
Sparse Suffix Trees*

Juha K/irkk/iinen and Esko Ukkonen

Department of Computer Science, P.O. Box 26 (Teollisuuskatu 23)
FIN-00014 University of Helsinki, Finland.

Email: { Juha.Karkkainen,Esko.Ukkonen} @cs.Helsinki.FI

A b s t r a c t . A sparse suffix tree is a suffix tree that represents only a
subset of the suffixes of the text. This is in contrast to the standard suffix
tree that represents all suffixes. By selecting a small enough subset, a
sparse suffix tree can be made to fit the available storage, unfortunately
at the cost of increased search times. The idea of sparse suffix trees goes
back to PATRICIA tries. Evenly spaced sparse suffix trees represent
every kth suffix of the text. In the paper, we give general construction
and search algorithms for evenly spaced sparse suffix trees, and present
their run time analysis, both in the worst and in the average case. The
algorithms are further improved by using so-called dual suffix trees.

1 I n t r o d u c t i o n

Finding an index for a long text that makes fast string matching possible is
one of the very central problems of text processing systems. Suffix trees offer
a theoretically time-optimal solution. A suffix tree is a trie-like data structure
that represents all suffixes of a text. I t can be constructed in t ime linear in the
length of the text [16, 13, 15]. With the help of the suffix tree it is possible to
find all occurrences of a given string ('keyword') in the text in t ime that is linear
in the length of the string and in the nmnber of the occurrences. Because of such
strong properties, suffix trees are used as essential building blocks in several
string matching algorithms [4].

Although linear in size, a suffix tree can be too large to be really at tractive
in practical applications. The size depends on implementation details and the
structure of the text, but will never be as low as 10n bytes, where n is the
size of the text. Suffix arrays [11, 6] (size 5n bytes), level-compressed tries [2,
3] (size about l l n bytes), suffix cactuses [8] (size 9n bytes), and suffix binary
search trees [7] (size about 10n bytes) are alternative smaller data structures
with almost the same properties as the suffix tree. Their space requirement is
still high for large texts. As the text in many applications (natural language
processing, biocomputing) can be very long, such a high space requirement can
make it impossible to accommodate the entire tree in the fast memory. In this
case the slow secondary memory operations can, in practice, destroy the good
theoretical performance. Hence there is a need to find small alternatives for suffix
trees, even at the cost of increased search times.

* A work supported by the Academy of Finland.

220

In this paper we study sparse suffix trees (SSTs), suffix trees that contain only
a subset of all the suffixes of the text. For example, if the text is natural language,
one could want to represent only the suffixes that start from the beginning of
each word (instead of each character) [6]. The idea already appears in [14]. Such
an unevenly spaced SST can be constructed either through the full suffix tree,
at the cost of extra space, or by brute force construction, at the cost of extra
time. Recently, Andersson et. al [1] have presented fast construction algorithms
working in small space.

Another natural variation is to represent every kth suffix for some fixed k.
Such an evenly spaced SST can be constructed directly, in linear time, using a
modified version of the classical suffix tree construction algorithm. Obviously,
the size of an evenly spaced SST is O(n/k) where n is the length of the text.
By increasing k one can make the tree arbitrarily small, so that it can be stored
into the available memory. Unfortunately, this can only happen at the cost of
increased string matching times. There is a trade-off between the size of an SST
and the search time for finding the occurrences of a given pattern string using the
SST. We develop a search algorithm for an evenly spaced SSTs and show that
its expected running time for a random text (in the uniform Bernoulli model) is

n n O (~-~ + kmin {m, logc-~} +min {mck- l ,nck-m, ~ }) ,

where m is the length of the pattern, n is the length of the text, and c is the size
of the alphabet.

A totally different, word-oriented approach to the indexing problem is de-
scribed in [12]. We expect our approach to be useful in applications in which the
strings to be searched from the text are relatively long and there is no natural
word-like structure in the text.

2 P r e l i m i n a r i e s

Let T = tot1 ... tn-1 be a string over alphabet E'. The length of T is ITI = n. A
substring T[of T is a string tit~+l �9 .. tj-1 for some 0 < i < j < n. The string

Ti = T~ = t i . . . t,~-i is a suffix of string T and the string T j = T~ = to.. . t j - i
is a prefix of string T.

Let string T of length n be the text and string P of length m the pattern. The
problem of string matching is to find the occurrences of string P as a substring of
T. It can be solved in linear time by scanning text T using, e.g., the Knuth-Morris-
Pra t t algorithm [9]. For a large static text, a faster solution can be achieved by
preprocessing the text.

A suffix tree of text T is a compacted trie for the suffixes of T. Fig. 1 shows an
example of a suffix tree. A node v of suffix tree represents the string that is formed
by catenating the strings within the nodes on the path from the root to node v
inclusive. Each internal node has at least two children and the string within
each child starts with a different character. Let S denote a node representing the
string S. The same notation is also used for any point within the nodes, that is,

221

S denotes the point such that the path from root to that point spells out S. A
node R is said to contain a point S if S lies within the node R. As an example,
the r ightmost leaf in Fig. 1 is cca and it contains point ~--g. There is no node gg.

Fig. 1. The suffix tree of string cabacca.

Using suffix trees, all suffixes with prefix P can be found in t ime O(m + 1),
where l is the number of suffixes in the result. This gives all the occurrences of
P , because every substring of T is a prefix of some suffix, i.e., T[= (Ti) j.

The strings within the nodes of a suffix tree are represented by pairs of
pointers to the text in constant space, making the size of the suffix tree linear in
ITI. Suffix trees can be constructed in linear t ime [16, 13, 15]. The construction
algorithms utilize extra pointers, called the suffix links, between the nodes. From
an internal node S there is a suffix link to node S--'~.

3 S p a r s e S u f f i x T r e e s

As all internal nodes of a suffix tree have at least two children, the size of the
suffix tree is linear in the number of leaves, i.e., the number of suffixes in the tree.
A significant reduction in the size can be achieved by including only a subset of
the suffixes. We call such a tree a sparse suffix tree. A suffix tree containing all
suffixes is full. Fig. 2 shows two examples of sparse suffix trees.

Let us first consider a general sparse suffix tree containing some arb i t ra ry
subset of suffixes. For a sparse suffix tree SST, we call these suffixes the SST-
suffixes. The starting points of these suffixes in the text are called the suffix
points. A sparse suffix tree can be used to find efficiently all occurrences of a
pat tern P starting at the suffix points. However, an arbi t rary sparse suffix tree
may not be of much help in finding all the other occurrences.

To achieve sublinear full string matching over a sparse suffix tree SST, we
need to put some restrictions on the set of SST-SUffixes. One possibility is to put
an upper limit on the distance between two adjacent suffix points. This will limit
the distance from an occurrence to the closest suffix point. String matching over
sparse suffix trees will be discussed further in Sect. 5.

222

a

b
a

a

b
a

c

c

a

b
a

a

al
bl

a a l

b Cl
a c [

ci
C
al a l

I
b c l
a c I

a a l

b l
a l
a l

Fig. 2. Two sparse suffix trees over string cabaccabaccabaa. The tree on the left con-
tains all suffixes that start after symbol c. On the right is a 3-spaced suffix tree.

Another drawback of general sparse suffix trees is their construction time.
The linear t ime construction of full suffix trees relies heavily on suffix links. In a
full suffix tree there is a suffix link from S to $1. A key fact is that the node $1
always exists (see Lemma 3 below). This is no more true in SSTs. As a result,
the linear time construction algorithm does not work for SSTs. Of course, we
can always construct the full suffix tree first and then prune it to get the sparse
suffix tree. This can be done in O(n) time, where n is the length of the text, but
it also needs O(n) space.

A trivial construction algorithm for sparse suffix trees adds the suffixes to the
tree one at a time following the path from root to the point where the new leaf is
added. The construction works in just O(N) space for a sparse suffix tree of N
suffixes. The construction time is, in the worst case, linear in the total length of
the suffixes, which is O(Nn). By the results of Apostolico and Szpankowski [5],
the expected construction time for random text and randomly selected suffixes is
O(n+NlogN). Recently, Andersson et. al [1] have described a more complicated
O(n) time and O(N) space construction algorithm.

4 E v e n l y S p a c e d S p a r s e S u f f i x T r e e s

An evenly spaced sparse suffix tree contains every kth suffix of the text for some
positive integer k. We will also use the term k-spaced suffix tree. Fig. 2 shows an
example of a 3-spaced suffix tree. The even spacing helps full string mathing over
the tree as we will see in Sect. 5. In this section we will show how to modify the
linear t ime construction algorithm for full suffix trees to work for evenly spaced
suffix trees. Essentially the same algorithm was presented in different context in
[10].

223

For the construction algorithm we need suffix links.

D e f i n i t i o n 1. In a k-spaced suffix tree, there is a suffix link from an internal
node S to root, if [SI < k, and to another internal node Sk otherwise.

Note that for k = 1, Definition 1 coincides with the definition of suffix links for
full suffix trees.

The node Sk always exist as we shall next prove. We will need the following
well-known lemma characterizing the set of internal nodes of suffix trees. The
lemma holds for all suffix trees including general sparse suffix trees.

L e m m a 2. Let SST be a sparse suffix tree over text T. The tree SST has a node -S
if and only if there exist two SSW-SUffXeS Ti and Tj such that the longest common
prefix of Ti and Tj is S.

Now we can show that the node pointed to by a suffix link in Definition 1
always exists.

L e m m a 3 . If a k-spaced sparse suffx tree SST has an internal node S, ISI > k,
then SST has an internal node Sk.

Proof. By Lemma 2 there exists two SST-SUffixes Ti and Tj such that S is the
longest common prefix of the suffixes. Both suffixes must be at least as long as S,
i.e., longer than k. Thus suffixes Ti+k and Tj+k also exists and, due to k-spacing,
are SST-SUffixes. The longest common prefix of Ti+k and Tj+k is Sk and thus SST
has the node Sk. []

The different definition of suffix links is the only major modification needed
for the construction algorithm to work for evenly spaced sparse suffix trees.
We will omit here the details of this quite complicated algorithm and refer to
[13, 15]. The resulting algorithm constructs a k-spaced SST in O(n) time and
O(n/k) space.

5 S t r i n g M a t c h i n g

Efficient string matching in full suffix trees utilizes the fact that every substring
of the text is a prefix of some suffix. However, a sparse suffix tree SST does
not contain all suffixes and thus we have to modify our approach to find those
occurrences of the pattern that are not prefixes of an SST-suffix.

The situation for a single occurrence is depicted in Fig. 3. The start of the
occurrence is between two suffix points. An obvious solution is to use a suffix
starting at one of these suffix points to locate the occurrence. This gives us the
following two basic methods for finding the occurrence of pattern P.

Method 1: Find a suffix Ti such that the pattern occurs in the suffix
after some arbitrary prefix of length g, " - ~i+g+m = p. 1.~., ~ i+g

224

occurrence
I I

gap head b o d y gap
I, i I i I

Fig. 3. An occurrence of a pattern in a text.

Method 2: Find a suffix Ti such that it has a prefix T~ that is a
suffix ph of the pat tern P. Check whether T~_ h = ph.

A problem with both methods is that, for one occurrence, there may be many
suffixes satisfying the condition. Of course, we want to find the suffix with the
closest start ing point, but in an arbi t rary sparse suffix tree it is not easy to
limit searching to only the closest suffixes. However, a limit k on the maximum
distance between adjacent suffix points guarantees that for each occurrence there
is a suffix point within distance k - 1 in each direction. Furthermore, in the case
of k-spaced suffix trees there is exactly one suffix within that distance in each
direction.

The second method has a more serious problem: There may be no suffix
points at all within an occurrence. A limit k on the maximum distance between
consecutive suffix points makes the method work for patterns of length at least
k.

The two methods can be combined to form a more efficient method. The
key observation is that, when the s tar t of an occurrence is far away from the
preceding suffix point, it is close to the following suffix point and vice versa.
Especially effective this idea becomes with the k-spaced suffix tree. If g is the
distance from the start of an occurrence to the preceding suffix point and h is the
distance to the following suffix point, then g + h = k. The combined algorithm
is presented in Fig. 4.

Let Wg be the width of SST at depth g, i.e., the number of different strings
of length g that can be read starting from the root. For a single value of g for
which Method 1 is selected, the loop start ing at line 3 is executed Wg times. The
check at line 4 takes O(m) t ime in the worst case. The innermost loop at lines 5
and 6 is executed once for each occurrence found using Method 1. Thus the total
t ime taken by the loop over the whole algorithm is at most linear in the size of
the output. For a given g, using Method 1 would therefore take O(mWa) in the
worst case (excluding the size of the output for a moment).

Let Ch be the number of occurrences of Ph start ing at suffix points. For a
single h = k - g for which Method 2 is selected, the loop at line 8 is executed Ch
times. The check at line 7 takes O(m) time and each check at line 9 takes O(h)
t ime in the worst case. For a given g, Method 2 would therefore take O(m +

225

input: k-spaced suffix tree SST over text T, pattern P
ou tpu t : starting points of all occurrences of P in T
(1) f o r g = 0 t o k - 1 do
(2) Determine whether to use Method 1 or Method 2 (see text).

Method 1:
(3) for all points G of SST, I e l = g do
(4) if point GP exist in SST then
(5) for all leafs Ti under GP do
(6) output i + g

Method 2:
(7) if point P~_g exist in SST then
(8) for all leafs Ti under Pk-g do
(9) if T~_k+g = pk-g then
(10) output i - k + g

Pig. 4. The combined string matching algorithm for k-spaced suffix trees.

hCh) = O(m + (k - g)Ck-g) in the worst case.
To determine at line 2 which method to use, we must t ry to estimate the t ime

that each method would take. Assume that we have precomputed and stored the
values Wg, g = 1 , . . . , k - 1. Then we can compute in constant t ime a good
estimate for the time requirement of Method 1. The value Ch is the size of the
subtree under Ph. The Ch's can be precomputed and stored in the nodes of
the tree. Then an estimate of the complexity of Method 2 can be computed in
constant t ime after the execution of line 7. Based on these estimates, we select
Method 1 if mWg < (k-g)Ck_g and Method 2 otherwise. This gives an algorithm
with total time complexity

k-1 /
0 l + km + E min{mWg' (k - g)Ck-g}

g=0

(1)

for a fixed problem instance. Here 1 is the size of the output and km is the total
t ime spend at line 7 which is executed every time to select the method.

It can be shown that the worst case running time of the algorithm is O(kn),
but we will omit the analysis in this paper. Instead, we will analyze the average
case behavior of the algorithm using the uniform Bernoulli model of randomness.
This should give a better idea of the practical behavior of the algorithm.

I t is not difficult to see that in the average case Wg = O(min{c~,n/k}) and
Ch = O(n/(kcm-h)), where c = [Z[is the size of the alphabet. The te rm within
the summation in (1) can now be bounded by

min{mc g, ran~k, (k - g)nck-g-m/k}

< min{mc g, nc k-g-m } -= min{T1 (g), T2 (g) }.

226

Table 1. Active ranges of the terms of the bound in Theorem 4.

term meaning active range

m c k - 1

r i ck - m

size of output

Method 1 Mways faster

both methods used

Method 2 always faster

k - 1 <_log c ~ - m < c ~

k - 2 < log c ~ - m < k - 1
n -k_< log~ m - m < k - 2

- m < log~ ~ - m < - k
- - r n

The sum is then asymptotical ly bounded by its largest term, because T1 increases
and T2 decreases exponentially in g. If Tl(g) < T2(g) (or T2(g) < T1(9)) for
all g e { 0 , . . . , k - 1}, then the largest term is Tl(k - 1) (T2(0)). Otherwise,
the minimum is bounded by T1 (~), where ~ is such that T1 (~) = T2(~), i.e.,
[t = (logc(n/m) + k - m)/2. This gives the upper bound

m i n { m c k - l , n c k - m , ~ }

for the largest term. After an average case analysis of the other terms of (1)
(omitted here) we get the following theorem.

T h e o r e m 4. Let T be a random text of length n in the uni/orm Bernoulli model
o/randomness and let P be any pattern o/length m. The expected running time
of the string matching algorithm in Fig. ~ over a k-spaced sparse suffix tree o /T
is

n n
O (- ~ + k m i n { m , l o g c ~ } + m i n { m c k - l , n e k - m , ~ }) .

The bound in the theorem is quite complicated. Table 1 tries to shed a little
light on it. The table tells, for each te rm in the bound, the range of parameters
(active range) for which the term dominates the other terms. The middle term of
the bound representing the selection time is not included in the table. There are
combinations of parameters for which the selection term dominates, but the areas
of domination are more complicated and higher dimensional than the clean linear
ranges in the table. These areas fall within the two bo t tom ranges of the table.
As it is, Table 1 represents the bound with the selection term removed. This is
not a big concern, though, because the selection term has little dependence on
the most important parameter , the length of the text. From the table we can also
see that for large enough text the size of output dominates the running time.

6 D u a l S u f f i x T r e e s

A reverse s u e z tree is the suffix tree of the reverse of a text. Let SST be a
sparse suffix tree. I ts dual reverse tree SST R is a sparse reverse suffix tree that

c

contains the reverse T iR of prefix T i if and only if SST contains the suffix Ti.
Fig. 5 illustrates the dual reverse tree.

A simple method to utilize dual trees is to use them as alternatives to each
other in the same way as Method 1 and Method 2 were alternatives in the al-
gori thm of Fig. 4. However, this could be done with any two sparse suffix trees.
What we want to do is to utilize the complementary properties of dual trees. We
can use an SST to find the occurrences of suffix Ph starting at a suffix point as
was done in Method 2. Then, instead of looking into the text, we use the dual
reverse tree to check which of the occurrences of Ph are preceded by ph.

The answer to a basic string matching in a (sparse) suffix tree is defined by
some subtree of the suffix tree and can be represented by the root of this subtree.
With a left-to-right ordering of the leaves, the answer can also be represented as
a subinterval of this Ordering. The end points of the intervals can be precomputed
and stored to the nodes. Thus, we can get a root of subtree representation or an
interval representation of the answer in t ime linear in the length of the pat tern
regardless of the size of the answer.

Suppose that each leaf ~ of SST contains the index of leaf T iR in the ordering
of the leaves of SST R. We can then, for each leaf ~ of SST under point ~hh, check

whether T iR is in the subinterval representing the occurrences of ph. This check
takes constant time instead of O(h) time that the corresponding check takes with
Method 2.

An even better method can be developed by utilizing the root of subtree
representation of search result. The method is based on what we call dual links
between nodes of the two trees.

227

b
&

C

C

a

b
a

c

c

a

b
a

a

Fig. 5. The 3-spaced suffix tree SST
tree S S T R .

b

l
1

for text cabaccaabaccaabaa and its dual reverse

228

D e f i n i t i o n 5. Let SST be a k-spaced sparse suffix tree and SST R its dual reverse
tree. Let S be a node of SST and let t -- kUS[/k j. Let R be the node of SST R

that contains point StR. A pointer from S to R is called a dual link.

Example 1. Consider the node S --- accaaba in SST in Fig. 5. Now t = 6, S 6 =
accaab, and the string accaab R = baacca is contained by the node R =
baaccaba in SST R. Therefore, the dual link from S points to R. []

The length of the string S t is a multiple of k. This means that wherever S t
appears as a prefix of an SST-SUffix it is also a suffix of an SSTR-prefix. Thus the
subtree under S --7 in SST and the subtree under R in SST R represent the exactly
same set of occurrences of S t. Note that the node S may not contain the point
S t. The dual link from such a node is not used in string matching but is needed
for the construction.

The dual links can be set up by a breadth first traversal of SST after first
constructing the two trees separately. The construction is based on the following
lemma.

L e m m a 6 . Let SST be a k-spaced sparse suj~ix tree and SST R its dual reverse
tree. Let -S be a node of SST, IS[> k, and let -R be the node pointed to by the
dual link from 5. Then the dual link from node S--k points to an ancestor 2 ~ of
R for some s.

Proof. We first note that by Lemma 3 Sk is indeed a node. Let t = k[lSl/k].

Then, by Definition 5, R contains point S tR and the node R-~ contains point

S~ a. The string StR is a prefix of string StR and thus ~-7 must be an ancestor
of R. []

- - - - m

The suffix link from node S points to node Sk. Thus, starting from S we
can find the node R by following first a suffix link, then a dual link and finally
traveling down the tree SST R. This takes at most O(k) time. The dual link from
S--~- must be set before the dual link from S, so the nodes must be processed in
(at least roughly) breadth first order. The number of nodes is O(n/k) , thus the
total time taken by the construction is O(n).

A string matching algorithm using dual links is given in Fig. 6. We describe
it using the terminology from Fig. 3. The value h is the length of the head. The
algorithm first finds point Ph of SST representing the body of the occurrence
and then extends it in all possible ways to reach a depth that is a multiple of k.
Then, for each such extension, the algorithm finds the corresponding point in the
reverse tree using a dual link and matches the head to complete the pattern.

Comparing this algorithm to Method 2, we notice that this algorithm does
not search the whole tree under point Ph. Instead, this algorithm goes through
all points at depth g below Ph. The number of those points is always at most, and
can be significantly less than, the number of leaves under P--hh. Thus the algorithm
is always at least as fast as Method 2.

2 A node is an ancestor of itself.

229

inpu t : k-spaced suffix tree SST over text T, dual reverse tree SST R
pattern P (m = IPD

o u t p u t : starting points of all occurrences of P in T
(1) Find and output occurrences starting from suffix points (h = 0).
(2) for h = l to k - l do
(3) if h _> m t h e n use Method 1 over SST R
(4) else if point Ph exists in SST then
(5) for all points P~G of SST, (G[---- g = (- m -F h) mod k do
(6) Let PhGS be the node containing point PhG.
(7) Let t = k[ISt/k].
(8) Follow dual link from PhGS to node v of SST R.

Node v contains point S~RGR(Ph) R.
(9) if point S~aGR(Ph)RP hR = S~RGRP R exist in SST R t h e n

(10) for all leafs T iR under S taGaP R do
(11) output i - m - g - t

Fig. 6. String matching with dual suffix trees.

The a lgor i thm can also be compared to Method 1 over the reverse tree SST R.
For both methods the wildcard s tr ing G is the s tr ing between the end of the
occurrence and the following suffix point. Method 1 goes th rough all different G
ending at a suffix point , while this a lgor i thm goes t h rough only those tha t are
also preceded by Ph. Thus the a lgor i thm is always at least as fast as Method 1
over the reverse tree.

We could combine Method 2 for SST and Method I for SST R in the same
way as the two methods for one tree were combined in the previous section. By
the above compar isons the a lgor i thm in Fig. 6 is always at least as fast as this
combined algori thm. The difference m a y not be very large, however, because for
small pat terns Method 1 is close to the a lgor i thm in Fig. 6 and for large pat terns
Method 2 is close to the algorithm.

R e f e r e n c e s

1. A. ANDERSSON, N. J. LARSSON, AND K. SWANSSON, S U ~ trees on words, in
Proc. 7th Symposium on Combinatorial Pattern Matching (CPM), 1996. To ap-
pear.

2. A. ANDER.SSON AND S. NILSSON, Improved behaviour of tries by adaptive branch-
ing, Inf. Process. Lett., 46 (1993), pp. 295-300.

3. - - , Efficient implementation of su~ix trees, Software--Practice and Experience,
25 (1995), pp. 129-141.

4. A. APOSTOLICO, The myriad virtues of subword trees, in Combinatorial Algorithms
on Words, A. Apostolico and Z. Galil, eds., Springer-Verlag, 1985, pp. 85-95.

5. A. APOSTOLICO AND W. SZPANKOWSKI, Self-alignments in words and their ap-
plications, Journal of Algorithms, 13 (1992), pp. 446-467.

230

6. G. H. GONNET, R. A. BAEZA-YATES, AND T. SNIDER, Lexicographical indices for
text: Inverted files vs. PAT trees, Technical Report OED-91-01, Centre for the New
OED, University of Waterloo, 1991.

7. R. W. IRVING, Suffix binary search trees, Technical report TR-1995-7, Computing
Science Department, University of Glasgow, Apr. 1995.

8. J. KXRKK~.INEN, Suffix cactus: A cross between suffix tree and suffix array, in Proc.
6th Symposium on Combinatorial Pattern Matching, CPM 95, 1995, pp. 191-204.

9. D. E. KNUTH, J. H. MORRIS, AND V. R. PRATT, Fast pattern matching in strings,
SIAM J. Comput., 6 (1977), pp. 323-350.

10. S. R. KOSARAJU AND A. L. DELCHER, Large-scale assembly of DNA strings and
space-effcient construction of suffx trees, in Proc. 27th Annual ACM Symposium
on Theory of Computing (STOC), 1995, pp. 169-177.

11. U. MANBER AND G. MYERS, Suffix arrays: A new method for on-line string
searches, SIAM J. Comput., 22 (1993), pp. 935-948.

12. U. MANBER AND S. Wu, A two-level approach to information retrieval, Technical
Report TR 93-06, University of Arizona, 1993.

13. E .M. MCCREIGHT, A space-economical suffix tree construction algorithm,
J. Assoc. Comput. Mach., 23 (1976), pp. 262-272.

14. D . R . MORRISON, PATRICIA--Practical Algorithm To Retrieve Information
Coded in Alphanumeric, J. Assoc. Comput. Mach., 15 (1968), pp. 514-534.

15. E. UKKONEN, On-line construction of suffix-trees, Algorithmica, 14 (1995),
pp. 249-260.

16. P. WEINER, Linear pattern matching algorithms, in Proc. IEEE 14th Annual Sym-
posium on Switching and Automata Theory, 1973, pp. 1-11.

