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A b s t r a c t .  The suffix cactus is a new alternative to the suffix tree and 
the suffix array as an index of large static texts. Its size and its per- 
formance in searches lies between those of the suffix tree and the suffix 
array. Structurally, the suffix cactus can be seen either as a compact 
variation of the suffix tree or as an augmented suffix array. 

1 I n t r o d u c t i o n  

The  suffix tree is one of the most  impor tan t  da t a  s t ructures  in stringology. The  
suffix tree is an index-like s t ruc ture  formed from a string tha t  allows many  kinds 
of  fast queries about  the string. W h a t  makes the suffix tree a t t rac t ive  is t ha t  its 
size and its const ruct ion t ime are linear in the length of the text  [19, 14, 17]. 
Suffix trees have a wide variety of applications.  Apostolico [4] cites over forty 
references on suffix trees, and Manber  and Myers [13] ment ion several newer 
ones. 

The  application,  tha t  we are most ly  interested in in this paper ,  is the use of a 
suffix tree as an index of a large static text  to allow fast searches. The  basic search 
type  is s tr ing matching,  i.e. searching for the occurrences of  a pa t te rn  s tr ing 
in the  text.  Other  useful forms of queries include regular expression match ing  
and approx imate  str ing matching.  Examples  of very large texts  requiring fast 
searching are electronic dictionaries [8], and biological sequence databases  [16]. 

To work efficiently, the whole suffix tree must  fit in the main  memory.  Thus  
the space requirement  of the suffix tree is an impor tan t  issue. Gonnet ,  Baeza- 
Yates and Snider [8] have studied the use of suffix trees with only a small par t  
at a t ime in the main  memory,  but  m a n y  applications slow down unacceptably.  
The  exact  size of  the suffix tree depends on the implementat ion and the type  of  
the text.  A typical  size for a t ight implementa t ion on english text  is about  15 
bytes per text  symbol.  

The  suffix array [13, 8] is a da t a  s t ructure  which, like the suffix tree, allows 
fast searches on a text. The  size of an efficient implementat ion of  a suffix array, 
including the text  itself, is only 6 bytes per text  symbol.  In s tr ing match ing  the 
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performance of suffix arrays is comparable to suffix trees, but other types of 
searches, such as regular expression matching, are slower on suffix arrays. 

In this paper  we present a new suffix-tree-like da ta  s tructure called the suffix 
cactus. The size of a suffix cactus, 10 bytes per text symbol,  lies between the 
sizes of suffix trees and suffix arrays. The same holds for the performance in 
many applications, such as regular expression matching. 

The suffix cactus offers an interesting new point of view to the family of 
suffix structures. The structure of the suffix cactus has similarities with both 
the suffix tree and the suffix array. The suffix cactus could be described either 
as a compact  version of the suffix tree or as a suffix array augmented with some 
extra  information. The suffix cactus can therefore be called a cross between the 
suffix tree and the suffix array. 

Recently, Anderson and Nilsson [2, 3], and Irving [9] have introduced new 
alternative da ta  structures. The level compressed trie of Andersson and Nilsson 
takes about  12 bytes per text  symbol and has matching properties comparable  
to the suffix cactus. The suffix binary search tree of Irving takes 14 bytes per 
text symbol and is similar to the suffix array in matching problems. 

1.1 Bas i c  D e f i n i t i o n s  

Let T = t i t2 . . . t ,~  be a string over alphabet  ,U. A substring of T is a string 
T~ = t~ t i+l . . . t j  for some 1 < i < j < n. The string T~ = T~ = t i . . . t ,~  is a 

suffix of string T and the string T j = T j = tl  �9 . .  t j  is a prefix of string T. Let S 
and T be two strings and let j be the largest number for which S j = T j. Then 
the string S j = T j is called the longest common prefix of S and T and its length 
j is denoted LCP(S, T). 

A trie (see e.g. Knuth  [11]) is a rooted tree with the following properties. 

1. Each node, except the root,  contains a symbol of the alphabet.  
2. No two children of the same node contain the same symbol.  

A node v represents the string which is formed by catenating the symbols con- 
tained by the nodes on the path  from the root to v, inclusive. Due to the second 
property, no two nodes may  represent the same string. Note that ,  if a node v 
represents string S, then the ancestors of v represent the prefixes of S. The depth 
of a node v, denoted by DEPTH(v), is the length of the pa th  from the root to v, 
i.e., the length of the string that  v represents. 

The suffix trie S T r ( T )  of text T is a t r i e  whose leaves represent the suffixes 
of T. The nodes of suffix trie S T r ( T )  represent exactly the set of substrings of 
T, because every substring of the text is a prefix of some suffix, i.e. T~ -- (T~) j .  
An example suffix trie, for the string cabacca$ ,  is shown in Fig. 1. 

The size of the suffix trie for a text of length n is O(n 2) which makes it 
impractical  for large texts. However, the suffix tree and the suffix cactus are 
basicly more compact (linear size) versions of the suffix trie. In Section 2 we will 
define the suffix cactus using the above description of the suffix trie. 
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Fig. 1. The suffix trie of the string cabacca$. The symbol $ is an extra symbol used 
for making all suffixes end in a leaf. The suffix $ is omitted from the trie. 

1.2 M a t c h i n g  

Let a string T of length n be the text and a string P of length m the pattern. The 
problem of string matching is to find the occurrences of string P as a subtring 
of T. It  can be solved in linear t ime by scanning text T using, e.g., the Knuth-  
Morr is-Prat t  algorithm [12]. For a large static text, a faster solution can be 
achieved by preprocessing the text. Suffix trees, suffix arrays and suffix cactuses 
are suitable preprocessing structures. 

In regular expression matching the goal is to find all substrings of text  T 
that  match a given regular expression. A similar problem is approximate string 
matching where, given a string P and an integer k, one wants to find the sub- 
trings T~ of text  T such that  the edit distance between P and Ti is at most k. 
Both of these problems can be solved by scanning the text. Regular expression 
matching takes O(n) t ime (excluding the preprocessing of the regular expression) 
[1] and approximate  string matching O(kn) t ime [7, 18]. 

Baeza-Yates and Gonnet have described methods to use the suffix tree to 
do both regular expression matching [5] and approximate  string matching [6]. 
The lat ter  idea was also independently mentioned in [10, Remark  2]. Both of 
these methods are based on scanning one suffix of T at a t ime to find whether 
it has a matching prefix. The methods take advantage of the fact that ,  if a set 
of suffixes has a common prefix of length d, then the state of the scan after the 
first d characters is the same for all of the suffixes. Therefore that  par t  of the 
scan needs to be done only once. The suffix tree provides the information about  
common prefixes. It can be replaced by another suffix structure. 

The above method for approximate  string matching is more efficient than the 
basic text scan method only with short pat terns  and small values of k. However, 
Myers [15] has developed a method to do efficient approximate  string matching 
even with long pat terns  and large k. The method divides the pat tern  into smaller 
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parts whose approximate occurrences with small edit distance limit are searched 
separately. The results are then combined and used to restrict the area of the 
text that needs to be scanned. The matching of the parts can be done with the 
method of Baeza-Yates and Gonnet; Myers uses a slightly different method. 

1.3 Suffix Tree  a n d  Suffix A r r a y  

The suffix tree discovered by Weiner [19] is a compact version of the suffix trie. 
It is formed by catenating each unary node (a node with exactly one child) with 
its child. An example is shown in Fig. 2(a). The strings in the catenations are 
substrings of the text and can thus be represented by two pointers into the text. 
The suffix tree has one leaf for each suffix and the number of other nodes is less 
than the number of leafs, because all the other nodes have at least two children. 
Thus the size of the suffix tree is linear in the length of the text. 

b) 

[ 7 1 2 1 4 1 3 1 6 1 1 1 5 [  

a a a b c c c 

$ b c a a a c 

a c c $ b a 

C a c a $ 

c $ a c 

a $ c 
$ a 

$ 

Fig. 2. a) Suffix tree and b) suffix array for string c a b a c c a $ .  

If the alphabet size I~1 is considered constant, the suffix tree can be con- 
structed in time O(n) [19, 14, 17] and string matching takes time O(m). The 
dependency on I~1 may be linear, logarithmic or constant depending on the im- 
plementation of branching. The most compact alternative uses linked lists and 
has linear dependency on IEI. In regular expression matching and approximate 
string matching the linked list implementation is as good as or better than other 
implementations. 

In its basic form, the suffix array is just a lexicographically ordered array of 
the suffixes of the text. The suffixes are represented by their starting positions 
as illustraded in Fig. 2(b). The suffix array was discovered by Manber and Myers 
[13], and independently by Gonnet, Baeza-Yates and Snider [8]. 

String matching in suffix arrays can be done in O(mlogn) time by a binary 
search. Manber and Myers [13] improved the string matching time to O(m+log n) 
by providing additional information about the lengths of the longest common 
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prefixes (LCPs) between the suffixes. The LCPs are provided for each parent- 
child pair in an implicit tree structure called the interval tree. The interval tree 
is defined by the binary search order. The root of the interval tree is the middle 
suffix of the array, i.e. the first suffix processed in the binary search. The left 
child of the root is the middle suffix of the first half of the array and the right 
child is the middle suffix of the second half of the array. The next level of nodes 
is formed by the middle suffixes of the quarters of the array, and so on. 

The above described LCP information is essential for efficient regular expres- 
sion matching and approximate string matching in suffix arrays. The suffix array 
is still slower than the suffix tree in these tasks, in the worst case by a factor 
O(log n). In practice the difference is smaller, though. 

The advantage of the suffix array over the suffix tree is its smaller size. Even 
with the LCP information the suffix array can be implemented using only 6 bytes 
per text symbol including the text itself. 

The suffix array can be constructed in linear time by constructing first the 
suffix tree and then listing the suffixes in lexieographic order from the tree. Man- 
bet and Myers [13] have also described a construction algorithm that works by 
sorting the suffixes. It takes O(n log n) time in the worst case and O(n log log n) 
time on average for random texts with even and independent distribution of 
characters. The advantage of this construction over the construction via the 
suffix tree is its smaller space requirement, 10 bytes per text symbol. 

2 S u f f i x  C a c t u s  

The new data structure, suffix cactus, can, like the suffix tree, be viewed as a 
compact suffix trie. The suffix tree was formed by catenating the unary nodes 
with their children. To get a suffix cactus, every internal node is eatenated with 
one of its children. The catenations are called the branches of suffix cactus. 

De f in i t i on  1. Let v be a node of suffix trie STr(T) of text T such that either 
v is the root or v is not the first child of its parent w. Then suffix cactus SC(T) 
of T has a branch s that  contains exactly the nodes on the path from v to the 
first leaf u under v. 

Clearly, each node of STr(T) is contained by exactly one branch of SC(T). 
The branch containing the root of STr(T) is called the root branch. The node 
v is called the root of branch s, u is called the leaf of s, and the parent w is 
called the parent node of s. The branching depth of s, denoted by DEPTH(s), is 
the depth of the parent node w. The branching depth of the root branch is 0. 

Branch s contains the string formed by catenating the characters in the nodes 
contained by s. Branch s represents the same string as the leaf u. The leafs of 
STr(T) represent the suffixes of T and there is thus a one-to-one correspondence 
between the suffixes of T and the branches of SC(T). The starting point of the 
suffix represented by branch s will be denoted by SUFFIX(s). The string contained 
by s is n o w  TSUFFIX(s)+DEPTH(S). 
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The term 'first '  in Definition 1 implies the existence of an ordering among 
the children of a node. Any ordering can be used, which allows many  al ternative 
forms for the cactus. Two variations for string cabacca$  are shown in Fig. 3. 
The left-hand side variation uses alphabetical ordering and is the one used by 
the implementat ion described in this paper. 

W 
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Fig.  3. Two variations of suffix cactus for the string cabacca$.  Turn the figure 
upside down to see an explanation for the name 'cactus ' .  

The most obvious way to define the tree s tructure of a suffix cactus is the 
following. 

D e f i n i t i o n  o f  p a r e n t  ( a l t e r n a t i v e  1). Let s be a branch of SC(T) and let v 
be its root. The  parent (branch) of s is the branch containing the parent node 
o f  V. 

However, for the implementation that  is described in the next section, the fol- 
lowing is a more natural  definition. 

D e f i n i t i o n  o f  p a r e n t  ( a l t e r n a t i v e  2). Let s be a branch of SC(T) and let 
v be its root. The parent (branch) of s is the branch containing the preceding 
sibling of v. The  preceding sibling is defined by the same ordering as the one 
used in Definition 1. 

With both of the alternative definitions all branches, except the root branch, 
have a parent.  

As an example,  let us consider the third branch from left in the cactus on 
the left in Fig. 3. By  the first definition its parent is the first branch, but by the 
second definition the parent is the second branch. 

3 A n  I m p l e m e n t a t i o n  

The name 'cactus '  comes from the way the branches start  in the middle of other 
branches. Whichever of the alternative definitions of the tree structure is used, 
this kind of branching needs to be implemented differently from the tradit ional 
tree branching. The implementat ion affects the exact space requirement of the 
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suffix cac tus  and  the  t ime  complex i ty  of  the  different  m a t c h i n g  prob lems .  In this  
p a p e r  we descr ibe  in de ta i l  an  i m p l e m e n t a t i o n  t h a t  is space  efficient a n d  has ,  in 
all of  the  above  descr ibed  m a t c h i n g  p rob lems ,  the  same  t ime  complex i ty  as the  

l inked l ist  i m p l e m e n t a t i o n  of the  suffix tree.  
Th is  i m p l e m e n t a t i o n  is based  on a l p h a b e t i c a l  o rder ing  of the  chi ldren of  a 

node  and  the  second a l t e rna t i ve  def ini t ion of  the  pa ren t  branch.  The  chi ldren  
of each b ranch  are  in a l inked list  f rom the  highest  b r anch ing  one to  the  lowest  
b r anch ing  one. A key p r o p e r t y  of  the  second a l t e rna t ive  defini t ion is t ha t  a 
b ranch  can  have at  mos t  one child at  each b ranch ing  dep th .  Therefore ,  fol lowing 
a child list  to  find a specific child takes  no more  t ime  t han  following the  s t r ing  
con ta ined  by  the  b ranch  to  the  po in t  of b ranch ing  of  t h a t  child. The  child list  
s t r u c t u r e  can be formal ized  by the  ope ra t i ons  FIRSTCHILD and  NEXTSIBLING in 
the  obvious  way. The i r  i m p l e m e n t a t i o n  is desc r ibed  a l i t t le  la ter .  

T h e  SUFFIX and  DEPTH values are  kep t  in two tables .  T h e  tab les  a re  in the  
l ex icographic  o rder  of the  suffixes. The  SUFFIX t ab le  is, in fact ,  the  bas ic  suffix 
ar ray .  To s impl i fy  no ta t ion ,  we use the  r ank  of a b ranch  in the  above  o rde r  as 
the  name  of the  branch.  T h a t  is, the  suffix TsuFv~x(,) r epresen ted  by b ranch  s is 
the  s th  suffix of T in the  lex icographic  order .  Branch  1 is the  root  branch.  

T h e  fol lowing th ree  l emmas  show how the  b ranch ing  s t ruc tu r e  of the  suffix 
cac tus  of t ex t  T can be der ived  s t r a igh t  from the  tex t .  

L e m m a  2. The branching depth DEPTH(S) of a branch s > 1 is LcP(TsuFvlX(s_I) , 

Tsuvv,x(~)). 

Proof. Let  v be the  root ,  u the  leaf, and  w the  pa ren t  node  of b ranch  s. Let  
v I be the  a l p h a b e t i c a l l y  p reced ing  s ibl ing of v and  let  u ~ be  t he  leaf of  b ranch  
s - 1. Then  v' must  be an ances to r  of u ~. The  pa ths  from root  to  u and  u ~ go to-  

ge the r  unt i l  node  w where  they  get  s epa ra t ed .  Thus  LCP(Tsuvvtx(s_l) , TsvFHx(s) ) = 
DEPTH(w) -= DEPTH(s). [] 

L e m m a  3. The parent branch of branch r > 1 is the latest branch s < r such 

that DEPTH(s) < DEPTH(r). 

Proof. Let  v be the  root  and  w the  pa ren t  node  of r .  Let  v '  be the  a l p h a b e t i c a l l y  
p reced ing  s ibl ing of v. If  s is the  pa ren t  of r ,  then  s conta ins  v' .  T h e  pa ren t  node  
of s is w or an ances to r  of w. There fore  the  d e p t h  of s is a t  most DEPTH(w) = 
DEPTH(r). Suffix T,~uvHx(s) precedes  Ts~r'Hx(r) l ex icographica l ly  and  thus  s < r .  
I t  r ema ins  to show tha t  s is the  l a t es t  b ranch  sa t i s fy ing  these  condi t ions .  

Let  t be a b ranch  such t ha t  s < t < r .  Let  u 't be the  leaf  of t. Node  v ~ mus t  
be  an ances to r  of u" .  Because  v ~ is con ta ined  by  s, the  roo t  of t mus t  be  be low v' 
on the  p a t h  f rom v'  to  u" .  Thus  it holds  DEPTH(t) > DEPTH(v') > DEPTH(w) = 
DEPTH(r). [] 

L e m m a  4. A branch s has child branches only i f  branch s + 1 is a child of  s. 

Let s be such a branch and let r l , r ~ , . . . ,  rk be the children of s f rom the highest 

branching to the lowest branching. Then s + 1 = rk < ""  < rl .  
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Proof. By L e m m a  3 r is a child of  s if and only if 

I. s<r ,  
2. DEPTH(s) < DEPTH(r) and 
3. there is no branch t > s such tha t  the first two conditions would hold if s 

was replaced with t. 

For  r = s + 1 the first and last condit ion always hold. Therefore,  if s + 1 is not  a 
child of s, then DEPTH(s) > DEPTH(s -4- 1). In such a case, if any node r satisfies 
the  first two conditions, then t = s + 1 violates the third condition. Thus  s can 
have no children, if s + 1 is not  a child of s. 

The second claim of the l emma is clearly t rue  if k = 1. Otherwise,  let ri and 
r~+l, 1 < i < k, be two of the children of s. Then  it holds tha t  DEPTH(r{) < 
DEPTH(ri+I). If  now r~ < r~+l, then t = r~ would violate the third  chi ldhood 
condition of  r~+l. Therefore we must  have ri+l < ri .  [] 

The last l emma enables us to  describe the implementa t ion  of  the branch-  
ing operat ions  FIRSTCHILD and NEXTSIBLING. The  implementa t ion  consists of a 
single table called SIBLING. Using the nota t ions  of  L e m m a  4 this table can be 
defined by 

f r l ,  if i = k 
SIBLING(r{) 

( r i+l ,  if i < k 

or al ternat ively by 

SIBLING(s) = { FIRSTCHILD(s -- 1), if s -- 1 has children 
NEXTSIBLING(s), if s has a next sibling 

In other  words, the  children of each branch form a cyclical list. In addi t ion we 
define SIBLING(I) = 1. The  FIRSTCHILD and NEXTSIBLING can now be defined 
as follows. 

f SIBLING(s + I), if SIBLING(S A- 1) _> s + 1 FIRSTCHILD(s) 
( none, if SIBLING(s -~- i) < s n u I 

f SIBLING(s), if SIBLING(s) < S 
NEXTSIBLING(S) 

" ( none, if SIBLING(s) > S 

Fig. 4 shows an example of this implementat ion.  

s }1234567 
SUFFIX(s) 7243615 
DEPTH(s) 0 1 1 0 0 2 1 
SIBLING(s) 1 4 3 2 5 7 6 

Fig.  4. The implementation of the left-hand side suffix cactus in Fig. 3. 
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s + l  

F i g .  5. The  state  of a suffix cactus  before the processing of  branch s + 1. The  
active branches are grayed.  

4 C o n s t r u c t i o n  

In  this section we will describe two construct ion algori thms for the above imple- 
menta t ion  of the suffix cactus.  The  a lgor i thms work in two phases, the second 
of  which is common  to both.  The  first phases of  the a lgori thms construct  the 
SUFFIX and DEPTH tables. One a lgor i thm uses the suffix tree to do this and 
the o ther  uses the suffix array. The  common  second phase then constructs  the 
SIBLING table from the DEPTH table. We star t  by describing the second phase. 

At the s tar t  of the second phase the DEPTH table tells the branching depths 
of each branch.  By L e m m a  3 the parent  branch of branch r is the latest branch 
s preceding r such tha t  DEPTH(s) ~_ DEPTH(r). Therefore the DEPTH table fully 
defines the branching s t ruc ture  of the cactus and the SIBLING table can be cal- 
culated from it. 

The  SIBLING table is cons t ruc ted  in one first branch to last branch pass. Let  us 
look at the s i tuat ion when a branch s has just  been processed and the processing 
of branch s + l  is about  to s tar t  (Fig. 5). Let Sl, s 2 , . . . ,  sk be the pa th  from branch 
1 (the root)  to branch s with sl = 1 and sk = s. The  branches on the pa th  are 
called the active branches. The  first (highest branching) children of  each active 
branch may  still be among  the unprocessed branches. The  first children of the 
other  processed branches and the  next  siblings of all processed branches  have, on 
the o ther  hand,  all been processed. Therefore,  we can assume tha t  the SIBLING 
table is finished up to the en t ry  s, excluding the entries so + 1, 81 n L 1 , . . . ,  Sk-1 n c 1. 

The  parent  of branch s + 1 must  be one of the active branches.  To be able 
to find the parent  quickly, the active branches are on a list f rom the last to  the 
first. The  parent  of s + 1 is the first branch si on the list such tha t  DEPTH(si) 
DEPTH(8 -[- 1). The list is implemented using the so far unfinished StaLING table 
entries, i.e. SIBLING(si + 1) = si-1 for i = 1 , . . . ,  k - 1. 

Let  us now see what  happens  when branch s + 1 is processed. If  the parent  
of  s + 1 is s, we make s + 1 active by adding it to  the beginning of the list of 
active branches and we are done. Assume then tha t  active branch si, i < k, is 
the parent  of s + 1. Now we do the following. 
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1. Find s~ by following the list of  active branches.  
2. Remove the branches s i + l , . . . ,  sk, tha t  are passed dur ing the  search, from the 

list of active branches and finalize their first children by set t ing SIBLING(sj -[- 
1 ) : s j + l  f o r j : i + l , . . . , k - - 1 .  

3. Make S{+l the next sibling of  s + 1 by set t ing SIBLING(s -{- 1) -= Si+l. 
4. Add ~ + 1 to the beginning of  the list of active branches.  

When  all branches have been processed, we travel the list of  act ive branches once 
more to set the first children of the remaining active branches.  The  a lgor i thm is 
presented in detail  in Fig. 6. 

SIBLING(l )  = 1 

�9 S k - 1  = 0 

for s - - - - l t o n - - 1  do 
if D E P T H ( s )  ___< D E P T H ( s  n t- 1) t h e n  

SlBLING(s + 1) = sk-1 
8k--1 = 8  

else 
S~+l = S 

8/ = Sk--I 
w h i l e  D E P T H ( s / )  > D E P T H ( s  -I- 1) do  

r = SIBLING(sl  -b 1) 
SIBLING(Sl ~- 1) = Si+l 

8i+1 = 8/  

3i = 7 "  

end  
SIBLING(s  Jr- l )  ~--- S i + l  

8 k - 1  ~ 8i 

end  
end  
3iq-1 ~ n 

8i "~" 8k--1 

while si :> 0 do 
r = SIBLING(Sl -~- 1) 

S I B L I N G ( s i  -~ 1) : 8{+1 

8iq-1 ~- Si  

end  

% Is s parent of s + 1? 

% Travel the list of active branches 
% until the parent of s + 1 is found. 

~0 Remove passed branches from the list 
% and finalize their first children. 

% Finalize the first children 
% of the last active branches. 

Fig.  6. The construction of SIBLING table from the DEPTH table. The variables sk-1, 
s/ and si+~ are so named to help the compaxison between the algorithm and the 
description in the text. 

Excluding the  w h i l e  loops, the algori thm clearly works in linear time. Each  
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round of the while  loops walks one step in the list of active branches and removes 
one branch from the list. Once removed, a branch cannot return to the list. Thus, 
at most one round of the whi le  loops is executed for each branch. This gives us 
the following theorem. 

T h e o r e m  5. The SIBLING table can be constructed from the DEPTH table in lin- 
ear time and constant additional space. 

The remaining problem with the construction of the suffix cactus is to get 
the SUFFIX and DEPTH tables somehow. One way is to use the suffix tree. A lexi- 
cographically ordered depth-first traversal of the tree can be used to recover the 
necessary information from the tree in linear time. As mentioned in Section 1.3, 
the suffix tree itself can be build in linear time, so the whole construction works 
in linear time. The construction takes at least as much space as the suffix tree 
construction and may take a little more depending on the details of implemen- 
tation. 

The SUFFIX and DEPTH tablds can also be constructed from the suffix array 
with LCP information. The basic suffix array forms the SUFFIX table as such. As 
mentioned in Lemma 2, the values in DEPTH table are LCPs of lexicographically 
adjacent suffixes. These values can be recovered from the LCP information of the 
suffix array by a traversal of the interval tree in linear time. If the suffix array 
is build using the O(n log n) sorting method, it dominates the time complexity 
of the whole cactus construction. The advantage of this construction is that all 
stages work in the space of the final suffix cactus. 

5 Exper imenta t ion  

To see how the suffix cactus behaves in practice, we implemented the described 
variation of the suffix cactus together with the linked list version of the suffix 
tree and the version of the suffix array with LCP information. The tests were run 
on a 90 MHz Pentium PC with 16 Mbytes of memory running Linux operating 
system. 

We implemented the standard suffix tree construction [14, 17], the suffix array 
construction by sorting [13], and both of the suffix cactus construction algorithms 
described in the previous section. Table 1 gives the execution times and the space 
requirements of these construction algorithms. The space requirements include 
the text. 

The space requirement of a finished structure is 6 bytes per text symbol for 
the suffix array and 10 bytes per text symbol for the suffix cactus, regardless of 
the construction method. In principle, the space requirement of a finished suffix 
tree could be reduced a little from the construction time space requirement by 
releasing the suffix links. In our implementation this is not done because of the 
complications in memory management caused by not knowing the number of 
nodes in the suffix tree in advance. 

In the implementations most numbers and pointers take 4 bytes. The excep- 
tions are the LCPs of tile suffix array and the DEPTHs of  the suffix cactus, both of 
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Table  1. S 

text 

type 17~II 
english 

english 74 

english 77 

random 77 

DNA 4 

random 4 

random 16 

random 64 

n 

3000 

30000 

300000 

300000 

300000 

300000 

F300000 

300000 

9ace requirements and execution times of the construction. 

tree 
113.48 

14.77 

15.17 

9.72 

17.70 

17.43 

11.80 

10.95 

space (bytes/n) 
cactus cactus 

via via 
array tree array 

10 14.48 10 

10 14.77 10 

10 16.17 10 

10 10.72 10 

10 18.70 10 

10 18.43 10 

10 12.80 10 

10 11.95 10 

tree 

0.08 

0.67 

6.60 

21.2 

5.62 

5.66 

8.10 

19.4 

time (s) 
cactus 

via 
array tree 

0.21 O.O9 

2.85 0.84 

36.4 8.63 

27.O 22.7 

41.4 7.78 

33.8 7.84 

31.2 9.91 

26.8 21.0 

cactus 
via 

array 

0.23 

2.99 

37.7 

28.4 

42.6 

35.1 

32.5 

28.1 

Tab le  2. String matching and regular expression matching times. The string matching 
times are total times of matching 10000 patterns. 

text 

type [~w[ 

english 71 

english 74 

english 77 

random 77 

DNA 4 

random 4 

random 4 

random 16 

random 64 

n 

3000 

30000 

300000 

300000 
1300000 

1300000 

300000 

300000 

300000 

string matching 

matches time (s) cactus 
rn /pattern tree I array 

8 3.87 0.82 0.38 0.79 
I 

8] 1.67 0.97 0.46 1.13 

8 4.86 1.63 0.67 1.86 

8 1.00 1.35 0.62 2.19 

8 8.17 0.96 0.71 0.61 

81 5.58 0.79 0.69 0.58 ] 

121 1.02 0.57 0.64 0.58 

4 1.02 0.66 0.63 0.90 
1.02 1.26 0.62 1.94 

regular expression matching 

time (ms) 

matches 

1 

2 

33 

0 

19206 

18708 

4670 

4 

tree axray cactus 

1.13 2.50 1.43 

5.20 9.53 5.86 

19.5 33.1 20.8 

9.61 19.2 12.0 

201 123 91.9 

195 119 88.8 

740 800 730 

13.6 24.2 16.3 

which take only one byte.  The  rare case tha t  a longest common  prefix between 
two suffixes is more  than  255 is recognized and handled separately  when neces- 
sary. This might  affect the pa t te rn  match ing  time, bu t  only when the length of 
the pa t te rn  exceeds 255. 

To test match ing  performance we implemented s tr ing match ing  and regular  
expression match ing  algori thms for all three da t a  s t ructures .  The  results of  our  
tests are given in Table 2. The  execution times include going th rough  the set of  
matches.  

The  string match ing  tests used 10000 pa t te rns  selected randomly  f rom the 
text. The  regular expression aS*cS*c ,  where S = {a, b , . . . ,  z} \{d ,  t} ,  was used 
in the regular expression tests. All the test texts  contain  letters a, c, and at least 
one of d and t .  The  matching  times do not  include the conversion of the regular 
expression into an  au tomaton .  
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6 Concluding Remarks 

We have desc r ibed  one va r i a t ion  of  the  suffix cac tus  in this  paper .  T h e r e  a re  
o the r  in te res t ing  var ia t ions ,  n o t a b l y  one which implement s  the  b ranch ing  us ing 
hash ing  and  ano the r  t h a t  uses a k ind  of b i n a r y  t ree  s t ruc tu re .  The  ma in  ad-  
van tage  of these  var ia t ions  would be  b e t t e r  pe r fo rmance  in s t r ing  m a t c h i n g  for 
large  a lphabe t s .  Due to  the  n a t u r e  of the  suffix cac tus  these  o the r  va r i a t ions  
need i m p l e m e n t a t i o n  s tuc tu re s  and  cons t ruc t ion  a lgor i thms  t h a t  a re  t o t a l l y  dif- 
ferent  f rom the  ones descr ibed  in this  paper .  T h e r e  r emains  work  to  be done in 
deve lop ing  these  versions.  
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