
CountMin sketch
Ben Langmead

Department of Computer Science

Please sign guestbook (www.langmead-lab.org/teaching-materials)
to tell me briefly how you are using the slides. For original Keynote
files, email me (ben.langmead@gmail.com).

http://www.langmead-lab.org/teaching-materials
mailto:ben.langmead@gmail.com

Counting

Input is a "stream" of items , each
from universe of size .

Number of times a value appears is its "count" or
"frequency"

{a1, a2, . . . , am}
n

x
fx

Stream of zip-code digits: 2, 1, 2, 1, 8, 2, 6, 8, 2

 = 9m
 = n |{0,1,...,9} | = 10

f1 = 2 f2 = 4

Aside on notation

Defining variables like , and having to
specify "distinct" versus not, can get tiresome

n, m, N, M

An alternative is to pick a variable for the input
data stream, say a

Then use double bars to express "moments"

a 1 = ∑
x ∈ distinct(a)

fx a 0 = ∑
x ∈ distinct(a)

(fx)0

items in stream # distinct items in stream

Aside on notation

We can also consider higher moments like 2:

a 2 = ∑
x ∈ distinct(a)

(fx)2

a k = ∑
x ∈ distinct(a)

(fx)k

Or, more generally, :k

Today we're concerned with , not its powersfx

CountMin

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

Matrix of counters, all initially 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

h{1,2,3,4}(x1)

+1

+1

+1

+1

CountMin

Insert:

0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0

CountMin

0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0

h{1,2,3,4}(x2)

+1

+1

+1

+1

Insert:

CountMin

0 0 1 0 0 0 1 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 0 0 0

0 0 0 0 1 0 0 1 0 0 0 0 0 0

CountMin

0 0 1 0 0 0 1 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 0 0 0

0 0 0 0 1 0 0 1 0 0 0 0 0 0

h{1,2,3,4}(x3)

+1

+1

+1

+1

CountMin

Insert:

0 0 1 0 0 0 1 1 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 3 0 0 0

0 0 0 0 1 0 0 2 0 0 0 0 0 0

CountMin

0 0 1 0 0 0 1 1 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 3 0 0 0

0 0 0 0 1 0 0 2 0 0 0 0 0 0

CountMin

Point query:

h{1,2,3,4}(q1)

What should the estimate be? f̃x 0

0 0 1 0 0 0 1 1 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 3 0 0 0

0 0 0 0 1 0 0 2 0 0 0 0 0 0

CountMin

Point query:

h{1,2,3,4}(q1)

How much is due to collisions?

Definite collisions
in these two rows

0 0 1 0 0 0 1 1 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 3 0 0 0

0 0 0 0 1 0 0 2 0 0 0 0 0 0

CountMin

Point query:

h{1,2,3,4}(q2)

What should the estimate be? f̃x 1

0 0 1 0 0 0 1 1 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 3 0 0 0

0 0 0 0 1 0 0 2 0 0 0 0 0 0

CountMin

Point query:

h{1,2,3,4}(q2)

Definite collision in
this row

Could be
collisions?

Yes

How much is due to collisions?

CountMin

Query for item returns minimum of the
selected elements; call this estimate

x
f̃x

Collisions can make us overestimate , but not
underestimate; i.e.

fx
f̃x ≥ fx

Can we argue is probably not too far from ?f̃x fx

CountMin

d

w

We use functions drawn from family
, each ranging over

h1, h2, . . . , hd
H {1, 2, . . . , w}

Let be the number of items such that ci,j x hi(x) = j

h1

h2

h3

h4

c1,1c1,2

c2,1c2,2

c3,1c3,2

c1,3

c2,3

c3,3

...

...

...

c4,1c4,2c4,3 ...

CountMin

d

w

What's the relationship between:

c1,h1(x)

fx

h{1,2,...}(x)

min
1 ≤ i ≤ d

ci,hi(x)

c1,h1(x) min
1 ≤ i ≤ d

ci,hi(x)

≤ ≤fx min
1 ≤ i ≤ d

ci,hi(x) c1,h1(x)

CountMin

d

w

Claim: if and , thenw = 2/ϵ d = log2 δ−1

Recall = # of items in streamm

Pr (f̃x ≤ fx + ϵm) ≥ 1 − δ

 is probably not too far from f̃x fx

CountMin

Pick item and define r.v.s
such that

x {Z1, Z2, . . . , Zd}
Zi = ci,hi(x) − fx

 is the amount we over-counted in
row due to collisions
Zi

i

Argument modeled on Andrew McGregor's notes at
https://people.cs.umass.edu/~mcgregor/711S18/vectors-3.pdf

https://people.cs.umass.edu/~mcgregor/711S18/vectors-3.pdf

CountMin

Xi,y = {1 if hi(y) = hi(x)
0 otherwise

Zi = ∑
y≠x

(fy ⋅ Xi,y)

Recall: is the amount we over-counted
in row due to collisions

Zi
i

For , \ i ∈ {1, 2, . . . , d} y ∈ {distinct items} {x}

CountMin

E[Zi] = E ∑
x≠y

fy ⋅ Xi,y

= ∑
x≠y

fy ⋅ E [Xi,y]
= ∑

x≠y

fy ⋅ Pr (hi(y) = hi(x))

Linearity of
expectation

What would we like to use next? 2-universality

Expectation of
indicator

CountMin

Further assume that family from which 's
were drawn is 2-universal

H hi

∑
x≠y

fy ⋅ Pr (hi(y) = hi(x)) ≤ ∑
x≠y

fy ⋅
1
w

≤
m
w

2-universality

Expected per-row excess is at most E[Zi] m/w

CountMin

 is a non-negative r.v., so:Zi

Pr (Zi ≥ a) ≤
E[Zi]

a

Let b =
a

E[Zi]

Markov
inequality

Pr (Zi ≥ b ⋅ E[Zi]) ≤
1
b

CountMin

Combine with :E[Zi] ≤
m
w

Pr (Zi ≥
bm
w) ≤ Pr (Zi ≥ b ⋅ E[Zi]) ≤

1
b

Pr (Zi ≥ b ⋅ E[Zi]) ≤
1
b

Continue with these

CountMin

Pr (Zi ≥
bm
w) ≤

1
b

Let (# columns times error tolerance):b = wϵ

Pr (Zi ≥ ϵm) ≤
1

wϵ

Let (# columns from our Claim):w = 2/ϵ

Pr (Zi ≥ ϵm) ≤
1
2

CountMin

When , probability that "bad thing"
happens is at most 1/2

w = 2/ϵ

Pr (Zi ≥ ϵm) = Pr (fx + Zi ≥ fx + ϵm) ≤
1
2

We want an upper bound of , being smallδ δ

So: Repeat (across rows) and take minimum

CountMin

Pr (Zi ≥ ϵm) ≤
1
2

Pr (∀1 ≤ i ≤ d Zi ≥ ϵm) ≤ (1
2)

d
Independence
of uniform &
independently
chosen hashes

Recall we set d = log2 δ−1

(1
2)

d

= 2−log2 δ−1 = 2log2 δ = δ

CountMin

Pr (∀1 ≤ i ≤ d Zi ≥ ϵm) ≤ δ

Pr (∃1 ≤ i ≤ d Zi < ϵm) ≥ 1 − δ

Probability of the
bad thing is ≤ δ

complement

Prob. of good
thing is ≥ 1 − δ

To get the good thing,
take the minimum

CountMin

Claim is proved:

f̃x = min(c1,h1(x), c2,h2(x), . . . , cd,hd(x))
= min(fx + Z1, fx + Z2, . . . , fx + Zd) ≤ fx + ϵm

With probability 1 − δ ✅

 is probably not too far from f̃x fx

CountMin

d = log2 δ−1

w = 2/ϵ

To achieve this, sketch must contain
countersO(ϵ−1 log δ−1)

CountMin

10% 0.1 80

1% 0.01 1,400

0.1% 0.001 20,000

0.0001% 0.01 1,400,000

ϵ δ ⌈(2/ϵ)⌉ ⋅ ⌈log2 δ−1⌉

Remember that multiplies , and a counter
requires many (maybe 32 or 64) bits

ϵ m

10 5 17 17 17 1 8 20 18 14 8 5 20 13

15 4 4 19 20 0 8 17 15 19 4 20 16 12

18 14 9 10 10 15 10 9 16 4 10 18 20 10

13 3 6 18 8 19 1 15 11 1 8 8 18 3

h{1,2,3,4}(x)

+1

+1

+1

+1

CountMin

A common use of CountMin is to find heavy hitters

Items with frequency over a threshold

While adding items, maintain data structure containing
items with point query result over the threshold

CountMin

Linear transformation
interpretation

 is input data
 builds the sketch

v
M

Adapted from Andrew McGregor:
https://people.cs.umass.edu/~mcgregor/stocworkshop/mcgregor.pdf

https://people.cs.umass.edu/~mcgregor/stocworkshop/mcgregor.pdf

CountMin

Adapted from Andrew McGregor:
https://people.cs.umass.edu/~mcgregor/stocworkshop/mcgregor.pdf

Row 1 of CountMinResult of applying to h1 x1, x2, . . . , x8

fx3
+ fx4

fx1
+ fx5

+ fx7

fx2
+ fx6

+ fx8

fx1

fx2

fx3

fx4

fx5

fx6

fx7

fx8

https://people.cs.umass.edu/~mcgregor/stocworkshop/mcgregor.pdf

