BAROTROPIC WAVES

Another possible simplification of the governing eqs. of GFD is to LINEARIZE
the egs. =2 restrictions must be imposed on the flows (for Ek << 1)

Coriolis terms are linear = no need to simplify

U

Advection terms are non-linear = need to be simplified (Ro = or

< 1)

* - relatively weak flows (small U)
« —> relatively large scales (large L)
« - in LAB: fast rotation rates (large Q)

Local time rate of velocity change is linear = no need to simplify (Ro; = é ~1)

—> consider slow flow fields under rotation that evolve relatively fast = rapidly
moving disturbances do not require large velocities = information (or energy) may
travel faster then material particles = the flow is a WAVE FIELD !

- WAVES supported by inviscid, homogeneous fluid in rotation

. y e distance covered by the signal L
Velocity scale: “celerity” C = Y 2 = o LO>U

nominal evolution time




BAROTROPIC WAVES

» slow flow fields under rotation that evolve relatively fast = rapidly moving
disturbances do not require large velocities = information (or energy) may travel
faster then material particles

 NOTE: look Appendix B of Cushman to review wave dynamics (already done in
the first part of the course)



BAROTROPIC WAVES

System governing the linear wave dynamics of an inviscid,
homogeneous, shallow-water fluid 1n rotation (for £ > 0) =>
start from the shallow-water model excluding advection
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h(x,y,t) =n(x,y,t) + H(x,y)



BAROTROPIC WAVES

System governing the linear wave dynamics of an 1nviscid,
homogeneous, shallow-water fluid 1n rotation (for £ > 0) =>
if H(x,y) = cost [flat bottom] and through the scale
analysis we obtain a linearized form of the continuity
equation which brings to small amplitude waves |...]
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KELVIN WAVE 1

A traveling disturbance requiring a lateral boundary
layer as a support: u=v =0 at x = 0 (coastline)

Lord Kelvin’s hypothesis was that u = 0 in the whole

domain

2 2
From the previous equations [...] : _8 v c? 0~

Ot? Iy?
c = \/gH

Wave equation => propagation of 1-d non-dispersive waves => speed of surface gravity waves
in non-rotating shallow waters

c
o
n
S
o
=
I_I
S
8
=
=<
2
o)
—_
o
o
5
@
o
=<
2
=
=
]
aQ
E=]
<

v = 0
So%utii)n: T \/gT’-[F(erct) o—t/R R _ \/j]gH _ %

77 — — H F(y Ct) e_m/R, Rossby radius of

deformation




KELVIN WAVE 2
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Remember:

travel
with the coast on their right, but the accompanying currents differ§ Geostrophic equilibriun’in the z—

momentum equation leads to a velocity v that is maximum at the bulge and directed as the geostrophic v=FLOW VELOCITY
equilibrium requires. Because of the different geostrophic velocities at the bulge and further away,

convergence and divergence patterns create a lifting or lowering of the surface. The lifting and lowering
is such that the wave propagates towards negative ¥ in either case (positive or negative bulge). c=>Sur ﬁ Grav WAVE SPEED

ATLANTIC
OCEAN

Figure 9-2 Cotidal lines (dashed) with time in lunar hours for the M2 tide in the English Channel
showing the eastward progression of the tide from the North Atlantic Ocean. Lines of equal tidal range
(solid, with value in meters) reveal larger amplitudes along the French coast, namely to the right of the
wave progression in accordance with Kelvin waves. (From Proudman, 1953, as adapted by Gill, 1982.)



KELVIN WAVE 2
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momentum equation leads to a velocity v that is maximum at the bulge and directed as the geostrophic v=FLOW VELOCITY
equilibrium requires. Because of the different geostrophic velocities at the bulge and further away,
convergence and divergence patterns create a lifting or lowering of the surface. The lifting and lowering

is such that the wave propagates towards negative ¥ in either case (positive or negative bulge). c=>Sur ﬁ Grav WAVE SPEED
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Figure 9-2 Cotidal lines (dashed) with time in lunar hours for the M2 tide in the English Channel
showing the eastward progression of the tide from the North Atlantic Ocean. Lines of equal tidal range
(solid, with value in meters) reveal larger amplitudes along the French coast, namely to the right of the
wave progression in accordance with Kelvin waves. (From Proudman, 1953, as adapted by Gill, 1982.)



POINCARE’ WAVES 1

Keep u # 0 1n the whole domain

The system has to be solved entirely => all coeffs. are
constant and a Fourier-like solution can be set:

n A
U —RwlU 6i (kzx+kyy—wt)
v V

Dispersion relation [...] : w [w2 — f% — gH (ki + kg)] =0

w = 0 - steady geostrophic flow
solution:

W = \/ f 2 4 g H k? - superinertial travelling waves (PW)

and cases [...]: f=0, HF, LF With? = V1 + R?%k?2



POINCARE’ WAVES 2
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Figure 9-3 Recapitulation of the dis-
persion relation of Kelvin and Poincaré
waves on the f-plane and on a flat
bottom. While Poincaré waves (gray
shades) can travel in all directions and
occupy therefore a continuous spec-
trum 1n terms of k,, the Kelvin wave
(diagonal line) propagates only along a
boundary.

The solution of KW as w/f = k,R can be found with Fourier-like solution in the egs. for KW with eitkyroy



POINCARE’ WAVES 2

t
f w/f

I Rotation effect decreases I

Poincaré

too fast and short
to feel rotation
(gravity waves)

"""""""""""""""" ky R Figure 9-3 Recapitulation of the dis-

persion relation of Kelvin and Poincaré
|i <<R |waves on the f-plane and on a flat
HF bottom. While Poincaré waves (gray
shades) can travel in all directions and
occupy therefore a continuous spec-
trum 1n terms of k,, the Kelvin wave

(diagonal line) propagates only along a
boundary.

The solution of KW as w/f = k,R can be found with Fourier-like solution in the egs. for KW with eitkyroy



PLANETARY or ROSSBY WAVES 1

KW and PW are relatively fast waves (w = f): do
exist other slower waves (w < f), associated with
evolution of disturbances in the geostrophic flow?

c/education/rossby.htm

| Coriolis parameter: f = 2() sin @

__ '/"}_ : Taylor expansion around a reference latitude ¢,
= 2Q singpy + QQ% cos g + ...
= fo + DBoy

= 2(£2/a) cos o BETAPARAMETER
BoL

— f_ < 1 PLANETARY NUMBER

0
The system for the f-plane has “large” and “small” terms = [...] retaining the
large ones we obtain the geostrophic flow (ug,v, 1%-approx solution)

http://paoc.mit.edu/pao




PLANETARY or ROSSBY WAVES 2

solving the system with (u,,v,) we obtain: velocity = geostr + ageostr

[...] and then including (u,v) n , 0 ) On
. . - R Vi — BoR =0
in the continuity equation: ot ot Oz
Using a Fourier-like solution for 7 we have the dispersion relation:
k
2 x
W = — ﬁQR
I + R2 (k;% + kg) * For both cases of LW and SW:
w w K fo subinertial wave
S e ¢, = c,(k) dispersive wave
VI ks o ¢, = kﬂ < 0 westward
propagation

aw aa)
e (C, = 1s westward
9 ™ \oky’ ok,

for LW and eastward for SW

Eastward Westward Eastward

Figure 9-4 Dispersion relation of planetary (Rossby) waves. The frequency w is plotted against the
zonal wavenumber k. at constant meridional wavenumber k,. As the slope of the curve reverses, so
does the direction of zonal propagation of energy.



PLANETARY or ROSSBY WAVES 3

ROSSBY WAVE PATTERNS OVER THE NORTH POLE

* Rewriting the dispersion relation we
obtain eq. for circles in (kx, ky) at
constant w: w; < Wy < W3 < Wmax

BoR

*  Wpgxy =, Max frequency
kyR
Direction of
propagation
k:R
0<w; Sws <ws<[oR/2 w=20

Figure 9-5 Geometric representation
of the planetary-wave dispersion rela-
tion. Each circle corresponds to a fixed
frequency, with frequency increasing
with decreasing radius. The group ve-
locity of the (kz, ky) wave is a vector
perpendicular to the circle at point (k,
ky) and directed toward its center.
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TOPOGRAPHIC WAVES 1

Perturbing effect 1s small and
associated with weak bottom
irregularity (not uncommon in the
GFD phenomena...)

Surface

H = HO + oYy

The system has “large” and “small” terms which scale as Ro: retaining
the large ones we obtain the geostrophic flow (u,,v, 1%-approx solution)



TOPOGRAPHIC WAVES 2

solving the system with (u,,v,) we obtain: velocity = geostr + ageostr

[...] and then including (u,v) an 9

. . . . - R2 TVQ‘I —+
in the continuity equation: ot ot *

apg On
f Ox

= 0

Using a Fourier-like solution for 7 we have the dispersion relation:
xog llx.'-a:
f 1+ R2(kZ + k)

» Phase speed ¢, has the same sign as a, = TW propagate in the Northern
Hemisphere with the shallower side on their right

* For both cases of LW and SW: w < f subinertial wave

« Since RW always propagate westward = with north on their right, analogy with RW
is: “shallow-north” and “deep-south”

. . . . . (04
e Similar considerations as RW to obtain w = %09 hax frequenc
max = g q y



ANALOGY BETWEEN PLANETARY AND TOPOGRAPHIC WAVES

_ fo + Boy + Ov/Ox — Ou/dy

Potential vorticity on f-plane and sloping bottom: ¢

Ho + agy + 7

Taylor expansion:

=> gradient of potential vorticity
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Figure 9-7 Comparison of the physical mechanisms that propel planetary and topographic waves.
Displaced fluid parcels react to their new location by developing either clockwise or counterclockwise
vorticity. Intermediate parcels are entrained by neighboring vortices, and the wave progresses forward.



