
BAROTROPIC WAVES
• Another possible simplification of the governing eqs. of GFD is to LINEARIZE 

the eqs. à restrictions must be imposed on the flows (for Ek ≪ 𝟏)

• Coriolis terms are linear à no need to simplify

• Advection terms are non-linear à need to be simplified (Ro = !
"#
≪ 𝟏)

• à relatively weak flows (small U)

• à relatively large scales (large L)

• à in LAB: fast rotation rates (large Ω)

• Local time rate of velocity change is linear à no need to simplify (Ro$ =
%
"$
~ 𝟏)

• à consider slow flow fields under rotation that evolve relatively fast = rapidly 
moving disturbances do not require large velocities = information (or energy) may 
travel faster then material particles à the flow is a WAVE FIELD !

• à WAVES supported by inviscid, homogeneous fluid in rotation

• Velocity scale: “celerity” C = &'()*+,- ,./-0-& 12 )3- ('4+*5
+.6'+*5 -/.57)'.+ )'6-

= #
$
~ 𝐿𝛺 ≫ 𝑈



BAROTROPIC WAVES
• slow flow fields under rotation that evolve relatively fast = rapidly moving 

disturbances do not require large velocities = information (or energy) may travel 
faster then material particles

• NOTE: look Appendix B of Cushman to review wave dynamics (already done in 
the first part of the course)

https://www.gemini.edu/media/pr_images/pondwaves-noleaves.jpg



BAROTROPIC WAVES
System governing the linear wave dynamics of an inviscid, 
homogeneous, shallow-water fluid in rotation (for f > 0) => 
start from the shallow-water model excluding advection

ℎ(𝑥, 𝑦, 𝑡) = 𝜂 𝑥, 𝑦, 𝑡 + 𝐻(𝑥, 𝑦)

X X
XX



BAROTROPIC WAVES
System governing the linear wave dynamics of an inviscid, 
homogeneous, shallow-water fluid in rotation (for f > 0) => 
if  𝑯 𝒙, 𝒚 = 𝒄𝒐𝒔𝒕  [flat bottom] and through the scale 
analysis we obtain a linearized form of the continuity 
equation which brings to small amplitude waves […]



KELVIN WAVE 1
A traveling disturbance requiring a lateral boundary 
layer as a support: u = v = 0 at x = 0 (coastline)

Lord Kelvin’s hypothesis was that u = 0 in the whole 
domain

From the previous equations […] :
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Solution: 
[…]

Wave equation => propagation of 1-d non-dispersive waves => speed of surface gravity waves 
in non-rotating shallow waters

Rossby radius of 
deformation



KELVIN WAVE 2

R R
Remember:

v => FLOW VELOCITY

c => Surf-Grav WAVE SPEED



KELVIN WAVE 2

R R
Remember:

v => FLOW VELOCITY

c => Surf-Grav WAVE SPEED

x

y

v < 0



POINCARE’ WAVES 1
Keep u ≠ 0 in the whole domain

The system has to be solved entirely à all coeffs. are 
constant and a Fourier-like solution can be set:
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Dispersion relation […] :

solution:
à steady geostrophic flow

à superinertial travelling waves (PW)
and cases […]: f = 0, HF, LF with

8
9
= 1 + 𝑅:𝑘:



POINCARE’ WAVES 2

The solution of KW as ω/f = kyR can be found with Fourier-like solution in the eqs. for KW with ei(ky+ωt)

1 ≤
𝜔
𝑓
≤ 𝑅𝑘



POINCARE’ WAVES 2

The solution of KW as ω/f = kyR can be found with Fourier-like solution in the eqs. for KW with ei(ky+ωt)

λ >> R λ << R

ω = 0 geostrophy

ω = f inertial osc.

Rotation effect decreases

too fast and short 
to feel rotation 
(gravity waves)

HFLF

1 ≤
𝜔
𝑓
≤ 𝑅𝑘



PLANETARY or ROSSBY WAVES 1

PLANETARY NUMBER
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KW and PW are relatively fast waves (𝜔 ≥ 𝑓): do 
exist other slower waves (𝜔 ≪ 𝑓), associated with 
evolution of disturbances in the geostrophic flow?

Coriolis parameter:

Taylor expansion around a reference latitude φ0:

BETA PARAMETER

The system for the β-plane has “large” and “small” terms à […] retaining the 
large ones we obtain the geostrophic flow (ug,vg 1st-approx solution)

φ0



PLANETARY or ROSSBY WAVES 2
solving the system with (ug,vg) we obtain: velocity = geostr + ageostr

[…] and then including (u,v)

in the continuity equation:

Using a Fourier-like solution for η we have the dispersion relation: 

• For both cases of LW and SW: 
𝜔 ≪ 𝑓! subinertial wave

• 𝑐" = 𝑐" 𝑘 dispersive wave

• 𝑐" =
#
$!
< 0 westward 

propagation

• 𝑐% =
&#
&$!

, &#
&$"

is westward 

for LW and eastward for SW



PLANETARY or ROSSBY WAVES 3
• Rewriting the dispersion relation we 

obtain eq. for circles in 𝑘" , 𝑘' at 
constant 𝜔: 𝜔( < 𝜔) < 𝜔* < 𝜔+," 
[…]

• 𝜔+," =
-#.
)

max frequency



TOPOGRAPHIC WAVES 1

PLANETARY NUMBER

Perturbing effect is small and 
associated with weak bottom 
irregularity (not uncommon in the 
GFD phenomena…)

BETA PARAMETER

The system has “large” and “small” terms which scale as RoT: retaining 
the large ones we obtain the geostrophic flow (ug,vg 1st-approx solution)
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Figure 9-5 Geometric representation
of the planetary-wave dispersion rela-
tion. Each circle corresponds to a fixed
frequency, with frequency increasing
with decreasing radius. The group ve-
locity of the (kx, ky) wave is a vector
perpendicular to the circle at point (kx,
ky) and directed toward its center.

the wave process in its simplest form, we limit ourselves here to the case of a weak and
uniform bottom slope. We also return to the use of a constant Coriolis parameter. This latter
choice allows us to choose convenient directions for the reference axes, and, in anticipation
of an analogy with planetary waves, we align the y–axis with the direction of the topographic
gradient. We thus express the depth of the fluid at rest as:

H = H0 + α0y, (9.34)

whereH0 is a mean reference depth and α0 is the bottom slope, which is required to be gentle
so that

α =
α0L

H0
" 1, (9.35)

where L is the horizontal length scale of the motion. The topographic parameter α plays a
role similar to the planetary number, defined in (9.20).

The bottom slope gives rise to new terms in the continuity equation. Starting with the
continuity equation (7.14) for shallow water and expressing the instantaneous fluid layer
depth as (Figure 9-6)

h(x, y, t) = H0 + α0y + η(x, y, t), (9.36)

we obtain

∂η

∂t
+
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∂η
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(
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)
+ α0v = 0.

Once again, we strike out the nonlinear terms by invoking a very small Rossby number (much
smaller than the temporal Rossby number) for the sake of linear dynamics. The term α0y can



TOPOGRAPHIC WAVES 2
solving the system with (ug,vg) we obtain: velocity = geostr + ageostr

[…] and then including (u,v)

in the continuity equation:

Using a Fourier-like solution for η we have the dispersion relation:

• Phase speed cx has the same sign as α0 à TW propagate in the Northern 
Hemisphere with the shallower side on their right

• For both cases of LW and SW: 𝜔 ≪ 𝑓 subinertial wave

• Since RW always propagate westward = with north on their right, analogy with RW 
is: “shallow-north” and “deep-south” 

• Similar considerations as RW to obtain 𝜔6*; =
<!4
:9=

max frequency 



ANALOGY BETWEEN PLANETARY AND TOPOGRAPHIC WAVES

Potential vorticity on β-plane and sloping bottom:  

Taylor expansion:

=> gradient of potential vorticity 


