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1. INTRODUCTION

The string-matching problem is concerned with finding all exact occurrences of a
pattern string P[1..m] in a text string T [1..n]. Numerous algorithms exist, including
algorithms that solve the problem in linear time, in real time, and even using only
constant auxiliary space in addition to the input strings [Galil 1981; Galil and Seiferas
1983; Karp and Rabin 1987; Knuth et al. 1977]. However, all these algorithms,
including the online algorithms, require repeated access to the pattern or the text. In
fact, if the pattern is considered part of the streamed input, without sufficient state
space to remember the pattern or associated information, it is impossible to precisely
identify occurrences of the pattern in the text.

The string-matching problem is often viewed as a candidate elimination problem
in which, initially, all text positions are candidate occurrences of the pattern, and an
algorithm’s task is to eliminate candidates and verify which of the remaining text
positions are actual occurrences. The classical Knuth-Morris-Pratt [Knuth et al. 1977]
algorithm proceeds by scanning the text and matching subsequent text symbols against
the pattern. If a mismatch occurs, then the algorithm shifts the pattern ahead to the
next viable text occurrence candidate. The shift is the smallest number of text positions
that would align the pattern prefix that was matched thus far with the text, with
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22:2 D. Breslauer and Z. Galil

another matching pattern prefix, while skipping candidate occurrences that can be
ruled out by the transitivity of the pattern’s prefix self-overlap (also called its period).
The lengths of all such shifts are precomputed in the pattern preprocessing phase and
take up O(m) space.

The Karp-Rabin [Karp and Rabin 1987] randomized string-matching algorithm de-
ploys an entirely different approach. The algorithm computes a so-called fingerprint
of a sliding text window of size m, the same length as the pattern, and compares
this fingerprint to the fingerprint of the pattern, eliminating candidate occurrences
with fingerprints different from the pattern’s fingerprint. Their algorithm, however,
requires access to the last m text symbols to slide the fingerprint window along the
text. Although the fingerprint functions always identify equal strings, different strings
are usually mapped to different fingerprints but, sometimes, with small probability,
they are mapped to identical fingerprints, possibly introducing erroneous false-positive
phantom occurrences. Such phantom occurrences can be later verified against the text
if both the pattern and text are readily accessible in memory.

Porat and Porat [2009] recently gave a streaming-model string-matching algorithm
that uses a combination of both the periodicity and the fingerprint approaches. Their
one-pass streaming algorithm takes O(log m) time per symbol, or O(n log m) time over-
all, and uses only O(log m) space. Throughout this article, space refers to the number of
O(log n) bit registers, and neither the pattern nor any text segment is accessible after
appearing in the input stream.

In addition to possibly reporting false-positive phantom occurrences inherent in fin-
gerprinting, Porat and Porat’s [2009] algorithm may also commit with small probability
false-negative errors, omitting actual occurrences of the pattern in the text (two-sided
errors). Their algorithm also requires the period lengths and period fingerprints of
the pattern and various pattern prefixes to be computed in the pattern preprocess-
ing phase. However, no details were provided about how this information is computed.
Note that although period lengths are often computed via straighforward application of
string matching algorithms to match the pattern against itself, the streaming model’s
limitation present some obstacles.

In fact, independently of our work, Ergun, Jowhari, and Salgan [Ergün et al. 2010]
recently studied the problem of computing the period length of a string in the stream-
ing model. They describe an O(mlog m) time one-pass streaming algorithm to compute
the period length of a string using O(log m) space. Their algorithm, which finds the
period only if the input string is periodic (the period is no longer than half of the
string’s length), builds on a simplified streaming string-matching algorithm with sim-
pler pattern preprocessing requirements than Porat and Porat’s [2009] algorithm (still
two-sided errors). Moreover, Ergun, Jowhari, and Salgan [Ergün et al. 2010] prove
that �(m) space is required by any one-pass streaming algorithm that computes the
period length of nonperiodic strings, but that two passes suffice to reduce the space
to O(log m). They also prove that �(log m) space is required by any streaming string-
matching algorithm for certain choices of the pattern and text lengths.

This article presents two streaming string-matching algorithms. The first, like Porat
and Porat’s [2009] algorithm, takes O(log m) time per symbol and uses O(log m) space,
but is conceptually much simpler and has two important advantages: (1) the algorithm
only commits small probability false-positive errors and no false-negative errors; in
particular, it never misses an occurrence (one-sided errors), and (2) the pattern pre-
processing phase is a trivial real-time streaming algorithm that does not compute
period lengths. The second algorithm is a real-time algorithm—namely, worst-case
constant-time per symbol—using the same O(log m) space while maintaining the one-
sided error and the simple real-time streaming pattern preprocessing (the amount of
available space O(log m), which is derived from the pattern length m, must be known
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in advance). Our techniques can be used to speed up Ergün et al. [2010] periodicity
streaming algorithm to O(m) time.

The new algorithms’ candidate elimination resembles Galil’s [1985] parallel string-
matching algorithm. However, whereas that parallel algorithm works in consecutive
stages that simultaneously access the entire pattern and text, execution of the stream-
ing algorithm proceeds in a skewed fashion, partially evaluating all the stages simul-
taneously when the next input symbol is presented and without accessing the whole
pattern and text, which are not available in the streaming model. This has the effect
that viable occurrence candidates essentially climb from one stage to the next until full
occurrences of the pattern are reported.

This article starts by reviewing some of the basic properties of fingerprint arithmetic
and periodic strings needed to describe the algorithms in Section 2. Sections 3–5 de-
scribe the two algorithms and their required pattern preprocessing. The article finishes
with concluding remarks and open problems in Section 6.

2. FINGERPRINTS AND PERIODS

The new algorithms make use of the Karp and Rabin’s [1987] fingerprint functions,
which are defined as φr,p(s) = ∑l

i=1 si ri mod p for a prime p, a random integer r ∈ Fp,
and a string s = s1s2 · · · sl over the alphabet Fp (Fp is the field of integers modulo the
prime p). The error probability—the probability that two different strings share the
same fingerprint—can be bounded as follows:

THEOREM 2.1. Let u and v be two different string of length l, where l ≤ n and
p ∈ θ (n2+α), for some α ≥ 0. Then the probability that fingerprints φr,p(u) = φr,p(v) for a
random r ∈ Fp, is smaller than 1

n1+α .

PROOF. The fingerprint equality
∑l

i=1 uiri = ∑l
i=1 viri mod p means that the polyno-

mial
∑l

i=1(ui − vi)xi = 0 mod p admits r as its root. Since Fp is a field, any degree l
polynomial has at most l roots. The probability that some random r ∈ Fp is one such
root is at most l

p ≤ 1
n1+α .

The fingerprint function can be arithmetically manipulated to compute the finger-
print of two concatenated strings, requiring only the fingerprints and string lengths
and not the concatenated strings themselves. (The powers rk and r−k can be main-
tained together with the corresponding fingerprints and updated with the fingerprint
operations; they do not need to be computed at every step). The following primitive fin-
gerprint operations were also used by Karp and Rabin [1987], Porat and Porat [2009]
and Ergün et al. [2010].

LEMMA 2.2. One can compute the fingerprint of concatenated strings u and v as
follows:

φr,p(uv) = φr,p(u) + rkφr,p(v) mod p uv = u1u2 · · · ukv1v2 · · · vl. (1)

PROOF. Immediate from the definition of the fingerprint function.

Lemma 2.2 can be used to remove the fingerprint of the prefix u from the fingerprint
of the concatenated string uv to extract the fingerprint of v = u−1(uv). Similarly, one
can also remove the fingerprint of the suffix v to extract the fingerprint of u = (uv)v−1.

COROLLARY 2.3. The fingerprint function:

φr,p(v) = r−k(φr,p(uv) − φr,p(u)) mod p. (2)

φr,p(u) = φr,p(uv) − rkφr,p(v) mod p. (3)
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Equations (2) and (3) will be used to maintain the running fingerprints of multiple
text blocks, starting at various locations of interest and ending at the current text
symbol, without having to update all such fingerprints with every text symbol. Instead,
the algorithm will maintain one running fingerprint for the text prefix from the very
beginning of the text and up to the current text symbol and only update this one
fingerprint with each streaming input text symbol. Now, by keeping for each location
of interest the static fingerprint for the text prefix up to that location, the algorithm
can obtain the running fingerprint of the text block starting at that location up to and
including the current text symbol.

LEMMA 2.4. The fingerprint of the text block starting at some location of interest and
ending at the current text symbol can be computed in constant time whenever needed.

PROOF. Let u be the text prefix up to the location of interest and let v be the contin-
uation text block up to and including the current text symbol. Then, the text prefix up
to and including the current text symbol is uv, and, by Corollary 2.3, the fingerprint of
v is given by canceling the fingerprint of u from the fingerprint of uv.

Properties of periodic strings are often used in efficient string algorithms. A string
u is a period of a string w if w is a prefix of uk for some k, or, equivalently, if w is a
prefix of uw. The shortest period of w is called the period of w and w is called periodic
if it is at least twice as long as its period. Consider prefixes of the pattern of increasing
length. If u is a prefix and v is a longer prefix, the period of u is said to continue in v if
u and v have the same period; otherwise, the period of u terminates in v. The following
Periodicity Theorem is credited to Fine and Wilf [1965].

THEOREM 2.5. If a string u has periods of length p and q, and its length |u| ≥
p + q − gcd(p, q), then u also has a period of length gcd(p, q).

Remark. One of the important goals in this work has been to allow only false-positive
phantom occurrences and eliminate false-negative omitted occurrence errors. The com-
bined use of fingerprints that introduce low probability errors and periods that rely on
the transitivity of symbol equality can be confusing and may quickly lead to two-sided
errors. We managed to avoid some of the pitfalls in Porat and Porat [2009] work:

(1) because fingerprint equality of larger strings does not imply fingerprint equality of
their respective substrings, canceling out some pattern prefixes in the fingerprint
of some text block may introduce very strange errors, in which the algorithm may
wrongly proceed with the wrong fingerprint of some text block and even report
false occurrences at text locations where the real text fingerprint does not match
the pattern’s fingerprint;

(2) using periodicity of pattern prefixes to skip occurrence candidates may cause the
algorithm to skip past actual occurrences after a false fingerprint match;

(3) relying on pattern prefix periods that might not be correctly computed can propa-
gate one-sided errors into two-sided errors.

3. THE O(N LOG M ) TIME ALGORITHM

This section describes the O(n log m) streaming string-matching algorithm and intro-
duces the basic concepts that are refined in the next section to obtain the real-time
algorithm. The algorithm’s pattern preprocessing is trivial. It computes the sequence
Pi of �log m� increasing prefixes of the pattern P[1..m] and records their fingerprints,
where |Pi| = 2i, and, if m is not a power of 2, then for k = �log2 m� (i.e., the largest
k), Pk = P[1..m]. These �log2 m� fingerprints are stored in O(log m) space. No period
lengths of the pattern or any of its prefixes are required.
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Fig. 1. Stages of the O(n log m) algorithm.

Whenever possible, we give an intuitive verbal description. A viable occurrence is a
text position that has not been ruled out as a start of an occurrence. The algorithm
maintains viable occurrences of the pattern prefixes through �log2 m� simultaneous
stages that filter the remaining viable occurrences while the text is being streamed
online. Each stage requires constant space and takes constant time per input symbol,
adding up to O(log m) time per input symbol, O(n log m) time overall, and O(log m)
total space. The stages are summarized in Figure 1, where all stages are executed in
increasing order for each input symbol.

The viable occurrences are grouped into stages. A viable occurrence belongs to stage
number i, if the algorithm has verified earlier that it starts with a text block of length
|Pi| whose fingerprint is equal to the fingerprint of pattern prefix Pi but there are
insufficient text symbols yet to verify if it belongs to stage number i + 1. As soon as
there are sufficient symbols—|Pi+1| to be precise—to promote the viable occurrence to
the next stage (always the first, longest viable occurrence in the stage), the appropriate
text block fingerprint is compared to the precomputed pattern prefix fingerprint Pi+1
and the viable occurrence either gets promoted to the next stage or is eliminated.
Clearly, an occurrence of each of the pattern prefixes must start at each occurrence of
the pattern, and viable occurrences eliminated in this way cannot be occurrences of the
pattern.

Each text position is initially considered a viable occurrence. When the next position
is reached, the one text symbol fingerprint is verified against the fingerprint of the
pattern prefix P0 before the new viable occurrence may enter stage number 0. Note
that viable occurrences that start earlier in the text always correspond to longer text
blocks and therefore belong to higher or equal numbered stages. One can envision the
viable occurrences climbing the stage ladder from one stage to the next or falling off
the ladder in case of fingerprint mismatch, up to the ultimate stage that verifies the
fingerprint of the full pattern Pk = P[1..m]. Because all text positions are considered
viable occurrences and are only eliminated as a consequence of fingerprint mismatch,
the algorithm commits no false-negative errors.

The algorithm maintains the fingerprint of each viable occurrence x, which is the
fingerprint of the text prefix that ends at x, the running fingerprint of the text when x
was reached. When x is ripe for promotion, the fingerprint of the block that starts with
x and ends at the current text symbol is computed from the current running fingerprint
of the text and the fingerprint of x using Lemma 2.4 and compared to the fingerprint
of Pi+1.

As in Galil’s [1985] parallel string-matching algorithm, multiple viable occurrences
that get too crowded in some stage imply that there must be a periodic pattern prefix.
Specifically, if there are at least three viable occurrences at the same stage number i,
then the pattern prefix Pi must be periodic, all the viable occurrences in this stage form
an arithmetic progression whose difference is the period length of Pi, and, therefore,
these viable occurrences can be represented compactly and processed efficiently. We
prove this next.
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LEMMA 3.1. Let u and v be strings such that v contains at least three occurrences
of u. Let t1 < t2 < · · · < th be the locations of all occurrences u in v and assume that
ti+2 − ti ≤ |u|, for i = 1, . . . , h − 2 and h ≥ 3. Then, this sequence forms an arithmetic
progression with difference d = ti+1 − ti, for i = 1, . . . , h − 1, that is equal to the period
length of u.

PROOF. Consider any consecutive three elements ti, ti+1, and ti+2 and let p = ti+1 − ti
and q = ti+2 − ti+1. Because of the overlap of these occurrences of u in v, u must have
periods of length p and q. Since p + q = ti+2 − ti ≤ |u|, by Theorem 2.5 u must also
have a period of length gcd(p, q). If r is the period length of u, we have similarly that
gcd(r, p, q) is a period length of u that must be equal to r by the minimality of r. It
follows that all occurrences of u between ti and ti+2 are in the form of ti + kr. Also, by
aligning occurrences, there must be occurrences at all these locations ti + kr. Therefore
p = q = r.

LEMMA 3.2. Suppose that there are at least three viable occurrences of Pi in stage
number i. If these are actual occurrences of the pattern prefix Pi , then these viable
occurrences form an arithmetic progression with difference equal to the period length of
Pi .

PROOF. Since |Pi+1| ≤ 2|Pi| and since viable occurrences that have been compared
to Pi+1 were either promoted to the next stage or eliminated, the difference between
the locations of any viable occurrences of Pi in stage number i is less than |Pi|. By
Lemma 3.1, actual occurrences form an arithmetic progression with difference that is
equal to the period length of Pi. The viable occurrences must include all actual occur-
rences, and, if all viable occurrences are actual occurrences, then the viable occurrences
also form the same arithmetic progression.

Unfortunately, there is one important caveat here. The streaming algorithm com-
pares fingerprints and not actual strings, and therefore different strings may be iden-
tified by the same fingerprint, thus conflicting with the periodicity implied by string
equality, called hereafter fingerprint-periodicity conflict. The algorithm may conclude
that some fingerprint false-match error must have occurred because the periodicity
properties have been violated but without precisely identifying the culprit fingerprint
error. Note that the algorithm only uses the periodicity properties to facilitate the
space-efficient representation and never to eliminate viable occurrence candidates.

LEMMA 3.3. The viable occurrences in each stage can be compactly represented in
constant space, allowing insertion of the last viable occurrence in the stage and the
removal of the first viable occurrence in constant time. The representation faithfully
reconstructs the viable occurrences if no fingerprint-periodicity conflict is detected while
inserting viable occurrences.

PROOF. If there are only one or two viable occurrences in stage number i, these
viable occurrences and their fingerprints are stored directly. If there are three or more,
they should form an arithmetic progression by Lemma 3.2. To compactly and faithfully
represent the arithmetic progression, as soon as there are two viable occurrences in the
representation, the algorithm computes the implied period length of Pi, which is set to
the difference between the two viable occurrences, and the implied period fingerprint,
which is the fingerprint of the text block between the two viable occurrences. This
information takes constant space and is maintained together with the text positions
and fingerprints of the first and last viable occurrences in the progression.

To insert the last viable occurrence into the compact representation, the algorithm
verifies that this new viable occurrence continues the arithmetic progression by
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checking that the difference between the last viable occurrence and the new viable
occurrence is equal to the implied period length and that the text block fingerprint
between the last viable occurrence and the new viable occurrence is equal to the
implied period fingerprint. If these two tests succeed, the algorithm concludes that
there is no fingerprint-periodicity conflict and updates the last viable occurrence it
stores to the new viable occurrence.

To remove the first viable occurrence from the compact representation, it is necessary
to update the next first viable occurrence. The position of the first viable occurrence
is advanced by the implied period length, and the fingerprint is adjusted using the
implied period fingerprint.

The representation is clearly faithful if the insertion tests detected no fingerprint-
periodicity conflicts. All fingerprint manipulation is done using Corollary 2.3.

In Lemma 3.3, the algorithm does not know the real period length of Pi nor the real
period of Pi. The algorithm only verifies that whatever goes into the compact represen-
tation will eventually faithfully come out, conforming to some arithmetic progression
and some repeated text blocks that share the same fingerprints but might even be
different strings.

If the algorithm encounters any fingerprint-periodicity conflicts while inserting a
viable occurrence into the compact representation, the algorithm concludes that some
of the viable occurrences are not actual occurrences due to a small probability of false-
positive fingerprint errors. The algorithm must make hard choices to remain within
its strict space bounds while ensuring that only false-positive errors are reported and
no actual occurrences are omitted. The algorithm will discard some valid viable occur-
rences that cannot be compactly represented via the arithmetic progression. However,
the algorithm will report all these discarded viable occurrences as occurrences of the
pattern so that no occurrences are missed.

Recall that the offending viable occurrence that revealed the fingerprint-periodicity
conflict is in the process of being promoted from some stage to the next. To simplify the
presentation and avoid cascading the effects of discarded viable occurrences on higher
numbered stages, the algorithm will discard and report all earlier viable occurrences
(in equal or higher numbered stages), excluding the offending viable occurrence and the
last viable occurrence in the arithmetic progression, and it will keep all other viable
occurrences. The up to O(log m) discarded arithmetic progressions can be compactly
written to the output as arithmetic progressions rather than spelled out individually,
to remain within the time bounds (because this is such a low-probability event, the
algorithm may even report as occurrences all text locations between the first and last
discarded viable occurrences). More details on discarding viable occurrences are given
in Section 5.

Thus, the algorithm might report two classes of erroneous pattern occurrences: those
phantom occurrences that passed through the entire stage ladder and eventually had
their fingerprint verified against the fingerprint of the whole pattern and those viable
occurrences that were thrown off the stage ladder due to some nonspecific fingerprint
false-match errors conflicting with the implied periodicity and keeping the algorithm
from compactly representing crowded viable occurrences. The error probability in both
cases is bounded, since it is either due to a fingerprint false-match of the whole pattern
(and its stage prefixes) or to a detected fingerprint-periodicity conflict that must be due
to a fingerprint false-match of some pattern prefix.

THEOREM 3.4. The algorithm just described reports all occurrences of the pattern in
the text in O(log m) time per text symbol using total O(log m) space. The algorithm may
report false occurrences, and, on occasion, it even detects that it had fingerprint errors,
with probability at most 1/nα.
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PROOF. Each stage number i takes constant-time to update one or two fingerprints
with the current text symbol and to discard or promote to stage number i + 1 at most
one viable occurrence. The space requirement for each stage is constant. Multiplying
by O(log m) stages, we get the desired bounds. The error probability is bounded by
multiplying the probability of fingerprint comparison error by the up to O(n log m)
comparisons made.

By allowing extra space to store more individual viable occurrences or arithmetic
progressions, the algorithm could continue to examine the viable occurrences. In such
a case, the worst-case space will not be O(log m), but by making the error probability
sufficiently small, the expected space would still be O(log m). In Section 5, we show a
way to avoid this undesirable property.

4. THE REAL-TIME ALGORITHM

Observe that in the O(n log m) time algorithm just described, fingerprints were only
used in stage number i when the length of the first (longest) block of a viable occurrence
in the stage was equal to the length of the next stage’s pattern prefix |Pi+1|, to verify
whether the viable occurrence should be promoted to the next stage or eliminated.
The key to the real-time implementation is in overcoming the following two challenges:
(1) eliminating repetitive verifications due to small highly repetitive pattern prefixes
(e.g., aa · · · aaa) and (2) evenly spreading out the viable occurrence promotion verifica-
tion to avoid contentious text locations that might require up to �log2 m� verifications.
Both challenges can be overcome by using an additional O(log m) space.

To overcome the first challenge, we find an appropriate prefix of the pattern be-
tween Pg and Pg+1, for g > log2 log2 m, and use Galil’s [1981] deterministic real-time
implementation of the Knuth-Morris-Pratt [Knuth et al. 1977] algorithm, essentially
performing all stages i = 0, . . . , g − 1 together. Let f = �log2 log2 m� + 1 and consider
the pattern prefix P f , such that 2 log2 m < |P f | ≤ 4 log2 m. The pattern preprocess-
ing will start with Galil’s real-time algorithm as the pattern appears in the input
stream and will be stopped after the pattern prefix P f was processed having used only
|P f | = O(log m) extra space to store the pattern prefix and its failure function. If P f is
periodic, then the pattern preprocessing will continue to examine further symbols of P
until either the periodicity ends or the pattern ends. The periodic pattern prefix and
its failure function can still be stored using the same O(log m) space by keeping the
basic period and its length and recalling that the Knuth-Morris-Pratt failure function
essentially consists of the period length of each pattern prefix, which remains the same
after P f for as long as the periodicity did not end. There are three cases:

(1) If the pattern prefix P f is nonperiodic, then we choose g = f . We use Galil’s real-
time algorithm to find all occurrences of Pg in the text using O(log m) space. Since
|Pg| ≥ 2 log2 m, the occurrences of Pg are at least log2 m positions apart.

(2) If the pattern prefix P f is periodic, and the periodicity does not end in the pattern
P, we choose g = �log2 m�, and Pg is the whole pattern. We use Galil’s real-time
algorithm to find the occurrences of the whole pattern Pg.

(3) If the pattern prefix P f is periodic and this periodicity ends in P, let π be the longest
pattern prefix with the same period, such that the periodicity terminates at πa. We
choose g to be such that |Pg| ≤ |πa| < |Pg+1| and use Galil’s real-time algorithm
to find the occurrences of the pattern prefix πa. The reason we can still use Galil’s
algorithm is that, to search for the pattern prefix πa, only O(1) additional space is
required to keep πa and its failure function over the space that was used for the
periodic π, and this is the only information that the algorithm needs.
The following lemma shows that the pattern prefix πa is nonperiodic and therefore
its occurrences must be spaced by more than |πa| ≥ |Pg|/2 ≥ log2 m text positions
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apart. Moreover, such occurrences must start with Pg and will be reported by
the real-time string-matching algorithm before sufficient symbols are available to
verify Pg+1. Observe that no arithmetic progressions are forming at stage number
g because the spacing between the viable occurrences is too large.

LEMMA 4.1. Let u and v be prefixes of a string w, such that |u| < |v|, u is periodic
and v is the shortest prefix of w such that the periodicity of u terminates in v. Then, the
period length of v > |v|− the period length of u, and v is not periodic.

PROOF. Since v = ûa is the shortest prefix of w where the period of u terminates,
the prefix û has the same period as u that terminates at the letter a. Let p ≤ |u|/2 be
the period length of û, and let q ≤ |v| be the period length of v and therefore also the
period length of û. All periods of û that are multiples of the shortest period length p
must also terminate in v. Hence, by Theorem 2.5, q must not be a multiple of p and
q > |û| − p + gcd(p, q) ≥ |û| − p + 1 = |v| − p > |v|/2.

Both cases (1) and (3) above essentially compute all stages numbered 0, . . . , g − 1
together. In case (1) all occurrences of Pg become viable occurrences in stage g as
in the O(n log m) algorithm, whereas in case (3) all occurrences of πa become viable
occurrences in stage g (these are not all occurrences of Pg, but only those occurrences
that can be extended to πa and later to complete occurrences of the whole pattern P).

To overcome the second challenge and avoid too many promotions causing conges-
tion at certain text positions, we adapt the O(n log m) algorithm that handles the higher
numbered stages. Thus, the real-time algorithm has two parts that are run alongside
each other. Galil’s [1981] real-time string-matching algorithm that feeds viable occur-
rences to stage number g of the real-time adaptation of the O(n log m) time algorithm
is described next.

The real-time adaptation simulates the O(n log m) time algorithm by maintaining a
cyclic buffer FP[t] of size k (recall k = �log2 m�) that gives the running fingerprints of
the last text prefixes of locations up to and including the current input text location t.
Specifically, the fingerprints for positions t, t−1, . . . , t −k+1 are stored at FP[t modk].
The round-robin algorithm rotates through the stages numbered i = g, . . . , �log2 m�−2
in increasing order, processing one stage at each text location using the buffer for the
correct fingerprints. Note that because the round-robin algorithm visits every stage in
turn, the stage processing is delayed by less than k steps, and the fingerprint needed
to test whether to promote a viable occurrence to the next stage is still available in the
buffer FP. There is at most one viable occurrences to promote in each stage because
the viable occurrences are spaced by more than k text positions. The following concerns
need attention:

(1) The simulated action may happen out of order with respect to the O(n log m) time
algorithm and even in different order depending on the text location. Note that
because viable occurrences in the same stage are at least log2 m apart and the
delay in the test for promotion is less than log2 m, the order of tests for promotion is
maintained inside each stage. The only case in which the different order will lead
to a different computation is the following: Assume that in the real-time algorithm
x and y are the first and second viable occurrences in stage i, and z was just
promoted from stage i − 1 to stage i as the third viable occurrence in the stage and
it reveals an inconsistency with the periodicity. It is possible that in the O(n log m)
time algorithm x is promoted from stage i to stage i + 1 before z is promoted to
stage i; therefore, in that algorithm, y and z are the only viable occurrences in
stage i, and there is no inconsistency. We can easily fix the order in such a case
to be the same by deleting x from stage i first, because stage i will be considered
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immediately after stage i − 1 in the round-robin algorithm and x can be promoted
then. But, in fact, this is not necessary because the algorithm is still correct with
the different order.

(2) The real-time online algorithm has to output the pattern occurrences immediately
at their end; thus, delayed promotions to the last stage number are not acceptable.
Such delays will be avoided by examining the last stage (number �log2 m� − 1) at
every text location. In case P is longer than the Pi of the next to last stage by less
than log2 m, then this stage too receives the same treatment.

(3) Discarding and reporting viable occurrences when some fingerprint-periodicity con-
flict is detected can take time. The simplest solution is to continue the rotation to
larger number stages and discard the viable occurrences in each stage until the
last stage number �log2 m� − 1. Discarded arithmetic progressions will be com-
pactly written to the output rather than spelled out individually to remain within
the real-time bounds.

THEOREM 4.2. The algorithm just described reports all occurrences of the pattern in
the text in constant time per text symbol using total O(log m) space. The algorithm may
report false occurrences, and, on occasion, it even detects that it had fingerprint errors
with probability at most 1/nα.

PROOF. The algorithm updates the running fingerprint buffer with the current text
symbol in constant time. Each delayed stage action can be properly done because the
�log2 m� fingerprint history is available in the buffer FP. The space requirement for
each stage is constant or O(log m) over all stages, and the overall space required for
Galil [1981] real-time string-matching algorithm and for the buffer FP is O(log m). The
error probability is bounded by multiplying the probability of fingerprint comparison
error by the up to O(n) comparisons made.

5. THE PATTERN PREPROCESSING

The O(n log m) time algorithm only requires the trivial preprocessing of storing the
fingerprints of the pattern prefixes Pi. The real-time algorithm needs to additionally
store either the short pattern prefix P f and its failure function or (if P f is periodic)
the compressed versions of the longer prefix π and its failure function. The real-time
algorithm therefore needs to know the length of the pattern m (or an approximation m′
of m such that log m′ = �(log m) ) in advance while preprocessing the pattern.

Additional pattern preprocessing can be advantageous, though, to try to obtain a
“better” fingerprint function that does not cause any fingerprint-periodicity conflict
while matching the given pattern with a text string that is exactly equal to the pattern.
Conflict-free fingerprint functions can be obtained by trying out several random seeds in
multiple passes over the pattern if the pattern is available for additional re-processing
(i.e., in a k-pass streaming pattern preprocessing algorithm) or by trying out several
random seeds in parallel. Observe that such low-probability fingerprint-periodicity
conflicts would repeat in every occurrence of the pattern in the text because the viable
occurrences within an actual occurrence of the patten in the text includes all viable
occurrences processed while matching the pattern against itself.

THEOREM 5.1. Given the fingerprint function and the pattern, if the pattern
is fingerprint-periodicity conflict free, then when the streaming algorithm discards
viable occurrences in the text due to fingerprint-periodicity conflict, the discarded vi-
able occurrences do not need to be reported as potential occurrences.

PROOF. Assume that the algorithm encounters a fingerprint-periodicity conflict while
processing the text. Such conflicts arise when some viable occurrence is promoted into
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the next stage but it does not fit the arithmetic progression and periodicy requirements.
Let x and y be the last two viable occurrences in this stage and let z be the newly
promoted viable occurrences. Note that there might be other viable occurrence starting
at positions before x in the text at the same or higher number stages.

Suppose that the viable occurrence starting at x′ ≤ x is an actual pattern occurrence.
Because the surviving viable occurrences only depend on fingerprints, all viable occur-
rences that remained within an actual pattern occurrence must be the same as the
viable occurrences maintained at the same relative phase while matching the pattern
against itself (as a text string) in the pattern preprocessing.

Therefore, if there were no such fingerprint-periodicity conflicts while preprocessing
the pattern, there can be no actual pattern occurrence starting at x′. Therefore, if the
algorithm encounters such a fingerprint-periodicity conflict (occurrences x, y, and z),
it is permissible to discard all the viable occurrences x′ ≤ x while keeping y and z and
all viable occurrences z′ > z.

6. CONCLUSION

In addition to their string-matching algorithm, Porat and Porat [2009] also presented
approximate string-matching streaming algorithms that rely on their exact streaming
string-matching algorithm. In private communications, Porat [2010] mentioned to us
that those bounds have since been further improved. By swapping Porat and Porat’s
exact string-matching black-box component with our new real-time string-matching
algorithm, one can improve their approximate string-matching time bounds by an
additional log m factor.

Porat and Porat [2009] also mention numerous applications for streaming string
matching. In many cases, one would be interested in searching simultaneously for
multiple patterns, also called the dictionary matching problem. By running d in-
stances of our new streaming algorithm, the bounds trivially add up to O(dn) time and
O(

∑d
j=1 log mj) space following an O(

∑d
j=1 mj) time pattern preprocessing. However,

if the dictionary patterns have uniform length m, then our O(n log m) time streaming
algorithm can be extended to d patterns within the same O(n log m) time bounds. In pri-
vate communications, Porat [2010] mentioned to us that he also had reached somewhat
similar conclusions about his work.

There still remains a gap between the lower and upper bounds:

—Ergün et al. [2010] proved that �(log m) space is required for streaming string match-
ing when n ≥ m1+ε . We suspect that the same lower bound should hold even when
n = cm, for a constant c.

—In private communications [Alon 2010] pointed out an �(d) space streaming lower
bound argument for dictionary matching with d patterns. It is an interesting question
to close the gap between the lower bounds and the O(d log m) time upper bound as
the pattern length m grows.
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