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Counting

Input is a "stream" of items , each 
from universe of size . 

Number of times a value  appears is its "count" or 
"frequency" 

{a1, a2, . . . , am}
n

x
fx

Stream of zip-code digits:  2, 1, 2, 1, 8, 2, 6, 8, 2

 = 9m
 = n |{0,1,...,9} | = 10

f1 = 2 f2 = 4



Aside on notation

Defining variables like , and having to 
specify "distinct" versus not, can get tiresome

n, m, N, M

An alternative is to pick a variable for the input 
data stream, say a

Then use double bars to express "moments"

a 1 = ∑
x ∈ distinct(a)

fx a 0 = ∑
x ∈ distinct(a)

(fx)0

# items in stream # distinct items in stream



Aside on notation

We can also consider higher moments like 2:

a 2 = ∑
x ∈ distinct(a)

( fx )2

a k = ∑
x ∈ distinct(a)

( fx )k

Or, more generally, :k

Today we're concerned with , not its powersfx
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0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

Matrix of counters, all initially 0



0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

h{1,2,3,4}(x1)

+1

+1

+1

+1

CountMin

Insert:



0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0

CountMin



0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0

h{1,2,3,4}(x2)

+1

+1

+1

+1

Insert:

CountMin



0 0 1 0 0 0 1 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 0 0 0

0 0 0 0 1 0 0 1 0 0 0 0 0 0

CountMin



0 0 1 0 0 0 1 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 0 0 0

0 0 0 0 1 0 0 1 0 0 0 0 0 0

h{1,2,3,4}(x3)

+1

+1

+1

+1

CountMin

Insert:



0 0 1 0 0 0 1 1 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 3 0 0 0

0 0 0 0 1 0 0 2 0 0 0 0 0 0

CountMin



0 0 1 0 0 0 1 1 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 3 0 0 0

0 0 0 0 1 0 0 2 0 0 0 0 0 0

CountMin

Point query:

h{1,2,3,4}(q1)

What should the estimate  be?  f̃x 0



0 0 1 0 0 0 1 1 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 3 0 0 0

0 0 0 0 1 0 0 2 0 0 0 0 0 0

CountMin

Point query:

h{1,2,3,4}(q1)

How much is due to collisions?

Definite collisions 
in these two rows



0 0 1 0 0 0 1 1 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 3 0 0 0

0 0 0 0 1 0 0 2 0 0 0 0 0 0

CountMin

Point query:

h{1,2,3,4}(q2)

What should the estimate  be?   f̃x 1



0 0 1 0 0 0 1 1 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 3 0 0 0

0 0 0 0 1 0 0 2 0 0 0 0 0 0

CountMin

Point query:

h{1,2,3,4}(q2)

Definite collision in 
this row

Could be 
collisions? 

Yes

How much is due to collisions?
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Query for item  returns minimum of the 
selected elements; call this estimate   

x
f̃x

Collisions can make us overestimate , but not 
underestimate; i.e.

fx
f̃x ≥ fx

Can we argue  is probably not too far from ?f̃x fx
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d

w

We use functions  drawn from family 
, each ranging over 

h1, h2, . . . , hd
H {1, 2, . . . , w}

Let  be the number of items  such that ci,j x hi(x) = j

h1

h2

h3

h4

c1,1c1,2

c2,1c2,2

c3,1c3,2

c1,3

c2,3

c3,3

...

...

...

c4,1c4,2c4,3 ...
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d

w

What's the relationship between: 

c1,h1(x)

fx

h{1,2,...}(x)

min
1 ≤ i ≤ d

ci,hi(x)

c1,h1(x) min
1 ≤ i ≤ d

ci,hi(x)

≤ ≤fx min
1 ≤ i ≤ d

ci,hi(x) c1,h1(x)
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d

w

Claim: if  and , thenw = 2/ϵ d = log2 δ−1

Recall  = # of items in streamm

Pr ( f̃x ≤ fx + ϵm) ≥ 1 − δ

 is probably not too far from f̃x fx
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Pick item  and define r.v.s  
such that  

x {Z1, Z2, . . . , Zd}
Zi = ci,hi(x) − fx

 is the amount we over-counted in 
row  due to collisions
Zi

i

Argument modeled on Andrew McGregor's notes at 
https://people.cs.umass.edu/~mcgregor/711S18/vectors-3.pdf

https://people.cs.umass.edu/~mcgregor/711S18/vectors-3.pdf
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Xi,y = {1 if hi(y) = hi(x)
0 otherwise

Zi = ∑
y≠x

(fy ⋅ Xi,y)

Recall:  is the amount we over-counted 
in row  due to collisions

Zi
i

For ,  \ i ∈ {1, 2, . . . , d} y ∈ {distinct items} {x}
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E[Zi] = E ∑
x≠y

fy ⋅ Xi,y

= ∑
x≠y

fy ⋅ E [Xi,y]
= ∑

x≠y

fy ⋅ Pr (hi(y) = hi(x))

Linearity of 
expectation

What would we like to use next? 2-universality

Expectation of 
indicator
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Further assume that family  from which 's 
were drawn is 2-universal

H hi

∑
x≠y

fy ⋅ Pr (hi(y) = hi(x)) ≤ ∑
x≠y

fy ⋅
1
w

≤
m
w

2-universality

Expected per-row excess  is at most E[Zi] m/w
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 is a non-negative r.v., so:Zi

Pr (Zi ≥ a) ≤
E[Zi]

a

Let b =
a

E[Zi]

Markov 
inequality

Pr (Zi ≥ b ⋅ E[Zi]) ≤
1
b
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Combine with                              :E[Zi] ≤
m
w

Pr (Zi ≥
bm
w ) ≤ Pr (Zi ≥ b ⋅ E[Zi]) ≤

1
b

Pr (Zi ≥ b ⋅ E[Zi]) ≤
1
b

Continue with these
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Pr (Zi ≥
bm
w ) ≤

1
b

Let  (# columns times error tolerance):b = wϵ

Pr (Zi ≥ ϵm) ≤
1

wϵ

Let  (# columns from our Claim):w = 2/ϵ

Pr (Zi ≥ ϵm) ≤
1
2
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When , probability that "bad thing" 
happens is at most 1/2

w = 2/ϵ

Pr (Zi ≥ ϵm) = Pr ( fx + Zi ≥ fx + ϵm) ≤
1
2

We want an upper bound of ,  being smallδ δ

So: Repeat (across rows) and take minimum



CountMin

Pr (Zi ≥ ϵm) ≤
1
2

Pr (∀1 ≤ i ≤ d Zi ≥ ϵm) ≤ ( 1
2 )

d
Independence 
of uniform & 
independently 
chosen hashes

Recall we set d = log2 δ−1

( 1
2 )

d

= 2−log2 δ−1 = 2log2 δ = δ
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Pr (∀1 ≤ i ≤ d Zi ≥ ϵm) ≤ δ

Pr (∃1 ≤ i ≤ d Zi < ϵm) ≥ 1 − δ

Probability of the 
bad thing is ≤ δ

complement

Prob. of good 
thing is ≥ 1 − δ

To get the good thing, 
take the minimum
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Claim is proved:

f̃x = min(c1,h1(x), c2,h2(x), . . . , cd,hd(x))
= min( fx + Z1, fx + Z2, . . . , fx + Zd) ≤ fx + ϵm

With probability 1 − δ ✅

 is probably not too far from f̃x fx
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d = log2 δ−1

w = 2/ϵ

To achieve this, sketch must contain 
countersO(ϵ−1 log δ−1)
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10% 0.1 80

1% 0.01 1,400

0.1% 0.001 20,000

0.0001% 0.01 1,400,000

ϵ δ ⌈(2/ϵ)⌉ ⋅ ⌈log2 δ−1⌉

Remember that  multiplies , and a counter 
requires many (maybe 32 or 64) bits

ϵ m



10 5 17 17 17 1 8 20 18 14 8 5 20 13

15 4 4 19 20 0 8 17 15 19 4 20 16 12

18 14 9 10 10 15 10 9 16 4 10 18 20 10

13 3 6 18 8 19 1 15 11 1 8 8 18 3

h{1,2,3,4}(x)

+1

+1

+1

+1

CountMin

A common use of CountMin is to find heavy hitters

Items with frequency over a threshold

While adding items, maintain data structure containing 
items with point query result over the threshold



CountMin

Linear transformation 
interpretation

 is input data 
 builds the sketch

v
M

Adapted from Andrew McGregor: 
https://people.cs.umass.edu/~mcgregor/stocworkshop/mcgregor.pdf

https://people.cs.umass.edu/~mcgregor/stocworkshop/mcgregor.pdf
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Adapted from Andrew McGregor: 
https://people.cs.umass.edu/~mcgregor/stocworkshop/mcgregor.pdf

Row 1 of CountMinResult of applying  to h1 x1, x2, . . . , x8

fx3
+ fx4

fx1
+ fx5

+ fx7

fx2
+ fx6

+ fx8

fx1

fx2

fx3

fx4

fx5

fx6

fx7

fx8

https://people.cs.umass.edu/~mcgregor/stocworkshop/mcgregor.pdf

