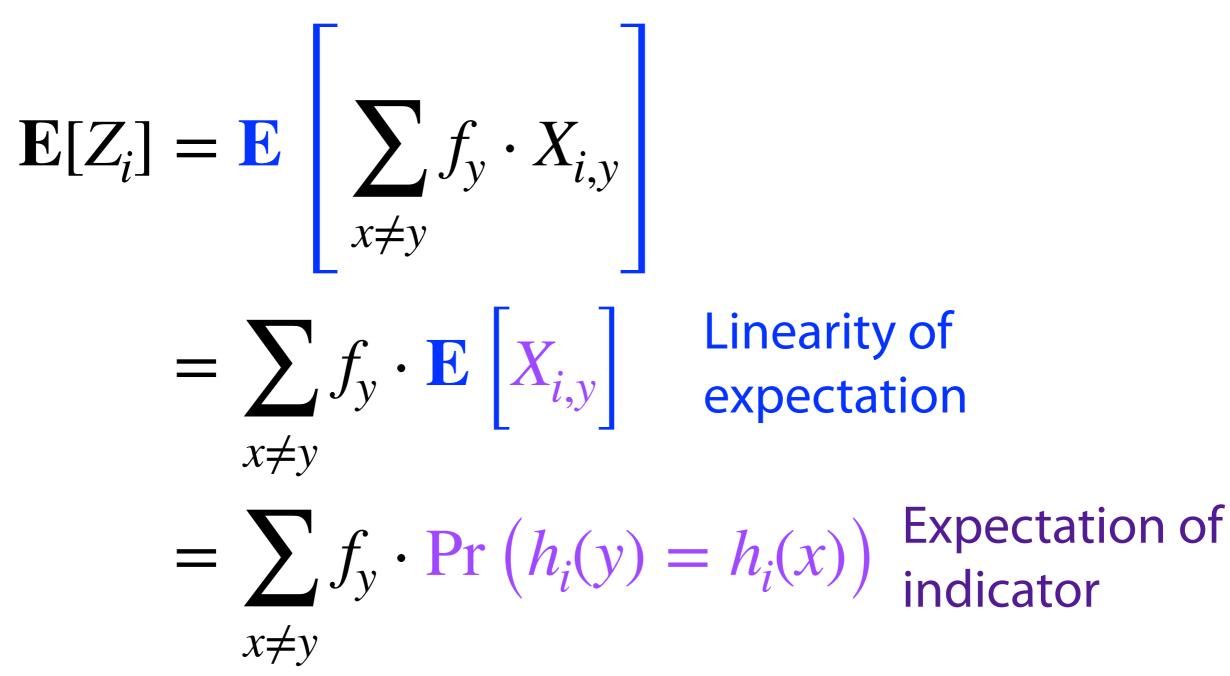
Argument modeled on Andrew McGregor's notes at https://people.cs.umass.edu/~mcgregor/711S18/vectors-3.pdf

For  $i \in \{1, 2, \ldots, d\}$ ,  $y \in \{\text{distinct items}\} \setminus \{x\}$ 

$$X_{i,y} = \begin{cases} 1 & \text{if } h_i(y) = h_i(x) \\ 0 & \text{otherwise} \end{cases}$$

Recall:  $Z_i$  is the amount we over-counted in row *i* due to collisions

$$Z_i = \sum_{\substack{y \neq x}} \left( f_y \cdot X_{i,y} \right)$$



What would we like to use next? **2-universality** 

Further assume that family H from which  $h_i$ 's were drawn is 2-universal

$$\sum_{x \neq y} f_y \cdot \Pr\left(h_i(y) = h_i(x)\right) \le \sum_{x \neq y} f_y \cdot \frac{1}{w}$$
 2-universality  
$$\le \frac{m}{w}$$

Expected per-row excess  $\mathbf{E}[Z_i]$  is at most m/w

 $Z_i$  is a non-negative r.v., so:

$$\Pr\left(Z_i \ge a\right) \le \frac{\mathbb{E}[Z_i]}{a} \qquad \begin{array}{l} \text{Markov} \\ \text{inequality} \end{array}$$

Let 
$$b = \frac{a}{\mathbf{E}[Z_i]}$$
  
 $\Pr\left(Z_i \ge b \cdot \mathbf{E}[Z_i]\right) \le \frac{1}{b}$ 

$$\Pr\left(Z_i \ge b \cdot \mathbf{E}[Z_i]\right) \le \frac{1}{b}$$

Combine with 
$$\mathbf{E}[Z_i] \leq \frac{m}{w}$$
:

$$\Pr\left(Z_i \ge \frac{bm}{w}\right) \le \Pr\left(Z_i \ge b \cdot \mathbf{E}[Z_i]\right) \le \frac{1}{b}$$
Continue with these

$$\Pr\left(Z_i \ge \frac{bm}{w}\right) \le \frac{1}{b}$$

Let b = we (# columns times error tolerance):

$$\Pr\left(Z_i \ge \epsilon m\right) \le \frac{1}{w\epsilon}$$

Let  $w = 2/\epsilon$  (# columns from our Claim):

$$\Pr\left(Z_i \ge \epsilon m\right) \le \frac{1}{2}$$

When  $w = 2/\epsilon$ , probability that "bad thing" happens is at most 1/2

$$\Pr\left(Z_i \ge \epsilon m\right) = \Pr\left(f_x + Z_i \ge f_x + \epsilon m\right) \le \frac{1}{2}$$

We want an upper bound of  $\delta$ ,  $\delta$  being small

So: Repeat (across rows) and take minimum

$$\Pr\left(Z_i \ge \epsilon m\right) \le \frac{1}{2}$$
$$\Pr\left(\forall_{1 \le i \le d} \ Z_i \ge \epsilon m\right) \le \left(\frac{1}{2}\right)^d$$

Independence of uniform & independently chosen hashes

Recall we set  $d = \log_2 \delta^{-1}$ 

$$\left(\frac{1}{2}\right)^d = 2^{-\log_2 \delta^{-1}} = 2^{\log_2 \delta} = \delta$$

$$\Pr\left(\forall_{1 \le i \le d} \ Z_i \ge \epsilon m\right) \le \delta$$

$$\Pr(\forall_{1 \le i \le d} \ Z_i \ge \epsilon m) \le \delta$$

$$\Pr(\exists_{1 \le i \le d} \ Z_i < \epsilon m) \ge 1 - \delta$$

$$\Pr(\exists_{1 \le i \le d} \ Z_i < \epsilon m) \ge 1 - \delta$$

$$\Pr(\forall_{1 \le i \le d} \ Z_i < \epsilon m) \ge 1 - \delta$$

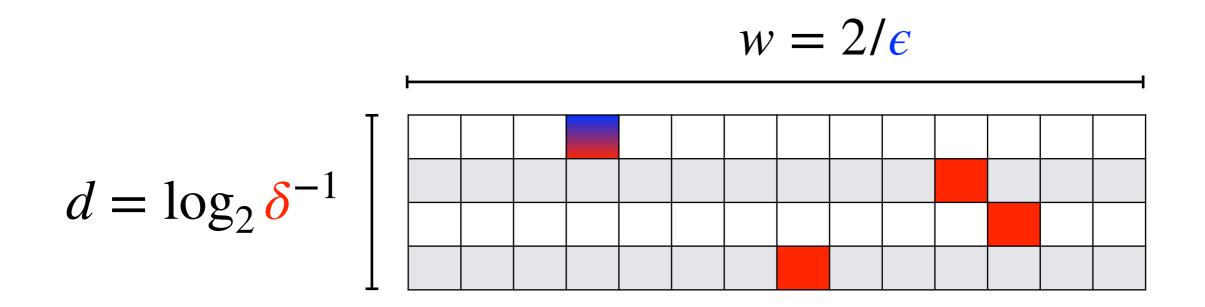
$$\Pr(\forall_{1 \le i \le d} \ Z_i < \epsilon m) \ge 1 - \delta$$

To get the good thing, take the minimum

Claim is proved:

$$\begin{split} \tilde{f}_x &= \min(c_{1,h_1(x)}, c_{2,h_2(x)}, \dots, c_{d,h_d(x)}) \\ &= \min(f_x + Z_1, f_x + Z_2, \dots, f_x + Z_d) \leq f_x + \epsilon m \\ & \text{With probability } 1 - \delta \end{split}$$

$$ilde{f}_x$$
 is **probably not too far** from  $f_x$ 



# To achieve this, sketch must contain $O(\epsilon^{-1}\log\delta^{-1}) \text{ counters}$

| $\epsilon$ | $\delta$ | $\lceil (2/\epsilon) \rceil \cdot \lceil \log_2 \delta^{-1} \rceil$ |
|------------|----------|---------------------------------------------------------------------|
| 10%        | 0.1      | 80                                                                  |
| 1%         | 0.01     | 1,400                                                               |
| 0.1%       | 0.001    | 20,000                                                              |
| 0.0001%    | 0.01     | 1,400,000                                                           |

Remember that  $\epsilon$  multiplies m, and a counter requires many (maybe 32 or 64) bits

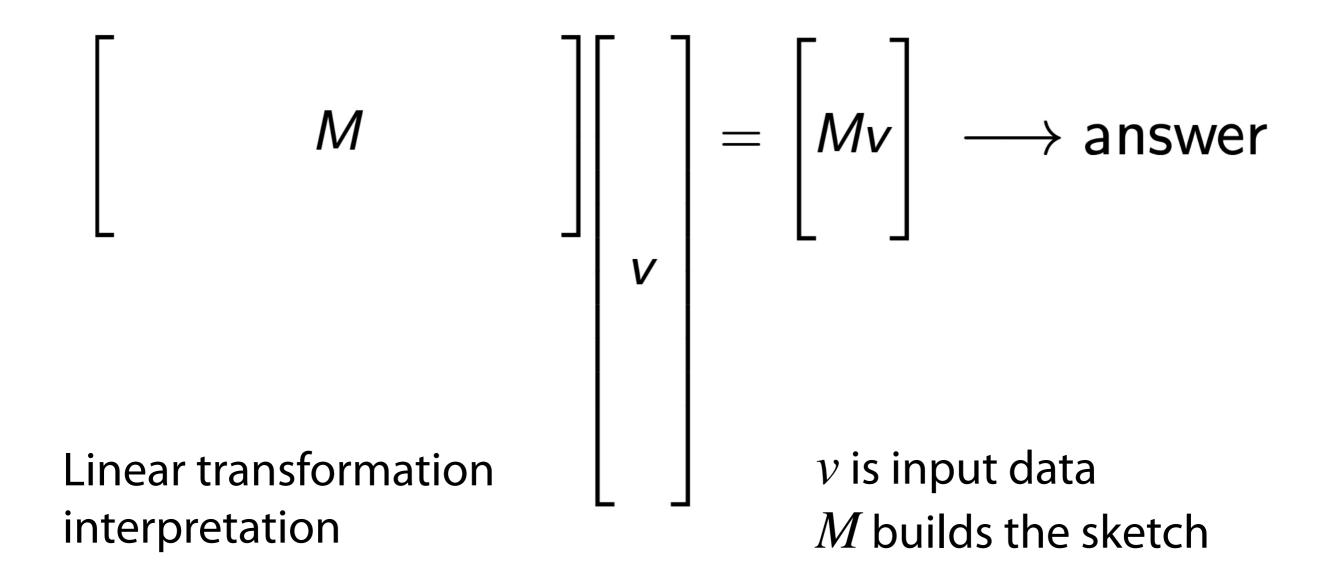
A common use of CountMin is to find *heavy hitters* 

Items with frequency over a threshold

|   |    | <mark></mark> +1 |    |    |    |    |    |    |          |    |         |          |    |    |  |
|---|----|------------------|----|----|----|----|----|----|----------|----|---------|----------|----|----|--|
|   | 10 | 5                | 17 | 17 | 17 | 1  | 8  | 20 | 18       | 14 | •<br>+1 | 5        | 20 | 13 |  |
| ) | 15 | 4                | 4  | 19 | 20 | 0  | 8  | 17 | 15       | 19 | 4       | ວດ<br>+1 | 16 | 12 |  |
|   | 18 | 14               | 9  | 10 | 10 | 15 | 10 | 9  | 16<br>+1 | 4  | 10      | 18       | 20 | 10 |  |
|   | 13 | 3                | 6  | 18 | 8  | 19 | 1  | 15 | 11       | 1  | 8       | 8        | 18 | 3  |  |

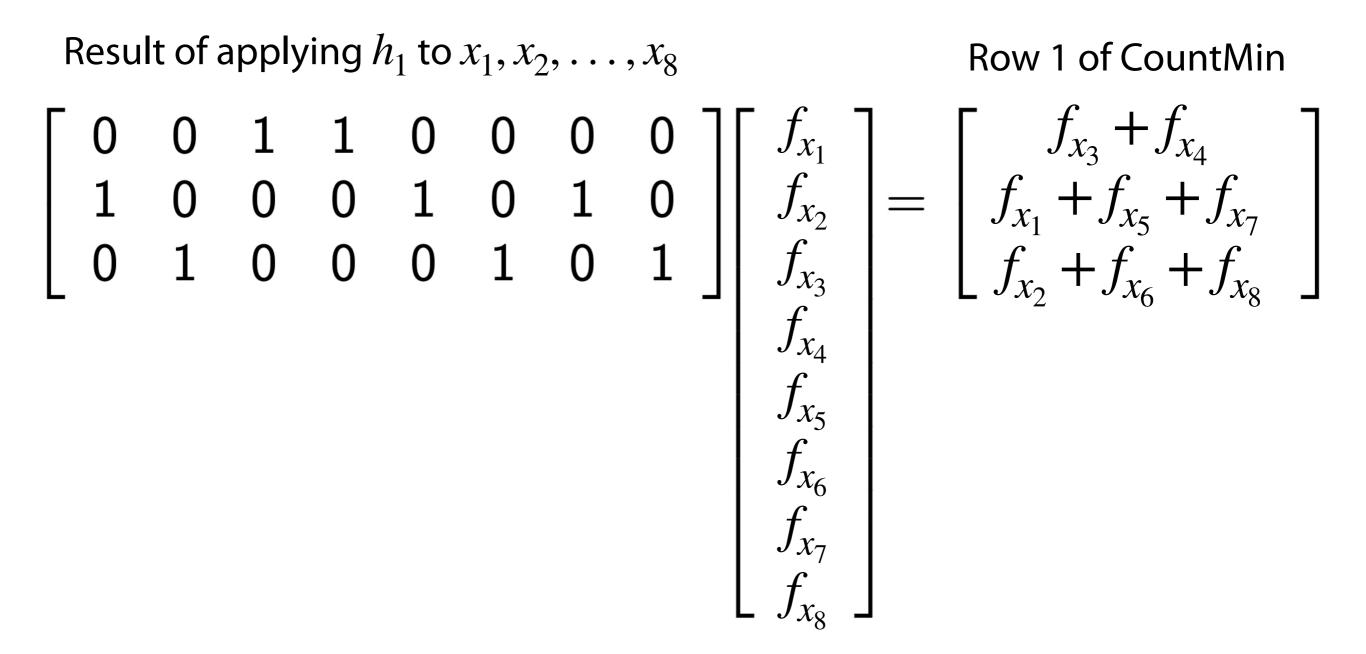
$$h_{\{1,2,3,4\}}(x)$$

While adding items, maintain data structure containing items with point query result over the threshold



Adapted from Andrew McGregor:

https://people.cs.umass.edu/~mcgregor/stocworkshop/mcgregor.pdf



Adapted from Andrew McGregor:

https://people.cs.umass.edu/~mcgregor/stocworkshop/mcgregor.pdf