
https://helda.helsinki.fi

Safe and Complete Contig Assembly Through Omnitigs

Tomescu, Alexandru I.

2017-06-01

Tomescu , A I & Medvedev , P 2017 , ' Safe and Complete Contig Assembly Through

Omnitigs ' , Journal of Computational Biology , vol. 24 , no. 6 , pp. 590-602 . https://doi.org/10.1089/cmb.2016.0141

http://hdl.handle.net/10138/313118

https://doi.org/10.1089/cmb.2016.0141

acceptedVersion

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.



Safe and complete contig assembly via omnitigs∗

Alexandru I. Tomescu1 and Paul Medvedev2,3,4

1Helsinki Institute for Information Technology HIIT,
Department of Computer Science, University of Helsinki

P.O. Box 68, FI-00014, Helsinki, Finland
E-mail: tomescu@cs.helsinki.fi, Fax: +358 9 876 4314

2Department of Computer Science and Engineering, The Pennsylvania State University, USA
3Department of Biochemistry and Molecular Biology, The Pennsylvania State University, USA

4Genome Sciences Institute of the Huck, The Pennsylvania State University, USA

Abstract. Contig assembly is the first stage that most assemblers solve when reconstructing a genome
from a set of reads. Its output consists of contigs – a set of strings that are promised to appear in any
genome that could have generated the reads. From the introduction of contigs 20 years ago, assemblers
have tried to obtain longer and longer contigs, but the following question remains: given a genome
graph G (e.g. a de Bruijn, or a string graph), what are all the strings that can be safely reported
from G as contigs? In this paper we answer this question using a model where the genome is a circular
covering walk. We also give a polynomial time algorithm to find such strings, which we call omnitigs.
Our experiments show that omnitigs are 66% to 82% longer on average than the popular unitigs, and
29% of dbSNP locations have more neighbors in omnitigs than in unitigs.
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∗A preliminary version of this paper appeared in RECOMB 2016

ar
X

iv
:1

60
1.

02
93

2v
2 

 [
q-

bi
o.

Q
M

] 
 1

6 
A

ug
 2

01
6



1 Introduction

The genome assembly problem is to reconstruct the sequence of a genome using reads from a
sequencing experiment. It is one of the oldest bioinformatics problems; nevertheless, recent projects
such as the Genome 10K have underscored the need to further improve assemblers [9]. Current
algorithms face numerous practical challenges, including scalability, integration of new data types
(e.g. PacBio), and representation of multiple alleles. While handling these challenges is extremely
important, assemblers do not produce optimal results even in very simple and idealized scenarios.
To address this, several papers have developed better theoretical underpinnings [10,26,22,37,23,40],
often resulting in improved assemblers in practice [32,42,38,1].

In most theoretical studies, the assembly problem is formulated as finding one genomic recon-
struction, i.e. a single string that represents the sequence of the genome. However, the presence
of repeats means that a unique genomic reconstruction usually does not exist. In practice, assem-
blers instead output several strings, called contigs, that are “promised” to occur in the genome.
We refer to this restatement of the genome assembly problem as contig assembly. Contigs can
then be used to answer biological questions (e.g. about gene content) or perform comparative ge-
nomic analysis. When mate pairs are available, contigs can be fed to later assembly stages, such as
scaffolding [34,2,20] and then gap filling [35,3].

Assemblers implement different strategies for finding contigs. The common strategy is to find
unitigs, an idea that can be traced back to 1995 [15]. Unitigs have the desired property that they can
be mathematically proven to occur in all possible genomic reconstructions, under clear assumptions
on what “genomic reconstruction” means. We will refer to strings that satisfy such a property as
being safe (Definition 3), and will say that a contig assembly algorithm is safe if it outputs only safe
strings. Though most assemblers have a safe strategy at their core, they also incorporate heuristics
to handle erroneous data and extend contig length (e.g. bubble popping, tip removal, and path
disambiguation). Properties of such heuristics, however, are difficult to prove, and this paper will
focus on core algorithms that are safe.

While the unitig algorithm is safe, it does not identify all possible safe strings (see Figure 2). An
improved safe algorithm was used in the EULER assembler [32], and further improvements were
suggested based on iteratively simplifying the graph used for assembly [32,21,12,17]. However, we
will show that these algorithms still do not always output all the safe strings. In fact, since the
initial consideration of contig assembly 20 years ago, the fundamental question of finding all the
safe strings of a graph remains poorly studied.

In this paper, we answer this question by giving a polynomial-time algorithm for outputting
all the safe strings in the common genome graph models (de Bruijn and string graphs) when the
genome is a circular covering walk (Section 6). The key ingredient for this result is a graph-theoretic
characterization of the walks that correspond to safe strings (Section 5). We call such walks omnitigs
and our algorithm the omnitig algorithm. In our experiments on de Bruijn graphs built from data
simulated according to our assumptions, maximal omnitigs are on average 66% to 82% longer than
maximal unitigs, and 29% of dbSNP locations have more neighbors in omnitigs than in unitigs.

Our results are naturally limited to the context of our model and its assumptions. Intuitively,
we assume that (i) the sequenced genome is circular, (ii) there are no gaps in coverage, and (iii)
there are no errors in the reads. A mathematically precise definition of our model will be presented
in Section 4. We argue that such a model is necessary if we want to prove even the simplest results
about unitigs (Section 4). Similar to previous studies, we also do not deal with multiple chromosomes
or the double-strandedness of DNA and assume the genome is represented by a covering walk. As
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with previous papers that developed better theoretical underpinnings [31,10,26,23], it is necessary
to prove results in a somewhat idealized setting. While this paper falls short of analyzing real data,
we believe that omnitigs can be incorporated into practical genome analysis and assembly tools –
similar to the way that error-free studies of de Bruijn [31] and paired de Bruijn graphs [23] became
the basis of practical assemblers [32,40,1].

2 Related work

The number of related assembly papers is vast, and we refer the reader to some surveys [24,28].
For an empirical evaluation of the correctness of several state-of-the-art assemblers, see [36]. Here,
we discuss work on the theoretical underpinnings of assembly.

There are many formulations of the genome assembly problem. One of the first asks to recon-
struct the genome as a shortest superstring of the reads [30,16,15]. Later formulations referred to a
graph built from the reads, such as a de Bruijn graph [10,32] or a string graph [26,38]. In an (edge-
centric) de Bruijn graph, the reconstructed genome can be modeled as a circular walk covering
every edge exactly once—Eulerian [32]—or at least once—a Chinese Postman tour [21,22,27,13]. In
a string graph, the reconstructed genome can be modeled as a circular walk covering every node
exactly once—Hamiltonian—[11,29], or at least once [27]. These models have also been considered
in their weighted versions [21,27,29], or augmented to include other information, such as mate-
pairs [33,23,14]. Each such notion of genomic reconstruction brought along questions concerning its
validity. For example, under which conditions on the sequencing data (e.g., coverage, read length,
error rate) is there at least one reconstruction [19,25], or exactly one reconstruction [5,18,32]. If
there are many possible reconstructions, then what is their number [17,8] and in which aspects one
is different from all others [8]. In contrast to the framework of this paper, most of these formulations
deal with finding a single genomic reconstruction as opposed to a set of safe strings (i.e. contigs).

There are a few notable exceptions. In [4], Boisvert and colleagues also define the assembly
problem in terms of finding contigs, rather than a single reconstruction. Nagarajan and Pop [27]
observe that Waterman’s characterization [41] of the graphs with a unique Eulerian tour leads to a
simple algorithm for finding all safe strings when a genomic reconstruction is an Eulerian tour. They
also suggest an approach for finding all the safe strings when a genomic reconstruction is a Chinese
Postman tour [27]. We note, however, that in the Eulerian model, the exact copy count of each
edge should be known in advance, while in the Chinese Postman model (minimizing the length of
the genomic reconstruction), the solution will over-collapse all tandem repeats. Furthermore, these
approaches have not been implemented and hence their effectiveness is unknown.

In practice, the most commonly employed safe strings are the ones spelled by maximal unitigs,
where unitigs are paths whose internal nodes have in- and out-degree one. Figure 2 shows an
example of the output of the unitig algorithm, and also illustrates that it does not identify all safe
strings. The EULER assembler [32] takes unitigs a step further and identifies strings spelled by
paths whose internal nodes have out-degree equal to one (with no constraint on their in-degree). It
can be shown that such strings are also safe. However, the most complete characterization of safe
strings that we found is given by the Y-to-V algorithm [22,12,17]. Consider a node v with exactly
one in-neighbor u and more than one out-neighbors w1, . . . , wd. The Y-to-V reduction applied to v
removes v and its incident edges from the graph and adds nodes v1, . . . , vd with edges from u to
vi and from vi to wi, for all 1 6 i 6 d. The Y-to-V reduction is defined symmetrically for nodes
with out-degree exactly one and in-degree greater than one. Figure 1 illustrates the definition. The
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Fig. 1. The Y-to-V reduction applied to node v. In Fig. 1(b) v has in-degree exactly one; in Fig. 1(b) v has out-degree
exactly one.

Y-to-V algorithm proceeds by repeatedly applying Y-to-V reductions, in arbitrary order, for as
long as possible. The algorithm then outputs the strings spelled by the maximal unitigs in the final
graph (see Figure 2d for an example). The Y-to-V algorithm can also be shown to be safe, but, as
we will show in Figure 2, it does not always output all the safe strings. We are not aware of any
study that compares the merits of Y-to-V contigs to unitigs, and we therefore perform this analysis
in Section 8.

3 Basic definitions

Given a string x and an index 1 6 i 6 |x|, we define pre(x, i) and suf(x, i) as its length i prefix
and suffix, respectively. If x and y are two strings, and suf(x, k) = pre(y, k) for some k 6 |x| − 1,
then we define x⊕k y as x[1..|x| − k] concatenated with y. This captures the notion of merging two
overlapping strings. A k-mer of x is a substring of length k. Let R be a set of strings, which we
equivalently refer to as reads. The node-centric de Bruijn graph built on R, denoted DBk

nc(R), is
the graph whose set of nodes is the set of all k-mers of R, in which there is an edge from a node x
to a node y iff suf(x, k−1) = pre(y, k−1) [7]. The edge-centric de Bruijn graph built on R, denoted
DBk

ec(R) is defined similarly to DBk
nc(R), with the difference that there is an edge from x to y iff

suf(x, k− 1) = pre(y, k− 1) and x⊕k−1 y is a substring of some string in R [10]. The weight of the
edges of DBk

nc(R) and DBk
ec(R) is k − 1.

Let G be a graph, possibly with parallel edges and self-loops. The number of nodes and
edges in a graph are denoted by n and m, respectively. We use N−(v) to denote the set of in-
neighbors and N+(v) to denote the set of out-neighbors of a node v. A walk w is a sequence
(v0, e0, v1, e1, . . . , vt, et, vt+1) where v0, . . . , vt+1 are nodes, and each ei is an edge from vi to vi+1,
and t > −1. Its length is its number of edges, namely t + 1. A path is a walk where the nodes are
all distinct, except possibly the first and last nodes may be the same, in which case it will also be
called a cycle. Walks and paths of length at least one are called proper. A walk whose first and
last nodes coincide is called circular walk. A path (walk) with first node u and last node v will be
called a path (walk) from u to v, and denoted as u-v path (walk). A walk is called node-covering if it
passes through each node of G, and edge-covering if it passes through each edge of G. The notions
of prefix and subwalk are defined for walks in the natural way, e.g., by interpreting a walk to be a
string made up by concatenating its edges. In particular, we say that a walk w1 is a subwalk of a
circular walk w2 if w1 interpreted as string is a substring of w2 interpreted as circular string. In
this paper we allow strings and walks to have overlapping extremities when viewed as substrings of
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a circular string, i.e., when aligned to a circular string (see e.g. the two omnitigs from Figure 2(f)
which have an overlapping tail and head).

Let ` be a function labeling the nodes of G and let c be a function giving weights to the
edges (intuitively, c should represent the length of overlaps). One can apply the notion of string
spelled by a walk w = (v0, e0, v1, e1, . . . , vt, et, vt+1) by defining the string spelled by w as spell(w) =
`(v0)⊕c(e0) `(v1)⊕c(e1) · · ·⊕c(et) `(vt+1). When the walk w is circular (thus vt+1 = v0), then spell(w)
will be interpreted as the circular string obtained by overlapping the strings `(v0) and `(vt+1).

4 Problem formulation

There are various theoretical approaches to formulating the assembly problem. Here, we adopt a
model that captures the most popular ones: the node-centric de Bruijn graph, the edge-centric de
Bruijn graph, and the string graph [26]. We generalize these using the notion of a genome graph:

Definition 1 (Genome graph). A graph G with edge-weights given by c and node-labels is a
genome graph if and only if (1) for every edge e = (u, v), suf(u, c(e)) = pre(v, c(e)), and (2) for
any two walks w1 and w2, w1 is a subwalk of w2 if and only if spell(w1) is a substring of spell(w2).

Both node- and edge-centric de Bruijn graphs are genome graphs, directly by their definition.
Similarly, the interested reader can verify that string graphs, as commonly defined in [26,27,22,37],
are genome graphs. Intuitively, the first condition states that the edge-weights represent the length
of overlaps between strings, while the second condition prohibits a certain redundancy in the graph.
It can be broken if, for example, there are nodes with duplicate labels, or if some labels are substrings
of others. Or, for strings graphs, it can be broken if transitive edges are not removed from the
graph [26]. We now augment a genome graph with a rule defining a “genomic reconstruction.”

Definition 2 (Graph model). A graph model G is defined by

• An algorithm that transforms a set of reads R into a genome graph, denoted by G(R).
• A rule that determines whether a walk in G(R) is a genomic reconstruction.

Intuitively, a genomic reconstruction spells a genome that could have generated the observed
set of reads R. In this paper, we consider two graph models. In the edge-centric model, a genomic
reconstruction is a circular edge-covering walk; its underlying genome graph can be e.g. an edge-
centric de Bruijn graph. In the node-centric model, a genomic reconstruction is a circular node-
covering walk; its underlying genome graph can be a node-centric de Bruijn graph or a string
graph. As mentioned in the introduction, we assume, without always explicitly stating it onwards,
that G(R) contains at least one genomic reconstruction, and for technical reasons—see the proof of
Lemma 1—that G(R) is always different from a single cycle. In fact, in this latter case the assembly
problem is trivial.

We now define the strings that belong to all genomic reconstructions.

Definition 3 (Safe string). Given a set of reads R and a graph model G, a string s is said to be
a safe string for G(R) if for every genomic reconstruction w of G(R), s is a substring of spell(w).

In particular, for a node-centric (respectively, edge-centric) graph model G, a string s is safe if
for every circular node-covering (respectively, edge-covering) walk w, s is a substring of spell(w).
It also follows from the definitions (again assuming no gaps in coverage and no errors in the reads)
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(f) The original genome and its contigs

Fig. 1. The output of the three algorithms on the edge-centric de Bruijn graph G from (a), built from the circular
string in (e). Each contig is drawn as an arc on the wheel in (e). (b) the maximal unitigs of G; (c) the Y-to-V
reduction is applied to node CG and the resulting graph GT is shown; no more reductions are applicable and GT has
two maximal unitigs; (d) the maximal omnitigs of G; in this particular example, they are also circular edge-covering
walks of G, and one can be obtained from the other by a circular permutation.

A note on assumptions: Our model makes some implicit assumptions. Here, we observe that such
assumptions are necessary to prove even the simplest desired property: that the unitig algorithm
outputs only safe strings. Let w = (v0, e0, v1, e1, v2) be a unitig in an edge-centric de Bruijn graph
G built from a genome S. If the genome is not circular, then e.g. the last k-mer of S can be v0,
its first k-mer can be v1, the string v0 �k v1 can appear inside S and in a read, but v0 �k v1 �k v2

does not have to appear in S. If there are gaps in coverage, then both an in-neighbor v0 and an
out-neighbor v00 of v1 may be missing from G making w look safe whereas in reality v0 �k v1 �k v2

may not be a substring of S. If a read contains a sequencing error, then this creates a bubble in G
with one of its paths being a unitig not spelling a substring of S.

5 Characterization of safe strings: omnitigs

In this section, we provide a characterization of walks that spell safe strings. This characterization
will be the basis of our omnitig algorithm in the next section.

Definition 5 (Omnitig, edge-centric model). Let G be a directed graph and let w =
(v0, e0, v1, e1, . . . , vt, et, vt+1) be a walk in G. We say that w is a omnitig if and only if for all
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Fig. 2. The output of the three algorithms on the edge-centric de Bruijn graph G from (a), built from the circular
string in (f). Each contig is drawn as an arc on the wheel in (f). (c) the maximal unitigs of G; (b) the Y-to-V
reduction is applied to node CG and the resulting graph GT is shown; no more reductions are applicable and GT has
two maximal unitigs, shown in (d); (e) the maximal omnitigs of G; in this particular example, they are also circular
edge-covering walks of G, and one can be obtained from the other by a circular permutation. Note that this example
illustrates that the Y-to-V algorithm does not always output all safe strings, because its output (d) does not contain
the strings of (e).

that if the genome graph is DBk
nc(R) or DBk

ec(R), then a string is safe if it is a substring of every
circular string with the same set of k-mers, or (k + 1)-mers respectively, as R.

Solving the following problem gives all the information that can be safely retrieved from a graph
model.

Definition 4 (The safe and complete contig assembly problem). Given a set of reads R
and a graph model G, output all the safe strings for G(R).

In this paper we solve this problem for the node- and edge-centric models defined above. In
Sections 5 and 6 we first deal with the edge-centric model, and then in Section 7 we show how these
results can be modified for the node-centric model.

As a technical aside, our algorithms will output only maximal safe strings, in the sense that
they are not a substring of any other safe string. In fact, this is desirable in practice, and moreover,
the set of all safe strings is the set of all substrings of the maximal ones.

A note on assumptions: Our model makes three implicit assumptions, as outlined at the end of
the Introduction. Here, we observe that such assumptions are necessary to prove even the simplest
desired property: that the unitig algorithm outputs only safe strings. Let w = (v0, e0, v1, e1, v2) be
a unitig in an edge-centric de Bruijn graph G built from the (k + 1)-mers of a genome S. If the
genome is not circular (assumption (i)), then e.g. the last k-mer of S can be v0, its first k-mer can
be v1, the string v0 ⊕k v1 can appear inside S, but v0 ⊕k v1 ⊕k v2 does not have to appear in S. If
there are gaps in coverage (assumption (ii)), then both an in-neighbor v′ and an out-neighbor v′′

of v1 may be missing from G making w look safe whereas in reality v0 ⊕k v1 ⊕k v2 may not be a
substring of S. If a read contains a sequencing error (assumption (iii)), then this creates a bubble
in G with one of its paths being a unitig not spelling a substring of S.
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5 Characterization of safe strings: omnitigs

In this section, we provide a characterization of walks that spell safe strings (see Figure 3 for an
illustration). This characterization will be the basis of our omnitig algorithm in the next section.

Definition 5 (Omnitig, edge-centric model). Let G be a directed graph and let w =
(v0, e0, v1, e1, . . . , vt, et, vt+1) be a walk in G. We say that w is a omnitig if and only if for all
1 6 i 6 j 6 t, there is no proper vj-vi path with first edge different from ej, and last edge different
from ei−1.

v0 vi vj vt+1e0 ei−1 ei ej−1 ej et

Fig. 3. An illustration of the omnitig definition, edge-centric model

The following theorem proves that the omnitigs spell all the safe strings, using the help of an
intermediary characterization of omnitigs.

Theorem 1. Given an edge-centric graph model G = G(R) built for a set of reads R, and a string
s, the following three statements are equivalent:

(1) s is a safe string for G;
(2) s is spelled by a walk w = (v0, e0, v1, e1, . . . , vt, et, vt+1) in G and w is an omnitig;
(3) s is spelled by a walk w = (v0, e0, v1, e1, . . . , vt, et, vt+1) in G and for all 1 6 j 6 t all proper

vj-vj (circular) walks w′ fulfill at least one of the following conditions:
(i) the subwalk (vj , ej , . . . , vt, et, vt+1) of w is a prefix w′, or
(ii) the subwalk (v0, e0, . . . , vj−1, ej−1, vj) of w is a suffix of w′, or
(iii) w is a subwalk of w′.

We prove Theorem 1 by proving the cyclical sequence of implications (1) ⇒ (2) ⇒ (3) ⇒ (1).

Proof of (1) ⇒ (2). Assume that s is a safe string for G. By definition of a genome graph, s is
spelled by a unique walk in G. Let w = (v0, e0, v1, e1, . . . , vt, et, vt+1) be this walk, and let A be a
circular edge-covering walk of G; thus A contains w as subwalk, and s is a sub-string of spell(A).

Assume for a contradiction that there exist 1 6 i 6 j 6 t, and a proper vj-vi path p with first
edge different from ej and last edge different from ei−1. From A, we will construct another circular
edge-covering walk B of G which does not contain w as subwalk, and hence, by the definition of
a genome graph, also spell(B) does not contain s as sub-string. This will contradict the safeness
of s. Whenever A visits node vj , then B follows the vj-vi path p, then follows (vi, ei, . . . , ej−1, vj),
and finally continues as A. To see that w does not appear as a subwalk of B, consider the subwalk
w′ = (vi−1, ei−1, vi, ei, . . . , ej−1, vj , ej , vj+1) of w (recall that 1 6 i 6 j 6 t). Since p is proper, and
its first edge is different from ej and its last edge is different from ei−1, then, by construction, the
only way that w′ can appear in B is as a subwalk of p. However, this implies that both vj and vi
appear twice on p, contradicting the fact that p is a path.
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Fig. 4. Illustration of three cases in the proof of the implication (2) ⇒ (3) of Theorem 1.

Proof of (2) ⇒ (3). Suppose that w is an omnitig, and assume for a contradiction that there exists
a proper vj-vj walk (for some 1 6 j 6 t) not satisfying (i)–(iii). Let w′ be the shortest such walk.
Since w′ does not have (vj , ej , . . . , vt, et, vt+1) as prefix, then there exists a first node v` on w,
j 6 ` 6 t, such that from v`, w

′ continues with an edge e′` 6= e`. Symmetrically, since w′ does not
have (v0, e0, . . . , vj−1, ej−1, vj) as suffix, let vi be the last node of w, 1 6 i 6 j such that before
entering vi, the walk w′ uses an edge e′i−1 6= ei−1. Let w′0 denote the subwalk of w′ between e′` and
e′i−1 (inclusive). If w′0 is a path, then w′′ is a proper v`-vi path, 1 6 i 6 ` 6 t, whose first edge e′`
is different from e`, and its last edge e′i−1 is different from ei−1, which contradicts the fact that w
is an omnitig. We now prove that w′ is in fact a path.

Suppose for a contradiction that it is not, thus that it contains a cycle c, with c 6= w′. Let w′′

be the walk obtained from w′ by removing the cycle c. Observe that w′′ is still a proper vj-vj walk.
We show that w′′ still does not satisfy (i)–(iii), which will contradict the minimality of w′. Assume
for a contradiction that w′′ satisfies at least one of (i), (ii), or (iii).

First, if w′′ satisfies (i), this implies that the edge e′` out-going from v` belongs to c, and after
traversing c, the walk w′ continues through (v`, e`, . . . , vt, et, vt+1) (see Figures 4(a) and 4(b)). Let vp
be the node of w with greatest index p ∈ {0, . . . , `} that c visits with an edge e′ = (v, vp) not on w.
Such a node exists because c is a cycle and it must return to v`. If p > 1 (see Figure 4(a)), then c does
not satisfy (i)–(iii). Since c is proper and passes through v`, where 1 6 ` 6 t, this contradicts the
minimality of w′. Therefore, p = 0 (see Figure 4(b)), and thus, the initial vj-vj walk w′ (containing
c as subwalk) visits (v0, e0, . . . , v`), and then continues through (v`, e`, . . . , vt, et, vt+1). This implies
that w′ contains w as subwalk, which contradicts the choice of w′.

The second case when w′′ satisfies (ii) is entirely symmetric.

Third, assume that w′′ contains w as subwalk. Since w is not a subwalk of w′, this implies that
c is a proper vr-vr walk, for some 1 6 r 6 t, not satisfying (i)–(iii), which again contradicts the
minimality of w′ (see Figure 4(c)). This completes the proof of (2) ⇒ (3)

Proof of (3) ⇒ (1). Assume w satisfies (3), and let A be a circular edge-covering walk of G. We
need to show that w is a subwalk of A. Let wj = (v0, e0, . . . , vj−1, ej−1, vj) be the longest prefix of
w that A ever traverses, ending at some vj . Since A covers all edges, then it also covers e0, and
thus j > 1. Suppose for a contradiction that j 6= t + 1.

8



Algorithm 1: Omnitig algorithm to find all safe strings of a graph G.

1 extend(w)
2 Denote w = (v0, e0, v1, e1, . . . , vt−1, et−1, vt);
3 foreach edge e = (vt, y) out-going from vt do
4 X := (N−(v1) \ {v0}) ∪ · · · ∪ (N−(vt) \ {vt−1});
5 let G′ equal G minus the edge e;
6 if there is no path in G′ from vt to a node of X then
7 extend((v0, e0, v1, e1, . . . , vt−1, et−1, vt, e, y));

8 if w was never extended then
9 W := W ∪ {w};

10 W := ∅;
11 foreach edge e = (u, v) of G do
12 extend((u, e, v));

13 remove from W any walk that is a subwalk of another walk in W ;
14 return {spell(w) : w ∈W};

Since A is circular and covers all edges of G, then after traversing wj , the walk A eventually
visits the edge ej . The walk A may visit vj multiple times before traversing the edge ej . Let w′

denote the subwalk of A between the last two occurrences of vj before A traverses the edge ej .
Since w′ is a proper vj-vj walk, 1 6 j 6 t, and w satisfies (3), we have that one of the following
must hold:

• the walk (vj , ej , . . . , vt, et, vt+1) is a prefix of w′: this contradicts the fact that w′ is a subwalk
of A between vj and the immediately next occurrence of ej (since in this case w′ contains ej);

• the walk (v0, e0, . . . , vj−1, ej−1, vj) is a suffix of w′: this implies that (w′, ej , vj+1) is a longer
prefix of w which is a subwalk of A, contradicting the maximality of wj ;

• the walk w appears on w′: since w′ is a subwalk of A, this implies that also w is a subwalk of
A, contradicting again the maximality of wj .

6 Omnitig algorithm

In this section, we use Theorem 1 to give the omnitig algorithm (Algorithm 1) and prove that it
runs in polynomial time (Theorem 2). The algorithm finds all maximal omnitigs of G(R), which, by
Theorem 1, are exactly the maximal safe strings of G(R). Our algorithm is based on the following
observation, which follows directly from the definition of omnitigs:

Observation 1. Consider a walk w′ = (v0, e0, . . . , et−1, vt, et, vt+1) of length at least two, and
consider its subwalk w = (v0, e0, . . . , et−1, vt). Then w′ is an omnitig if and only if (i) w is an
omnitig and (ii) for all 0 6 i 6 t− 1, there is no proper vt-vi path with first edge different from et
and last edge different from ei−1.

The idea of the algorithm is to start an exhaustive traversal of G from every edge (Lines 11-12),
which by definition is an omnitig, and to keep traversing edges as long as the current walk is an
omnitig. An omnitig w is thus recursively constructed, by possibly extending to the right with each
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edge e out-going from its last vertex (Lines 3-7). If w extended with e is not an omnitig, then
we abandon this extension because Observation 1 tells us that no further extension could be an
omnitig. To check if this extension is an omnitig or not, it is enough to check whether condition
(ii) of Observation 1 is satisfied. Condition (i) is automatically satisfied because of the structure
of the algorithm–we extend only walks that are omnitigs. The omnitigs found are saved in a set
W (Line 9), except for those omnitigs that are obviously non-maximal (Line 8). In the final step
(Lines 13-14), we remove the non-maximal omnitigs from W and report the rest.

To check that condition (ii) is satisfied (Lines 4-6), we take the set X (Line 4) and check if there
is a path starting with an edge out-going from vt and different from e, and leading to a node of X.
The correctness of this procedure can be seen as follows. If there is no such path, then we know
that there is no path satisfying (ii). If we do find a path p from vt to some in-neighbor x ∈ X of
some vi, and p does not use vi, then the path obtained by extending p to vi contradicts (ii). If p
contains vi, then such an extension is not possible, because a path cannot repeat a vertex; however,
we will show that p cannot use vi by contradiction. Assume that it does, and observe that after
passing through vi, the path p cannot pass again through vt. Let vj , i 6 j < t, be the first vertex
that p visits after vi such that from vj it continues with an edge e′ 6= ej . Let p′ denote the vj-x
subpath of p from vj until x. We obtained that p′ followed by vi is a proper vj-vi path with first
edge different from ej , last edge different from ei−1, and 1 6 i 6 j 6 t. This contradicts the fact
that w (the walk we are extending) is an omnitig.

Next, we show that the algorithm runs in polynomial time. First, we show that the number of
omnitigs included in W and their length, prior to removal of non-maximal ones, is polynomial:

Lemma 1. Let W be a set of omnitigs in an edge-centric graph model G(R), whose genome graph
is different than a single cycle. Furthermore, suppose no omnitig in W is a prefix of another omnitig
in W . Then, |W | 6 nm and the length of any omnitig in W is O(nm).

Proof. We first show that we can visit the edges of G = G(R) with a circular edge-covering walk
C of at most nm nodes. Let e0, . . . , em−1 be an arbitrary order of the edges of G. Since we assume
that G admits one genomic reconstruction, then G is strongly connected. Thus, from every end
extremity of ei there is a path to the start extremity of e(i+1) mod m, 0 6 i 6 m − 1, of length at
most n − 1. Therefore, C can be constructed to first visit e0, then to follow such a path until e1,
and so on until em−1, from where it follows such a path back to e0.

By Theorem 1, we have that any omnitig of G is a subwalk of C. We can associate every w ∈W
with all the start positions in C (in terms of nodes) where it is a subwalk. Because W does not
contain walks that are prefixes of other walks, a position of C can have at most one walk associated
with it. Since |C| 6 nm, W can contain at most nm walks.

It remains to prove that the length of any omnitig in W is O(nm). To simplify notation, rename
C as (v0, e0, v1, e1, . . . , vt, et, vt+1) with vt+1 = v0. Since G is different than a single cycle, then there
exist vj and vi on C, such that e = (vj , vi) is an edge of G, and e /∈ {ej , ei−1}. Any omnitig (thus
a subwalk of C) cannot contain twice vj and vi as internal nodes, since otherwise the proper path
(vj , e, vi) violates the omnitig definition. Thus the length of any omnitig is O(nm).

(As an aside, it remains open whether the bound on |W | can be reduced to m, which is the case
for unitigs; our experiments from Section 8 suggest this may be the case in practice.) Note that
Line 8 guarantees that W , prior to removal of subwalks in Line 13, satisfies the prefix condition
of Lemma 1. Lemma 1 then implies that reporting one omnitig by our algorithm takes polynomial
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time, and there are only polynomially many omnitigs reported. Furthermore, removing the non-
maximal omnitigs (Line 13) can be done in linear time in the sum of the omnitig lengths, by
appropriately traversing a suffix tree constructed from them. Thus, we have our main theorem:

Theorem 2. Let R be a set of reads and let G(R) be an edge-centric graph model. Algorithm 1
outputs in polynomial time all safe strings of G(R).

Finally, we note some implementation details that are crucial in practice. Prior to starting, we
apply the Y-to-V algorithm and the standard graph compaction algorithm to compact unitigs [6].
This significantly reduces the number of nodes/edges in the graph without changing the maximal
safe strings. We also precompute all omnitigs of length two and store them in a hash table, so that
whenever we want to extend the omnitig w in Line 6, we check beforehand whether the pair (et−1, e)
is stored in the hash table. This significantly limits, in practice, the number of graph traversals we
have to do at Line 6. Finally, we do not compute the set X every time, but instead incrementally
built it up as we extend the omnitig w. Our implementation is freely available for use1.

7 Node-centric model

In this section we obtain analogous results for node-centric models, though both the definitions,
algorithms, and proofs need to modified. The following definition is similar to the one for the
edge-centric model, the only addition being its second bullet (see Figure 5 for an illustration).

Definition 6 (Omnitig, node-centric model). Let G be a directed graph and let w =
(v0, e0, v1, e1, . . . , vt, et, vt+1) be a walk in G. We say that w is a omnitig iff the following two
conditions hold:

• for all 1 6 i 6 j 6 t, there is no proper vj-vi path with first arc different from ej, and last arc
different from ei−1.

• for all 0 6 j 6 t, the arc ej is the only vj-vj+1 path.

v0 vi vj vt+1e0 ei−1 ei ej−1 ej et

Fig. 5. An illustration of the omnitig definition, node-centric model

The following theorem is analogous to Theorem 1, and characterizes the safe strings in the
node-centric model.

Theorem 3. Given a node-centric graph model G = G(R) built for a set of reads R, and a string
s, the following three statements are equivalent:

(1) s is a safe string for G;

1https://github.com/alexandrutomescu/complete-contigs
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(2) s is spelled by a walk w = (v0, e0, v1, e1 . . . , vt, et, vt+1) in G and w is a omnitig;
(3) s is spelled by a walk w = (v0, e0, v1, e1 . . . , vt, et, vt+1) in G and w satisfies: for all 0 6 j 6 t,

the arc ej of w is the only vj-vj+1 path, and for all 1 6 j 6 t, all proper vj-vj (circular) walks
w′ fulfill at least one of the following conditions:
(i) the subwalk (vj , ej , . . . , vt, et, vt+1) of w is a prefix w′, or
(ii) the subwalk (v0, e0, . . . , vj−1, ej−1, vj) of w is a suffix of w′, or
(iii) w is a subwalk of w′.

We analogously prove Theorem 3 by proving the cyclical sequence of implications (1) ⇒ (2) ⇒
(3) ⇒ (1).

Proof of (1) ⇒ (2). Assume that s is a safe string for R. By definition of a graph model, a safe
string for R is spelled by a unique walk in a node-centric model for R. Let this walk be w, and let
A be a circular node-covering walk of G (thus containing w as subwalk).

First, assume for a contradiction that there exist 1 6 i 6 j 6 t, and a proper vj-vi path p whose
first arc is different from ej and its last arc is different from ei−1. From A, we can construct another
circular node-covering walk B of G which does not contain w as subwalk, and thus spell(B) does
not contain s as sub-string. This will contradict the fact that s is a safe string for G.

Whenever A visits node vj , then B follows the vj-vi path p, then it follows (vi, ei, . . . , ej−1, vj),
and finally continues as A. To see that w does not appear as a subwalk of B, consider the subwalk
w′ = (vi−1, ei−1, vi, ei, . . . , ej−1, vj , ej , vj+1) of w (recall that 1 6 i 6 j 6 t). Since p is proper, and
its first arc is different from ej and its last arc is different from ei−1, then, by construction, the
only way that w′ can appear in B is as a subwalk of p. However, this implies that both vj and vi
appear twice on p, contradicting the fact that p is a vj-vi path.

Second, assume for a contradiction that there is some 0 6 j 6 t and another vj-vj+1 path p′

than the arc ej . Just as above, from A we can construct another node-covering walk C that avoids
w (and thus spell(C) does not contain s as sub-string) as follows. Whenever A traverses the arc
ej , C traverses instead p′. The walk C is node-covering because it still covers all nodes of w, and
otherwise C coincides with A. However, it does not contain w as subwalk because p′ is different
from the arc ej , and, since it is a path, it cannot pass through ej again, as otherwise it would visit
twice either vj , vj+1, or both.

The proof of (2) ⇒ (3) is identical to the corresponding proof of (2) ⇒ (3) for Theorem 1.

Proof of (3) ⇒ (1). Assume w satisfies (3), and let A be a circular node-covering walk of G. We
need to show that w is a subwalk of A. Let wj = (v0, e0, . . . , vj−1, ej−1, vj) be the longest prefix
of w that A ever traverses, ending at some vj . Since A covers all nodes, then j > 0. Suppose for
a contradiction that j 6= t + 1. Since A is circular and covers all nodes of G, then after traversing
wj , the walk A eventually visits the node vj+1. The walk A may, or may not, visit vj again before
visiting the node vj+1.

First, suppose that after visiting vj at the end of wj , A visits again vj before visiting vj+1. Let
w′ denote the subwalk of A between the last two occurrences of vj before visiting the node vj+1. If
1 6 j 6 t, since w′ is a vj-vj walk, and w satisfies (3), we have that either:

• the walk (vj , ej , vj+1, . . . , vt, et, vt+1) is a prefix of w′: this contradicts the fact that w′ is a
subwalk of A between vj and the immediately next occurrence of vj+1, since in this case w′

would contain vj+1 more times;
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• the walk (v0, e0, . . . , vj−1, ej−1, vj) is a suffix of w′: this implies that (w′, ej , vj+1) is a longer
prefix of w that is a subwalk of A, contradicting the maximality of wj ;

• the walk w appears on w′: since w′ is a subwalk of A, this implies that also w is a subwalk of
A, contradicting again the maximality of wj .

If j = 0, then by removing all cycles from w′, we obtain a vj-vj+1 path, different than the arc e0,
since otherwise we would contradict the maximality of wj . But this contradicts the fact that w is
satisfies (3).

Second, suppose that the walk A does not visit vj again after wj and before visiting vj+1. Let
w′′ be the vj-vj+1 subwalk of A between wj and this next occurrence of vj+1. The walk w′′ may not
be a path, but by removing all cycles from it we obtain a vj-vj+1 path w′′′. This path is different
from ej by the maximality of wj , contradicting again the fact that w satisfies (3).

Analogous to the edge-centric case, we can prove the following polynomial upper-bound on the
number and length of all omnitigs.

Lemma 2. Let W be a set of omnitigs in a node-centric graph model G(R), whose genome graph is
different than a single cycle. Furthermore, suppose no omnitig in W is a prefix of another omnitig
in W . Then, |W | 6 n2 and the length of any omnitig in W is O(n2).

We also leave open the question whether the bound on the number of maximal omnitigs in the
node-centric model can be reduced to n. We now combine Theorem 3 and Lemma 2 for obtaining
our polynomial-time safe and complete assembly algorithm.

Theorem 4. There is a safe and complete assembly algorithm for any node-centric graph model
G(R) built on a set R of reads, which runs in polynomial time.

Proof. The proof is identical to the one for the edge-centric case (Algorithm 1 and Theorem 2).
The only difference that needs to be made to Algorithm 1 is to check that the second bullet in the
definition of omnitig for the node-centric case holds. This can be similarly performed by a single
graph traversal, and only for the last edge added to the omnitig.

8 Experimental results

We wanted to test the potential of omnitigs as an alternative to unitigs, under the assumptions
of Section 4. We chose two genomes: one bacterial genome, E.coli, and one larger genome, Human
chr10 (circularized). The graph model was the edge-centric de Bruijn graph built on the set of all
(k+1)-mers of the genome. We used k = 31 and k = 55 for E.coli and chr10, respectively, according
to what has been used in practice for the assembly of such genomes.

We wanted to measure the effect of omnitigs on assembly contiguity in terms of (1) increase
in contig length, and (2) increase of biological context for elements of interest. To measure the
increase in length, we measured the average contig length and the E-size. Since multiple contigs
can cover overlapping regions, we found the E-size metric [36] to be more appropriate than the N50
metric. The E-size of a set of substrings of a genome is defined as the average, over all genomic
positions i, of the mean length of all substrings spanning position i. This was computed by aligning
the contigs to the reference. Table 1 shows that omnitigs exhibit significantly more contiguity than
unitigs, with an average contig length that is 62-82% higher. There is very little improvement in the
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Table 1. Results for DBk
ec(R), where R is the set of all (k + 1)-mers of the genome.

E.coli (k = 31) chr10 (k = 55)

# strings avg len E-size time (s) # strings avg len E-size time (s)

unitigs 1,743 2,654 33,309 < 1 259,845 546 8,344 1

Y-to-V 1,004 4,682 33,632 < 1 159,101 878 8,376 2

omnitigs 983 4,832 34,557 < 1 158,236 887 8,401 1, 046

Fig. 6. The increase in SNP block size in omnitigs compared to unitigs (A) and Y-to-V contigs (B). Each point is
a SNP, and the x-value is the block size of the unitig (in A) or Y-to-V contig (in B) covering it. The y-value is the
increase in the block size, when compared with omnitigs. Note that the y-axis does not represent the block size, but
a difference of block sizes.

E-size (1-4%), indicating that most of the improvement come from increasing the length of shorter
contigs.

We wanted to also measure the potential of omnitigs to improve downstream biological analysis,
relative to unitigs. Longer contigs can provide more flanking context around important genomic
elements such as SNPs. One general type of study collects statistics about the relationship of each
SNP to other SNPs on the same contig; such a study is necessarily limited by the number of SNPs
present on the same contig [39]. We call this number the block size of a SNP. To see the effect of
omnitigs on such a study, we identified chr10 locations of SNPs in the human population (using
dbSNP), and the block size of each SNP in the omnitig vs. the unitig algorithms. Figure 6A shows
that omnitigs in many cases provide more SNP context. The number of SNPs whose block size
increased was ∼ 1.7 million (out of ∼ 5.9 million) and whose block size increased by more than 10
was ∼ 137 thousand. The average number of SNPs per omnitig was 41, with only 26 per unitig.
Consistent with the contiguity results of Table 1, the effect is more pronounced on contigs with less
SNPs on them.
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We also compared omnitigs to Y-to-V contigs. Y-to-V contigs have been proposed in the litera-
ture [22,12,17], but, to the best of our knowledge, there has not been a quantitative study comparing
their merits against other contig algorithms. Omnitigs also provide more SNP context than Y-to-V
contigs, with ∼ 266 thousand SNPs having an increase in block size (Figure 6B). Omnitigs are
only marginally better than Y-to-V contigs in terms of average contiguity (Table 1). Our results
suggest that, though not as beneficial as omnitigs, Y-to-V contigs may nevertheless provide a better
alternative to unitigs that is faster than the omnitig algorithm.

Table 1 also shows the wall-clock running times of our algorithms. The experiments were run
on a node with two Xeon 2.53 GHz CPUs. We parallelized the omnitig algorithm so that it utilized
all 8 available cores. We observe negligible running times for all algorithms on E.coli. On chr10, the
running time of the omnitig algorithm is significantly longer (by 18mins) than the unitig or Y-to-V
algorithm, though it would still not form a bottleneck in an assembly pipeline. The memory usage
did not exceed 1 GB at any point, though we believe it can be significantly reduced with a more
careful implementation.

9 Conclusion

There are two natural directions for future work: practical and theoretical. In the practical direction,
the omnitig algorithm should be extended to handle the complexities of real data such as sequencing
errors, imperfect coverage, linear genomes, and double-strandedness. This is a non-trivial task which
is outside the scope of the current study, but it will be important in facilitating the application to
genome analysis and assembly. In the theoretical direction, we believe that omnitigs exhibit more
structure that can be exploited in a faster algorithm for finding all maximal omnitigs. We are also
currently studying the graph model which a genomic reconstruction is any collection of circular
walks that together cover all nodes/edges of the graph (as in metagenomic sequencing of bacteria).
We are also studying the class of genome graphs admitting a single safe walk covering all of their
nodes or edges, question related to the ones about unique reconstructions.
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