
ROTATION: at which scales the 
ambient rotation becomes an 

important factor in controlling the 
fluid motions?

STRATIFICATION: at which 
conditions the stratification effects 

have a dynamic role on fluid 
motions?

ROTATION + STRATIFICATION



ROTATION: at which scales the ambient rotation 𝛀 
becomes an important factor in controlling the 

fluid motions?
=> Determine which are the physical phenomena affected by 𝛀

• def. ambient rotation rate 𝛀 (daily rotation + orbital revolution)

Ω =
2𝜋 𝑟𝑎𝑑𝑖𝑎𝑛𝑠

𝑡𝑖𝑚𝑒 𝑜𝑓 1 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 =
2𝜋
24 ℎ𝑟 +

2𝜋
1 𝑦𝑟 = (7.27 + 0.02) ; 10!"𝑠!# =

2𝜋
𝑇$

⇒ Ω =
2𝜋
𝑇$

= 7.29 ; 10!"𝑠!#

• def. motion time scale 𝑇 (linked with local time variation 𝜕%)

𝜔 =
𝑡𝑖𝑚𝑒 𝑜𝑓 1 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛
𝑚𝑜𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑠𝑐𝑎𝑙𝑒 =

C2𝜋
Ω

𝑇 =
𝑇$
𝑇



ROTATION: at which scales the ambient rotation 𝛀 
becomes an important factor in controlling the 

fluid motions?
=> Determine which are the physical phenomena affected by 𝛀

• IF 𝜔 ≲ 1 ⇒ 𝑇 ≳ &'
(
= 𝑇$ ≈ 24ℎ𝑟 ⇒ the fluid will feel the effect of rotation

• now let’s consider velocity and length scales of motion: U and L (linked with 
advection time scale 𝑢𝜕))

• IF a parcel travelling at velocity U covers the distance L in a time L/U ≳ 𝑇$
then its trajectory will be affected by rotation:

𝜀 =
𝑡𝑖𝑚𝑒 𝑜𝑓 1 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛

𝑡𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 𝑡𝑜 𝑐𝑜𝑣𝑒𝑟 𝐿 𝑎𝑡 𝑈 =
C2𝜋
Ω

C𝐿 𝑈
=
2𝜋𝑈
𝐿Ω

• IF 𝜀 ≲ 1 ⇒ ⁄* + ≳ ⁄&'
( = 𝑇$ ⇒ rotation will affect parcel’s trajectory
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given L, rotation is important if U ≤ L/TR with TR = 24 hours

most engineering applications (water flows, pipe flows, 
turbines, airfoils…) do not satisfy the inequality and in these 

cases rotation can be neglected



STRATIFICATION: at which conditions the 
stratification effects have a dynamic role on fluid 

motions?
=> Determine at which conditions the stratification effects have a dynamic 
role on fluid motions

• GFD flows consist of fluid masses at different density which under 
gravitational action tend to arrange in vertical stacks => state of minimal energy

• BUT motions continuously perturb the equilibrium, tending to raise dense fluid 
and lower light fluid (potential vs kinetic energy): ∆𝑃 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 ⇔ Δ𝐾 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒

• dynamical role of stratification can be evaluated by comparison of 𝑃 and 𝐾

• r0 = average density

• Dr = density variations 

• H = Dr height scale

∆𝑃 = 𝑃, − 𝑃- = 𝜌. + ∆𝜌 𝑔𝐻 + 𝜌.g ; 0 − 𝜌. + ∆𝜌 𝑔 ; 0 + 𝜌.gH = ∆𝜌𝑔𝐻

𝐾 =
1
2𝜌.𝑈

&



STRATIFICATION: at which conditions the 
stratification effects have a dynamic role on fluid 

motions?
=> Determine at which conditions the stratification effects have a 
dynamic role on fluid motions

𝜎 =
𝑘𝑖𝑛𝑒𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒
𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒

=
1
2𝜌.𝑈

&

∆𝜌𝑔𝐻

• IF 𝜎~1 a ∆𝑃 increase to perturb the equilibrium will consume a ∆𝐾 of the 
same order modifying the flow field substantially

• IF 𝜎 ≪ 1 ∆𝐾 is too low to perturb the stratification that largely affects the 
flow

• IF 𝜎 ≫ 1 ∆𝑃 occurs at very little ∆𝐾 variation so stratification does not 
affect the flow

• ⇒ Stratification effects are important when 𝜎 ≲ 1
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ROTATION + STRATIFICATION
Þ Determine what happens when both R + S affect the flow

𝜀~1 ⇒ L ~ +
(
…	𝜎~1 ⇒ U ~ ∆0

0!
𝑔𝐻 ⇒ L~ #

(
∆0
0!
𝑔𝐻 fundamental length scale

• In a given fluid of mean density 𝜌. and density variation ∆𝜌 occupying a 
height 𝐻 in a planet rotating at Ω with a gravitational acceleration 𝑔, the 
scale L represents the preferential lenght over which motions take place



ROTATION + STRATIFICATION
Þ Determine what happens when both R + S affect the flow

𝜀~1 ⇒ L ~ +
(
…	𝜎~1 ⇒ U ~ ∆0

0!
𝑔𝐻 ⇒ L~ #

(
∆0
0!
𝑔𝐻 fundamental length scale

• In a given fluid of mean density 𝜌. and density variation ∆𝜌 occupying a 
height 𝐻 in a planet rotating at Ω with a gravitational acceleration 𝑔, the 
scale L represents the preferential lenght over which motions take place

• These are «natural scales»: for ATM, range of [L,U] is typical for wind in 
weather patterns in lower troposphere, for OC, range of [L,U] is typical for 
currents in upper layers, with 𝑇~𝑇$

• => MESOSCALE ATM ≠ OC => implications for numerical models 



GFD



Various types of 
processes and structures 
in the atmosphere and 
oceans, ranked according 
to their respective L and 
T. (courtesy of Hans von
Storch; GFD2)

atmosphere

ocean



ATMOSPHERE vs OCEAN
• Many ocean processes are caused by 

lateral boundaries, that do not exist in 
atmosphere

• Atmospheric motions are strongly 
dependent on moisture content, that does 
not exist in ocean (but ocean has salinity)

• Atm is thermodynamically driven: the Solar 
radiation is the main source of energy

• Oc is forced by different mechanisms: 
tides, wind stress, surface fluxes



ATMOSPHERE vs OCEAN
A note on wind/current direction:
• In meteorology, winds «come from» a 

direction (UPSTREAM), e.g. easterly wind 
= from the East

• In oceanography, currents «go toward» a 
direction (DOWNSTREAM), e.g. eastward 
current = to the East



THE CORIOLIS FORCE
Þ Navier-Stokes equations 

for FD are written for an 
inertial system of reference 
(I)

d
𝑑e𝑢
𝑑𝑡 1

= −
1
𝜌
∇𝑝 + ∇𝜙 +

1
𝜌
e𝐹

parcel acceleration in I = 
pressure grad. + body forces + 
surface forces

• The N.-S. eqs must be re-
written in a rotating frame of 
reference (R), since we 
observe motion on Earth

• HOW observers in R and I 
would describe the motion of 
a vector �⃗�
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THE CORIOLIS FORCE
Þ Navier-Stokes equations 

for FD are written for 
inertial system of reference 
(I)

d
𝑑e𝑢
𝑑𝑡 1

= −
1
𝜌
∇𝑝 + ∇𝜙 +

1
𝜌
e𝐹

𝑑e𝑢
𝑑𝑡

+ 2jΩ𝑥e𝑢 = −
1
𝜌
∇𝑝 + ∇ l𝜙 +

1
𝜌
e𝐹

…including the centrifugal force in 
∇𝜙 and neglecting |R

The centrifugal force acts as an 
outward pull whereas the Coriolis 
force depends on velocity



THE CORIOLIS FORCE
Þ Coriolis Force depends on e𝑢 and jΩ : it is ≠ 0 only for e𝑢 ≠ 0

Þ Centrifugal Force depends on �̅� and jΩ : even at rest, parcels have an 
outward pull, balanced by gravity force  



THE CORIOLIS FORCE
Þ Coriolis Force depends on e𝑢 and jΩ : it is ≠ 0 only for e𝑢 ≠ 0

Þ Centrifugal Force depends on �̅� and jΩ : even at rest, parcels have an 
outward pull, balanced by gravity force  



THE CORIOLIS FORCE
Þ Coriolis Force depends on e𝑢 and jΩ : it is ≠ 0 only for e𝑢 ≠ 0

Þ Centrifugal Force depends on �̅� and jΩ : even at rest, parcels have an 
outward pull, balanced by gravity force  

NOTE: in absence of rotation, 
gravitational forces keep the 
matter together to form a 
spherical body – the outward pull 
of the centrifugal force produces 
a FLATTENING, which is 
necessary to keep the planet in 
equilibrium given its rotation rate

𝑅!"#$%&'($)
𝑅*&)$'

=
6378 𝑘𝑚
6357 𝑘𝑚 ≈ 1.003

𝑐𝑒𝑛𝑡𝑟𝑖𝑓𝑢𝑔𝑎𝑙
𝑔𝑟𝑎𝑣𝑖𝑡𝑦 =

Ω+𝑅𝑐𝑜𝑠𝜑
𝐺𝑀/𝑅+ ~1%

Þ We call gravitational force = NET resultant of gravity and centrifugal



MOTION OF A FREE PARTICLE ON A ROTATING PLANE
Þ Effect of Coriolis force on a particle not subjected to any external 

force, in I: e𝐹 = 0 ⟹ 234
2%
= 0 (uniform motion) but in R: 234

2%
+ 2jΩ𝑥e𝑢 = 0
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TIP: Look for 
example videos on 
Youtube:

Coriolis force 1

Coriolis force 2

Coriolis force 3

Foucault Pendulum

Gaspard Gustave de Coriolis

(21 May 1792 – 19 September 1843) 
French mathematician, mechanical 
engineer and scientist
http://en.wikipedia.org/wiki/Gaspard-Gustave_Coriolis

https://www.youtube.com/watch?v=WB4dxpUS530
https://www.youtube.com/watch?v=PDEcAxfSYaI
https://www.youtube.com/watch?v=mPsLanVS1Q8


http://www.legi.grenoble-inp.fr/web/spip.php?article757

The Coriolis rotating platform at LEGI (Grenoble): diameter = 13 m



R = 6370 km
Hatm = 10 km
Hoce = 5 km

=> H/R is order 1/1000

…like 1 mm over 1 m !
…less than an apple’s peel

MOTION ON A 3d ROTATING EARTH
Þ Let’s consider Earth as a perfect sphere rotating around N-S axis

Þ Local Cartesian frame of reference = x:E, y:N, z:up



MOTION ON A 3d ROTATING EARTH
Þ Let’s consider Earth as a perfect sphere rotating around N-S axis

Þ Local Cartesian frame of reference = x:E, y:N, z:up

Þ Earth’s rotation vector : jΩ = Ω𝑐𝑜𝑠𝜑 ̂𝚥 + Ω𝑠𝑖𝑛𝜑l𝑘

• CORIOLIS PARAMETER: 𝑓 = 2Ω𝑠𝑖𝑛𝜑

• RECIPROCAL CORIOLIS PARAMETER: 𝑓∗ = 2Ω𝑐𝑜𝑠𝜑

INERTIAL PERIOD is now: 
𝑇 = &'

,
= '

(6-78

12 hr [poles] ≤ 𝑇 ≤ ∞ [eq]

𝑑e𝑢
𝑑𝑡 + 2

jΩ𝑥e𝑢 =

𝑥:
𝑑𝑢
𝑑𝑡
+ 2Ω𝑐𝑜𝑠𝜑𝑤 − 2Ω𝑠𝑖𝑛𝜑𝑣

𝑦:
𝑑𝑣
𝑑𝑡
+ 2Ω𝑠𝑖𝑛𝜑𝑢

𝑧:
𝑑𝑤
𝑑𝑡

− 2Ω𝑐𝑜𝑠𝜑𝑢





THE GOVERNING EQUATIONS
Þ Equations governing the movement of a stratified fluid in a rotating 

environment

1. MOMENTUM EQUATIONS:

• Coming from N.-S. eqs. in R: 𝜌 234
2%
+ 2 e𝛺𝑥e𝑢 = −𝛻𝑝 + 𝛻 ; 𝜏-9 − 𝜌𝑔l𝑘

• where 𝜏-9 = − &
:
𝜇𝛿-9∇ ; e𝑢 + 2𝜇𝑆-9 with 𝑆-9 = 𝜕-𝑢9 + 𝜕9𝑢-

• where 𝑓 = 2Ω𝑠𝑖𝑛𝜑 and 𝑓∗ = 2Ω𝑐𝑜𝑠𝜑 and 𝜌𝑔 is grav. force + centrif. force



THE GOVERNING EQUATIONS
Þ The acceleration in fluids is measured NOT as ∆𝒗

∆𝒕
at a fixed position 

but as ∆𝒗
∆𝒕

of a parcel as it moves with the flow

NOTE: in the curvilinear coordination system curvature terms enter in 
equations:

ü WE HAVE 5 UNKNOWNS 𝒖, 𝒗,𝒘, 𝝆, 𝒑 IN 3 EQUATIONS

Since GFD restricts to motions on 
LARGE SCALES 𝐿~1000 𝑘𝑚 but 𝐿 ≪ 𝑟
where 𝑟 is the Earth radius ⇒ in 1st
approx. we can neglect the curvature 
terms ⇒ similar to consider a portion of 
sphere as a plane



THE GOVERNING EQUATIONS
2. MASS CONSERVATION EQUATION:

• The imbalance between convergence and divergence in xyz must be 
translated into a local compression or expansion of fluid

⇒ IF sink / 
spring of 
mass exists 
in a given 
volume, 
mass is 
transported 
to / from the 
external of 
the volume
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THE GOVERNING EQUATIONS
3. ENERGY EQUATION:

• INTERNAL ENERGY OF A FLUID PARCEL

• The energy budget can be simplified for most GFD applications
where ∆𝑻 and ∆𝑺 ≪ 𝟏 (GFD flows do no have internal heat sources)

• 1st Law of Thermodynamics: internal energy gained by a parcel ∆𝑈 is
equal to the heat received 𝑄 minus the mechanical work performed ∆𝑊 ⇒
∆𝑈 = 𝑄 − ∆𝑊 (written per units of mass/time: ∆𝑈 = 𝑊𝑎𝑡𝑡/𝑘𝑔)

• Internal energy: ∆𝑈 = 2=
2%

where 𝑒 = 𝐶>𝑇 internal energy per mass

• Rate of heat gained per unit mass: 𝑄 result of heat diffusion: 𝜌𝑄 = 𝑘∇&𝑇
following Fourier’s law of diffusion and 𝑘 thermal conductivity of the fluid 
𝑘 = 𝑊𝑎𝑡𝑡/𝑚 ; 𝐾 (local heat flux density e𝑞 = − 𝑘∇𝑇 and 𝜌𝑄 = −∇ ; e𝑞 )

• Mechanical work: ∆𝑊 = 𝑝 2?
2%

where 𝑣 = ⁄# 0 specific volume

– 𝐶> heat capacity at constant volume: !
𝐴𝐼𝑅: 𝐶" = 718 #

$%&'

𝑆𝐸𝐴𝑊𝐴𝑇𝐸𝑅: 𝐶" = 3990 #
$%&'



THE GOVERNING EQUATIONS
3. ENERGY EQUATION:

• ∆𝑈 = 𝑄 − ∆𝑊 ⇒ 2=
2%
= @

0
∇&𝑇 − 𝑝 2?

2%

• 2?
2%
= 2 A( )

2%
= − #

0*
20
2%
⇒ 𝜌𝐶>

2B
2%
− C
0
20
2%
= 𝑘∇&𝑇

• from continuity eq.: − #
0
20
2%
= ∇ ; e𝑢 ⇒ 𝜌𝐶>

2B
2%
+ 𝑝∇ ; e𝑢 = 𝑘∇&𝑇

ü WE HAVE NOW 5+1 UNKNOWNS 𝒖, 𝒗,𝒘, 𝝆, 𝒑, 𝑻 IN 5 EQUATIONS

ü So we need another equation…



THE GOVERNING EQUATIONS
4. EQUATION OF STATE:

• Every fluid has density as function of pressure and temperature: 
𝝆 = 𝝆 𝒑, 𝑻 → 𝑨𝑰𝑹 ≠ 𝑾𝑨𝑻𝑬𝑹

• DRY AIR in atmosphere behaves as an ideal gas: 𝝆 = 𝑷
𝑹𝑻

𝑅 = 287
𝑚&

𝑠&𝐾 = 𝐶G − 𝐶> 𝑤𝑖𝑡ℎ �
𝐶G = 1005 C𝑚&

𝑠&𝐾
𝐶> = 718 C𝑚&

𝑠&𝐾

𝐶G , 𝐶> heat capacity at constant pressure / volume

• MOIST AIR: 𝝆 = 𝑷
𝑹𝑻(𝟏J𝟎.𝟔𝟎𝟖𝒒)

where 𝒒 is humidity

ü WE HAVE NOW 5+2 UNKNOWNS 𝒖, 𝒗,𝒘, 𝝆, 𝒑, 𝑻, 𝒒 IN 6 EQUATIONS

ü So we need another equation for humidity: 𝒅𝒒
𝒅𝒕
= 𝒌𝒒𝛁𝟐𝒒 diffusion



THE GOVERNING EQUATIONS
4. EQUATION OF STATE:

• WATER ~ incompressible: 𝝏𝝆
𝝏𝒑
= 𝟎 → SEAWATER: 𝝆 = 𝝆 𝑻, 𝑺

• In 1st approx. linear: 𝝆 = 𝝆𝟎 𝟏 − 𝜶 𝑻 − 𝑻𝟎 + 𝜷 𝑺 − 𝑺𝟎
– 𝜌. = 1028 𝑘𝑔/𝑚: … 𝑇. = 10℃ … 𝑆. = 35 𝑝𝑠𝑢 reference values

– 𝛼 = 1.7×10!V 𝐾!# → coefficient of thermal expansion

– 𝛽 = 7.6×10!V → coefficient of saline contraction

• seawater has salinity: grams of salt over 1 kg of water

ü WE HAVE NOW 5+2 UNKNOWNS 𝒖, 𝒗,𝒘, 𝝆, 𝒑, 𝑻, 𝑺 IN 6 EQUATIONS

ü So we need another equation: 𝒅𝑺
𝒅𝒕
= 𝒌𝑺𝛁𝟐𝑺 diffusion

• Seawater parcels conserve their salt content and we can neglect
salt sources



SEAWATER



AIR



THE GOVERNING EQUATIONS
Governing Eqs cannot be solved as they are: GFD adopts different 
simplifying approximations, based on analysis of the phenomena and 
the processes we want to study…

• Approx based on considerations on density

• Approx based on Newtonian fluid hypothesis

• Approx based on hydrostatic balance

• Approx based on effects of turbulence mixing

• Approx based on orders of magnitude (scale analysis)

• Ignoring frictional forces

• Considering fast rotating flows

• Considering homogenous fluids

• …



THE GOVERNING EQUATIONS
Governing Eqs cannot be solved as they are: GFD adopts different 
simplifying approximations, based on analysis of the phenomena and 
the processes we want to study…

• Approx based on considerations on density

– Variations of density in ocean and atmosphere are order of
few % w.r.t. background density

– Ocean: reference density 1028 kg/m3 à density variations are
below 3-4 kg/m3 (less than 1%), in estuaries (where salinity
increase from zero to 34) reaching 2%

– Atmosphere: reference density 1.2 kg/m3 à in the troposphere
density variations are around 0.05 kg/m3 (around 5%), and these
are responsible of pressure gradients and therefore wind patterns

– In most cases, we can consider mean density as a reference
value and rewrite density field as a constant value plus a
variation, dependent on space and time

– => BOUSSINESQ APPROXIMATION !



Joseph Valentin Boussinesq 

(13 March 1842 – 19 February 1929) 
French mathematician and physicist
http://en.wikipedia.org/wiki/Joseph_Valentin_Boussinesq

GFD: Density differences are sufficiently small to be 
neglected, except when multiplied by gravity acceleration

ρ = ρ0 + ρ’(x,y,z,t)    where   ρ’ << ρ0
[…] Through the Boussinesq approx* the mass conservation 
becomes volume conservation: ∇ " #𝑢 = 0 which can be 
expected since, with uniform density, volume is a good proxy 
for mass! 
*also, in GFD flows variations of density are smaller than variations of velocity



THE GOVERNING EQUATIONS
Governing Eqs cannot be solved as they are: GFD adopts different 
simplifying approximations, based on the analysis of the phenomena 
and the processes we want to study…

• Approx based on considerations on stress tensor

– NEWTONIAN FLUID hypothesis: stresses are proportional to
velocity gradients => 𝝉𝒊𝒋 = 𝝁 𝝏𝒊𝒖𝒋 + 𝝏𝒋𝒖𝒊 where
• 𝝁 is coefficient of dynamic viscosity

• 𝝂 = 𝝁/𝝆𝟎 is coefficient of kinematic viscosity

– Viscous terms in momentum equations become […]
∇&𝑢, ∇&𝑣, ∇&𝑤



THE GOVERNING EQUATIONS
Governing Eqs cannot be solved as they are: GFD adopts different 
simplifying approximations, based on the analysis of the phenomena 
and the processes we want to study…

• Approx based on hydrostatic balance

– in the z-momentum equation density at LHS 𝝆 = 𝝆𝟎 + 𝝆Z → 𝝆𝟎
but at RHS −𝝆𝒈 accounts for the weight of fluid, causing:
• increase of pressure with depth in the ocean and

• decrease of pressure with height in the atmosphere

– following Boussinesq approx. also pressure may be
separated in 2 terms hydrostatic pressure + dynamic
pressure: 𝒑 = 𝒑𝟎(𝒛) + 𝒑Z(𝒙, 𝒚, 𝒛, 𝒕)

– hydrostatic balance: 𝒅𝒑𝟎
𝒅𝒛

= −𝝆𝟎𝒈 expresses the variation of
pressure in the vertical due only to fluid weight

– Integrating from a reference height (or depth) […] :
𝒑𝟎 𝒛 = 𝑷𝒐 − 𝝆𝟎𝒈𝒛



THE GOVERNING EQUATIONS
Governing Eqs cannot be solved as they are: GFD adopts different 
simplifying approximations, based on the analysis of the phenomena 
and the processes we want to study…

• Following the Boussinesq approx. and the mass conservation:

– Energy equation with ∇ ; e𝑢 = 0 becomes a diffusion equation
for temperature: 𝜌.𝐶>

2B
2%
= 𝑘∇&𝑇

• 𝒌𝑻 =
𝒌

/!0"
is heat diffusivityà 𝒌𝑻 = 𝑚+/𝑠

• 𝒌 is thermal conductivity: 0.02 / 0.60𝑊𝑎𝑡𝑡/𝑚 ; 𝐾 in air/water

– 2B
2%
= 𝑘B∇&𝑇 is isomorphic to salt/humidity equation […]

– GFD motions are mostly turbulent: turbulence rules diffusion
on large scales where efficient diffusion is accomplished by
eddies or vortexes which mix properties (temperature, salt,
humidity) at equal rates => EDDY DIFFUSIVITY 𝑲~𝟏𝟎!𝟐𝒎𝟐/𝒔
(𝑲𝑻,𝑬) used for T and S: 20

,

2%
= 𝐾∇&𝜌Z



THE GOVERNING EQUATIONS
Governing Eqs cannot be solved as they are: GFD adopts different 
simplifying approximations, based on the analysis of the phenomena 
and the processes we want to study…

• Approx based on orders of magnitude (scale analysis)

– SCALE = a dimensional constant of dimensions identical to
that of the variable and having a numerical value
representative of the values of the variable



THE GOVERNING EQUATIONS
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• Approx based on orders of magnitude (scale analysis)

– SCALE = a dimensional constant of dimensions identical to
that of the variable and having a numerical value
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1% of r0 0.1% of r0



THE GOVERNING EQUATIONS
• Approx based on orders of magnitude (scale analysis)

– SCALE = a dimensional constant of dimensions identical to
that of the variable and having a numerical value
representative of the values of the variable

1% of r0 0.1% of r0
GFD large-scale motions:

L >> H and T ³ 1/Ω [and Ω ³ U/L]



THE GOVERNING EQUATIONS
• Approx based on orders of magnitude (scale analysis)

– Considerations on continuity equation…

– … […]

– Considerations on x,y - momentum equations…

– … […]

– Considerations on z - momentum equations…

– … […]

– Considerations on energy equation…

– … […]



THE GOVERNING EQUATIONS
• Approx based on orders of magnitude (scale analysis)

– Considerations on continuity equation…

– … […]

– Considerations on x,y - momentum equations…

– … […]

– Considerations on z - momentum equations…

– … […]

– Considerations on energy equation…

– … […]

– Large-scale geophysical flows tend to be fully hydrostatic
even in presence of substantial motions



Primitive Equations of GFD

f = 2Wsinj and r0, g constant, nE(z), kE(z)
5 equations for 5 variables u,v,w,r,p



• Scale analysis on x,y momentum equations:
𝑼
𝑻
,
𝑼𝟐

𝑳
,
𝑼𝟐

𝑳
,
𝑾𝑼
𝑯

,𝛀𝑼,
𝑷
𝝆𝟎𝑳

,
𝝂𝑼
𝑯𝟐

Þ Rotation (Coriolis) term 𝛀𝑼 is fundamental to measure the
importance of the terms relative to it:

𝟏
𝛀𝑻 ,

𝑼
𝛀𝑳 ,

𝑼
𝛀𝑳 ,

𝑾𝑼
𝑯 ;

𝟏
𝛀𝑼 ;

𝑳
𝑳 , 𝟏,

𝑷
𝝆𝟎𝑳𝛀𝑼

,
𝝂

𝛀𝑯𝟐

§ def. Temporal Rossby number: 𝑹𝒐𝑻 =
𝟏
𝛀𝑻
= 𝒍𝒐𝒄𝒂𝒍 𝒗𝒆𝒍𝒐𝒄𝒊𝒕𝒚 𝒗𝒂𝒓𝒊𝒂𝒕𝒊𝒐𝒏

𝑪𝒐𝒓𝒊𝒐𝒍𝒊𝒔 𝒕𝒆𝒓𝒎
… 𝝎

§ def. Rossby number: 𝑹𝒐 = 𝑼
𝛀𝑳
= 𝒂𝒅𝒗𝒆𝒄𝒕𝒊𝒐𝒏

𝑪𝒐𝒓𝒊𝒐𝒍𝒊𝒔 𝒕𝒆𝒓𝒎
… 𝜺

§
𝑾𝑼
𝑯
N 𝟏
𝛀𝑼
N 𝑳
𝑳
= 𝑾𝑳

𝑼𝑯
N 𝑼
𝛀𝑳
= 𝑾𝑳

𝑼𝑯
N 𝑹𝒐 = 𝒗𝒆𝒓𝒕𝒊𝒄𝒂𝒍 𝒄𝒐𝒏𝒗𝒆𝒓𝒈𝒆𝒏𝒄𝒆/𝒅𝒊𝒗𝒆𝒓𝒈𝒆𝒏𝒄𝒆

𝒉𝒐𝒓𝒊𝒛𝒐𝒏𝒕𝒂𝒍 𝒄𝒐𝒏𝒗𝒆𝒓𝒈𝒆𝒏𝒄𝒆/𝒅𝒊𝒗𝒆𝒓𝒈𝒆𝒏𝒄𝒆
N 𝑹𝒐

§ def. Ekman number: 𝑬𝒌 = 𝝂
𝛀𝑯𝟐

= 𝒇𝒓𝒊𝒄𝒕𝒊𝒐𝒏 (𝒛)
𝑪𝒐𝒓𝒊𝒐𝒍𝒊𝒔 𝒕𝒆𝒓𝒎

Þ GFD has 𝑹𝒐𝑻 ≲ 𝟏 … 𝑹𝒐 ≲ 𝟏 … 𝑬𝒌 ≪ 𝟏 𝒇𝒂𝒓 𝒇𝒓𝒐𝒎𝑩. 𝑳.

§ def. Reynolds number: 𝑹𝒆 = 𝑼𝑳
𝝂
= 𝑼

𝛀𝑳
N 𝛀𝑯

𝟐

𝝂
N 𝑳

𝟐

𝑯𝟐
= 𝑹𝒐

𝑬𝒌
N 𝑳

𝟐

𝑯𝟐
= 𝒂𝒅𝒗𝒆𝒄𝒕𝒊𝒐𝒏

𝒇𝒓𝒊𝒄𝒕𝒊𝒐𝒏 (𝒙𝒚)
≫ 𝟏

THE PRIMITIVE EQUATIONS



• Fluid turbulence at sub-geophysical scales (small eddies) can act as
dissipative mechanism: molecular viscosity 𝝂 can be substituted by
a much larger EDDY VISCOSITY 𝝂𝑻 𝒐𝒓 𝝂𝑬

– For water: 𝝂~𝟏𝟎-𝟔𝒎𝟐/𝒔 and 𝝂𝑻~𝟏𝟎-𝟐𝒎𝟐/𝒔

• Even with eddy viscosity, Ekman number remains small (𝑬𝒌~𝟏𝟎!𝟐)
but friction becomes essential near boundary layers (𝑬𝒌~𝟏)

• 𝑷
𝝆𝟎𝑳𝛀𝑼

= 𝒑𝒓𝒆𝒔𝒔𝒖𝒓𝒆 𝒈𝒓𝒂𝒅𝒊𝒆𝒏𝒕
𝑪𝒐𝒓𝒊𝒐𝒍𝒊𝒔 𝒕𝒆𝒓𝒎

⇒ 𝒊𝒇 𝒕𝒆𝒓𝒎𝒔 𝒂𝒓𝒆 𝒄𝒐𝒎𝒑𝒂𝒓𝒂𝒃𝒍𝒆: 𝑷~𝝆𝟎𝑳𝛀𝑼

• from z-momentum: ⇒ 𝑷~∆𝝆𝒈𝑯

∆𝝆𝒈𝑯
𝝆𝟎𝑳𝛀𝑼

;
𝑼
𝑼
=
∆𝝆𝒈𝑯
𝝆𝟎𝑼𝟐

;
𝑼
𝑳𝛀

= 𝑹𝒊 ; 𝑹𝒐

§ def. Richardson number: 𝑹𝒊 = ∆𝝆𝒈𝑯
𝝆𝟎𝑼𝟐

= 𝒑𝒐𝒕𝒆𝒏𝒕𝒊𝒂𝒍 𝒆𝒏𝒆𝒓𝒈𝒚
𝒌𝒊𝒏𝒆𝒕𝒊𝒄 𝒆𝒏𝒆𝒓𝒈𝒚

… 𝟏/𝝈

ü Exercise: find scales for 𝝆𝟎𝑳𝜴𝑼, ∆𝝆𝒈𝑯, 𝝆𝟎𝒈𝑯 in Ocean and Atmosphere
using Table 4.1

THE PRIMITIVE EQUATIONS


