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 It has been said that the mark of a computer 
scientist is that they believe hashing is real. 

 I.e., it is possible to insert, delete, and lookup items 
in a large set in O(1) time per operation. 

 Locality-Sensitive Hashing (LSH) is another type 
of magic that, like Bigfoot, is hard to believe is 
real, until you’ve seen it. 

 It lets you find pairs of similar items in a large 
set, without the quadratic cost of examining 
each pair. 
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 LSH is really a family of related techniques. 
 In general, one throws items into buckets using 

several different “hash functions.” 
 You examine only those pairs of items that 

share a bucket for at least one of these 
hashings. 

 Upside: designed correctly, only a small fraction 
of pairs are ever examimed. 

 Downside: there are false negatives – pairs of 
similar items that never even get considered. 
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 We shall first study in detail the problem of 
finding (lexically) similar documents. 

 Later, two other problems: 

 Entity resolution (records that refer to the same 
person or other entity). 

 News-article similarity. 
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 Given a body of documents, e.g., the Web, 
find pairs of documents with a lot of text in 
common, such as: 

 Mirror sites, or approximate mirrors. 

 Application: Don’t want to show both in a search. 

 Plagiarism, including large quotations. 

 Similar news articles at many news sites. 

 Application: Cluster articles by “same story.” 
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1. Shingling: convert documents, emails, etc., to 
sets. 

2. Minhashing: convert large sets to short 
signatures (lists of integers), while preserving 
similarity. 

3. Locality-sensitive hashing: focus on pairs of 
signatures likely to be similar. 
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Docu- 
ment 

The set 
of strings 
of length k 
that appear 
in the doc- 
ument 

Signatures: 
short integer 
vectors that 
represent the 
sets, and 
reflect their 
similarity 

Locality- 
sensitive 
Hashing 

Candidate 
pairs: 
those pairs 
of signatures 
that we need 
to test for 
similarity. 
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 A k -shingle (or k -gram) for a document is a 
sequence of k characters that appears in the 
document. 

 Example: k = 2; doc = abcab.  Set of 2-shingles = 
{ab, bc, ca}. 

 Represent a doc by its set of k-shingles. 



 Documents that are intuitively similar will have 
many shingles in common. 

 Changing a word only affects k-shingles within 
distance k-1 from the word. 

 Reordering paragraphs only affects the 2k 
shingles that cross paragraph boundaries. 

 Example: k=3, “The dog which chased the cat” 
versus “The dog that chased the cat”. 

 Only 3-shingles replaced are g_w, _wh, whi, hic, ich, 
ch_, and h_c. 
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 Intuition: want enough possible shingles that 
most docs do not contain most shingles. 

 Character strings are not “random” bit strings, 
so they take more space than needed. 

 k = 8, 9, or 10 is often used in practice. 
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 To save space but still make each shingle rare, 
we can hash them to (say) 4 bytes. 

 Called tokens. 

 Represent a doc by its tokens, that is, the set 
of hash values of its k-shingles. 

 Two documents could (rarely) appear to have 
shingles in common, when in fact only the 
hash-values were shared. 
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 The Jaccard similarity  of two sets is the size of 
their intersection divided by the size of their 
union. 

 Sim(C1, C2) = |C1C2|/|C1C2|. 
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3 in intersection. 
8 in union. 
Jaccard similarity 
   = 3/8 
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 Rows = elements of the universal set. 

 Examples: the set of all k-shingles or all tokens. 

 Columns = sets. 
 1 in row e and column S if and only if e is a 

member of S; else 0. 
 Column similarity is the Jaccard similarity of 

the sets of their rows with 1. 
 Typical matrix is sparse. 
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 C1 C2 

 0 1 
 1 0 
 1 1  Sim(C1, C2) = 
 0 0   2/5 = 0.4 
 1 1 
 0 1 

 

* 

* 

* 

* 

* 
* 

* 
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 Given columns C1 and C2, rows may be classified as: 
    C1 C2 

   a 1 1 

   b 1 0 

   c 0 1 

   d 0 0 
 Also, a  = # rows of type a , etc. 
 Note Sim(C1, C2) = a/(a +b +c ). 
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 Permute the rows. 

 Thought experiment – not real. 

 Define minhash function for this permutation, 
h(C) = the number of the first (in the permuted 
order) row in which column C has 1. 

 Apply, to all columns, several (e.g., 100) 
randomly chosen permutations to create a 
signature for each column. 

 Result is a signature matrix: columns = sets, 
rows = minhash values, in order for that column. 
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 People sometimes ask whether the minhash 
value should be the original number of the row, 
or the number in the permuted order (as we 
did in our example). 

 Answer: it doesn’t matter. 
 You only need to be consistent, and assure that 

two columns get the same value if and only if 
their first 1’s in the permuted order are in the 
same row. 
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 The probability (over all permutations of the 
rows) that h(C1) = h(C2) is the same as       
Sim(C1, C2). 

 Both are a/(a+b+c)! 
 Why? 

 Look down the permuted columns C1 and C2 until 
we see a 1. 

 If it’s a type-a row, then h(C1) = h(C2).  If a type-b or 
type-c row, then not. 
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 The similarity of signatures is the fraction of the 
minhash functions (rows) in which they agree. 

 Thus, the expected similarity of two signatures 
equals the Jaccard similarity of the columns or 
sets that the signatures represent. 

 And the longer the signatures, the smaller will be the 
expected error. 



24 

0 

0 

0 0 

0 0 

0 0 

0 

0 0 0 

0 

0 0 0 

0 

1 

1 1 

1 

1 1 

1 1 

1 

1 1 

1 2 2 3 

1 1 2 3 

3 5 1 2 

Input Matrix 

Signature Matrix 

Columns 1 & 2: 
Jaccard similarity 1/4. 
Signature similarity 1/3 

Columns 2 & 3: 
Jaccard similarity 1/5. 
Signature similarity 1/3 

Columns 3 & 4: 
Jaccard similarity 1/5. 
Signature similarity 0 
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 Suppose 1 billion rows. 
 Hard to pick a random permutation of 

1…billion. 
 Representing a random permutation requires 

1 billion entries. 
 Accessing rows in permuted order leads to 

thrashing. 
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 A good approximation to permuting rows: 
pick, say, 100 hash functions. 

 Intuition: the hash of the row numbers is the 
order of the corresponding permutation. 

 For each column c and each hash function hi, 
keep a “slot” M(i, c). 

 Intent: M(i, c) will become the smallest value 
of hi (r) for which column c has 1 in row r. 
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for each row r do begin 
    for each hash function hi  do 
    compute hi (r); 
    for each column c  
  if c has 1 in row r  
     for each hash function hi do 

           if hi (r) is smaller than M(i, c) then 

    M(i, c) := hi (r); 

end; 
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Row C1 C2 
  1  1  0 
  2  0  1 
  3  1  1 
  4  1  0 
  5  0  1 

h(x) = x mod 5 
g(x) = (2x+1) mod 5 

h(1) = 1 1 ∞ 
g(1) = 3 3 ∞ 

h(2) = 2 1 2 
g(2) = 0 3 0 

h(3) = 3 1 2 
g(3) = 2 2 0 

h(4) = 4 1 2 
g(4) = 4 2 0 

h(5) = 0 1 0 
g(5) = 1 2 0 

Sig1 Sig2 



29 

 Often, data is given by column, not row. 

 Example: columns = documents, rows = shingles. 

 If so, sort matrix once so it is by row. 





 Remember: we want to hash objects such as 
signatures many times, so that “similar” objects 
wind up in the same bucket at least once, while 
other pairs rarely do. 

 Candidate pairs are those that share a bucket. 

 Pick a similarity threshold t = fraction of rows in 
which the signatures agree to define “similar.” 

 Trick: divide signature rows into bands. 

 Each hash function based on one band. 
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Matrix M 

r  rows 
per band 

b  bands 

   One 
signature 
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 Divide matrix M into b bands of r rows. 
 For each band, hash its portion of each column 

to a hash table with k buckets. 

 Make k as large as possible. 

 Candidate column pairs are those that hash to 
the same bucket for ≥ 1 band. 

 Tune b and r to catch most similar pairs, but few 
nonsimilar pairs. 
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Matrix M 

Buckets 
 

Columns 6 and 7 are 
surely different. 

Columns 2 and 6 
are probably identical 
in this band. 

r  rows b  bands 
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 Suppose 100,000 columns. 
 Signatures of 100 integers. 
 Therefore, signatures take 40Mb. 
 Want all 80%-similar pairs. 
 5,000,000,000 pairs of signatures can take a 

while to compare. 
 Choose 20 bands of 5 integers/band. 
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 Probability C1, C2 identical in one particular 
band: (0.8)5 = 0.328. 

 Probability C1, C2 are not similar in any of the 20 
bands: (1-0.328)20 = .00035 . 

 i.e., about 1/3000th of the 80%-similar underlying 
sets are false negatives. 
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 Probability C1, C2 identical in any one particular 
band: (0.4)5  = 0.01 . 

 Probability C1, C2 identical in ≥ 1 of 20 bands:  

1 – (0.99)20 < 0.2 . 
 But false positives much lower for similarities 

<< 40%.  
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       Similarity s  of two sets 

Probability 
of sharing 
a bucket 

t 

No chance 
if s < t 

Probability 
= 1 if s > t 
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Similarity s  of two sets 

Probability 
of sharing 
a bucket 

Remember: 
probability of equal 
minhash values 
= Jaccard similarity 

t 

False 
positives 

False 
negatives 

Say “yes” if you 
are below the line. 
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Similarity s  of two sets 

Probability 
of sharing 
a bucket 

t 

s r  

All rows 
of a band 
are equal 

1 - 

Some row 
of a band 
unequal 

( )b  

 
No bands 
identical 

1 - 

At least 
one band 
identical 

t ~ (1/b)1/r  
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 s  1-(1-sr)b 

.2    .006 

.3    .047 

.4    .186 

.5    .470 

.6    .802 

.7    .975 

.8    .9996 
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 Tune b and r to get almost all pairs with 
similar signatures, but eliminate most pairs 
that do not have similar signatures. 

 Check that candidate pairs really do have 
similar signatures. 

 Optional: In another pass through data, check 
that the remaining candidate pairs really 
represent similar sets. 
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 The entity-resolution problem is to examine a 
collection of records and determine which refer 
to the same entity. 

 Entities could be people, events, etc. 

 Typically, we want to merge records if their 
values in corresponding fields are similar. 
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 I once took a consulting job solving the 
following problem: 

 Company A agreed to solicit customers for Company 
B, for a fee. 

 They then argued over how many customers. 

 Neither recorded exactly which customers were 
involved. 
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 Each company had about 1 million records 
describing customers that might have been 
sent from A to B. 

 Records had name, address, and phone, but for 
various reasons, they could be different for the 
same person. 

 E.g., misspellings, but there are many sources of 
error. 
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 Step 1: Design a measure (“score ”) of how 
similar records are: 

 E.g., deduct points for small misspellings (“Jeffrey” 
vs. “Jeffery”) or same phone with different area 
code. 

 Step 2: Score all pairs of records that the LSH 
scheme identified as candidates; report high 
scores as matches. 
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 Problem: (1 million)2 is too many pairs of 
records to score. 

 Solution: A simple LSH. 

 Three hash functions: exact values of name, 
address, phone. 

 Compare iff records are identical in at least one. 

 Misses similar records with a small differences in 
all three fields. 
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 Problem: How do we hash strings such as 
names so there is one bucket for each string? 

 Answer: Sort the strings instead. 
 Another option was to use a few million 

buckets, and deal with buckets that contain 
several different strings. 
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 We were able to tell what values of the scoring 
function were reliable in an interesting way. 

 Identical records had an average creation-date 
difference of 10 days. 

 We only looked for records created within 90 
days of each other, so bogus matches had a 45-
day average difference in creation dates. 
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 By looking at the pool of matches with a fixed 
score, we could compute the average time-
difference, say x, and deduce that fraction    
(45-x)/35 of them were valid matches. 

 Alas, the lawyers didn’t think the jury would 
understand. 
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 Any field not used in the LSH could have been 
used to validate, provided corresponding values 
were closer for true matches than false. 

 Example: if records had a height field, we would 
expect true matches to be close, false matches 
to have the average difference for random 
people. 
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 The Political-Science Dept. at Stanford asked a 
team from CS to help them with the problem of 
identifying duplicate, on-line news articles. 

 Problem: the same article, say from the 
Associated Press, appears on the Web site of 
many newspapers, but looks quite different.  
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 Each newspaper surrounds the text of the 
article with: 

 It’s own logo and text. 

 Ads. 

 Perhaps links to other articles. 

 A newspaper may also “crop” the article (delete 
parts). 
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 The team came up with its own solution, that 
included shingling, but not minhashing or 
LSH. 

 A special way of shingling that appears quite good 
for this application. 

 LSH substitute: candidates are articles of similar 
length. 
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 I told them the story of minhashing + LSH. 
 They implemented it and found it faster for 

similarities below 80%. 

 Aside: That’s no surprise.  When the similarity 
threshold is high, there are better methods – see 
Sect. 3.9 of MMDS. 
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 Their first attempt at minhashing was very 
inefficient. 

 They were unaware of the importance of 
doing the minhashing row-by-row. 

 Since their data was column-by-column, 
they needed to sort once before 
minhashing. 
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 The team observed that news articles have a lot 
of stop words, while ads do not. 

 “Buy Sudzo” vs.  “I recommend that you buy Sudzo 
for your laundry.” 

 They defined a shingle to be a stop word and 
the next two following words. 
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 By requiring each shingle to have a stop word, 
they biased the mapping from documents to 
shingles so it picked more shingles from the 
article than from the ads. 

 Pages with the same article, but different ads, 
have higher Jaccard similarity than those with 
the same ads, different articles. 


