STRATIFICATION

STRATIFICATION induces a certain degree of decoupling between the various
fluid masses which have different densities (vertical layering)
=> stratified systems contain more degrees of freedom than homogeneous systems

=> stratified systems exhibit additional types of motion



11.2 Static stability

Let us first consider a fluid 1n static equilibrium. Lack of motion can occur only in the absence

of horizontal forces and thus in the presence of horizontal homogeneity. Stratification 1s then
purely vertical (Figure 11-1).

Figure 11-1 When an incompressible
fluid parcel of density p(z) is vertically
displaced trom level z to level z + h
in a stratified environment, a buoyancy
force appears because of the density
difference p(z) — p(z +h) between the
particle and the ambient fluid.
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11.2 Static stability

Let us first consider a fluid 1n static equilibrium. Lack of motion can occur only in the absence
of horizontal forces and thus in the presence of horizontal homogeneity. Stratification 1s then

purely vertical (Figure 11-1).
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Figure 11-1 When an incompressible
fluid parcel of density p(z) is vertically
displaced trom level z to level z + h
in a stratified environment, a buoyancy
force appears because of the density
difference p(z) — p(z +h) between the
particle and the ambient fluid.

With incompressible fluids, the displaced
parcel retains its former density and at the
new level is subject to a net downward
force equal to its own weight minus the
weight of the displaced fluid
(Archimede’s principle):
d*h

p)V =5 = glp(z+h) — p(2)] V

[...] using the Boussinesq approx*

p(z4h) — p(z) =~ P

; dz
ZTQL . % % h =0
=> 2 cases: STABLE and UNSTABLE
=> %<Oand%>0[...]

*not like an air balloon 1n seawater!



11.2 Static stability

Let us first consider a fluid 1n static equilibrium. Lack of motion can occur only in the absence
of horizontal forces and thus in the presence of horizontal homogeneity. Stratification 1s then

purely vertical (Figure 11-1).
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Figure 11-1 When an incompressible
fluid parcel of density p(z) is vertically
displaced from level z to level z 4+ h
in a stratified environment, a buoyancy

With incompressible fluids, the displaced
parcel retains its former density and at the
new level is subject to a net downward

force equal to its own weight minus the
weight of the displaced fluid

force appears because of the density (Archimede’s principle):

difference p(z) — p(z +h) between the
particle and the ambient fluid.

BUOYANCY FORCE

We will restrict to STABLY STRATIFIED FLUIDS => N2

o)V TR = Loz +h) — PV

[...] using the Boussinesq approx

d
plz+h) = p(z) = Lh

2
« dh g dp h = 0
dt? po dz
=> 7 cases: STABLE and UNSTABLE
_ ap dp
— — <0and—>0[..]



Can we found an adimensional number with similar role as Ro ?
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Figure 11-5 Situation in which a stratified flow encounters an obstacle, forcing some fluid parcels to
move vertically against a buoyancy force.

Stratification will act to restrict or minimize the vertical displacement,
forcing the flow to pass around rather the over the obstacle: the
greater the restriction, the greater the importance of stratification

[...]



Can we found an adimensional number with similar role as Ro ?
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Figure 11-5 Situation in which a stratified flow encounters an obstacle, forcing some fluid parcels to
move vertically against a buoyancy force.

Stratification will act to restrict or minimize the vertical displacement,
forcing the flow to pass around rather the over the obstacle: the
greater the restriction, the greater the importance of stratification

vertconv.  d,w Az _W/H _ U?

— = — = = y => = <
[..] horizdiv. d,u+d,v H U/L  N2ZHZ? Fr Froude n. Fr=1




HORIZONTAL BLOCKING: Fr < 1

;apfzg

._SEMVP Nitrogen Dsrde tropospheric column - January to April 2019
Bl

5 0 pmol/m? 200

Alps act as an obstacle: in case of high stratification vertical
displacements are strongly suppressed and air quality gets worse



HORIZONTAL BLOCKING: Fr < 1

Also here
[28-1-2024]

Alps act as an obstacle: in case of high stratification vertical
displacements are strongly suppressed and air quality gets worse
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HORIZONTAL BLOCKING: Fr < 1
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displacements are strongly suppressed and air quality gets worse



WHAT controls
the vertical
motions?

Rotation?
Stratification?
Both?



WHAT controls
the vertical
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Rotation?
Stratification?
Both?
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? Three-dimensional
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W/ H Re T//T ~ 1 Figure 11-6 Recapitulation of the vari-
o/ "o ous scalings of the ratio of vertical con-
vergence (divergence), W/H, to hori-
14 Fr~1 zontal divergence (convergence), U/ L,
as a function of the Rossby number,
20 Ro = U/(S2L), and Froude number,
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WHAT controls 1 RO << 1

the vertical Flow influenced
motions? mostly by
) rotation 2
Rotation? iy = Fl‘_ /RO > Ro
4 Three-dimensional
Stratification? o flow
Both? W/H . p ‘g:f ~ 1 Figure 11-6 Recapitulation of the vari-
T/ ~ 1o ' ; scalings of the ratio of vertical con-
Qus sca lll:.S oI the ratio o1 vertical con

vergence (divergence), W/H, to hori-
1+ Fr~1 zontal divergence (convergence), U/ L,
as a function of the Rossby number,
Ro = U/(S2L), and Froude number,
o Fr=U/(NH).
1 %ﬁ ~ Fr?

IS

7/ 1 Q'. 7?()
W/H - Fr
U/L fo Flow influenced 2 . Fr << 1
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2-layer stratified fluid + shear

H COMPLETE MIXING
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Figure 14-1 Mixing of a two-layer stratified fluid with velocity shear. Rising of dense fluid and low-
ering of light fluid both require work against buovancy forces and thus lead to an increase in potential
energy. Concomitantly, the kinetic energy of the system decreases during mixing. Only when the
kinetic-energy drop exceeds the potential-energy rise can mixing proceed spontaneously:.

@ = center of gravity



2-layer stratified fluid + shear

Figure 14-1 Mixing of a two-layer stratified fluid with velocity shear. Rising of dense fluid and low-
ering of light fluid both require work against buoyancy forces and thus lead to an increase in potential
energy. Concomitantly, the kinetic energy of the system decreases during mixing. Only when the
kinetic-energy drop exceeds the potential-energy rise can mixing proceed spontaneously.
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2-layer stratified fluid + shear

Figure 14-1 Mixing of a two-layer stratified fluid with velocity shear. Rising of dense fluid and low-
ering of light fluid both require work against buoyancy forces and thus lead to an increase in potential
energy. Concomitantly, the kinetic energy of the system decreases during mixing. Only when the
kinetic-energy drop exceeds the potential-energy rise can mixing proceed spontaneously.

PE gain = / ! Pinal 92 dz — / " Pinitial 92 2 COMPLETE VERTICAL MIXING is
0 0 naturally possible when KE;,ss > PEg4in

— = pgH? - szgg + 1/)1gﬁ]
? 274 2 A (p2 — pr)gH |
= 3 (p2 = pr)gH”. po(Ur — U2)?
- - : .meaning that the density Vgriation barrier
KEloss — / 5 poul.. dz — / 5 pou? . d= 18 not too strong or the shear is large enough
10 7o If . to supply the necessary amount of energy to
= 3 poU3 5 T3 poU? 5 3 poU’H overcome the stratification (...Ri7)
1 2
= grolh = o)l In the opposite case (KEjss < PEgqin) We

have LOCALIZED MIXING occurring
only near the initial interface, not extending
to the entire system...




LOCALIZED MIXING
We know (Kundu, 1990) that a sinusoidal perturbation of wavenumber k 1s unstable if

(p5 — p1)g < pipek (U — Un)?,

or for a Boussinesq fluid (p; >~ p2 >~ po),

2(p2 — p1)g < pok (U1 — Us)*. @

In a stability analysis, waves of all wavenumbers must be considered
= Vk 3 at least a k large enough to cause instability

a 2-layer shear flow
is always unstable to
short waves

(localized mixing)

Figure 14-2 Kelvin—Helmholtz in-
stability: (a) initial perturbation of
wavenumber k. (b) temporal evolution

( Y ; { \ of an unstable perturbation. The sys-
. tem 1s always unstable to short waves,
/@//'@}/ which stgepen. overturn and ultimately
Y - — cause mixing. As waves overturn,
their vertical and lateral dimensions are

(b) comparable.
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7
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Kelvin-Helmoltz instability video



https://www.youtube.com/watch?v=UbAfvcaYr00
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Figure 14-2 Kelvin—Helmholtz in-
stability: (a) initial perturbation of
wavenumber k. (b) temporal evolution

{ L 5 { ) of an unstable perturbation. The sys-

tem 1s always unstable to short waves,

f ), AH which steepen, overturn and ultimately
cause mixing. As waves overturn,

their vertical and lateral dimensions are
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Kelvin-Helmoltz instability video



https://www.youtube.com/watch?v=UbAfvcaYr00

Interfacial unstable waves grow
and form ROLLS of height
comparable to their width

AH = mixing zone

2m NPO(Ul — Up)*
kmin Z(Pz — pl)g
...link with H from KE,s; < PEj4iy

AH X Aoy =

H > AH : localized mixing
H < AH : complete mixing

Figure 14-3 Development of a Kelvin—Helmholtz instability in the laboratory. Here, two lavers flowing
from left to right join downstream of a thin plate (visible on the left of the top photograph). The upper
and faster moving layer is slightly less dense than the lower layer. Downstream distance (from left to
right on each photograph and from top to bottom panel) plays the role of time. At first, waves form
and overturn in a two-dimensional fashion (in the vertical plane of the photo) but, eventually, three-
dimensional motions appear that lead to turbulence and complete the mixing. (Courtesy of Greg A
Lawrence. For more details on the laboratory experiment. see Lawrence er af.. 1991.)

ROLLING + BREAKING = TURBULENT MIXING



Kelvin-Helmoltz instability

Figure 14-3 Kelvin—-Helmbholiz mstability in the

Py . - .
by ine second auinor)

Figure 14-4 Kelvin-Helmholtz instability generated 1n a laboratory with fluids of two different densi-

ties and colours. (4d. from GFD-online, Saroshi Sakai, Isawo Iizawa, Eiji Aramalki

Figure 14-6 Kelvin—Helmholtz instability of the Sahara desert. (Photo by the second author)



Instability of a stratified shear flow

Q: For a given density stratification (N*), what is the
critical velocity shear for the instability -2 mixing?



Instability of a stratified shear flow

Q: For a given density stratification (N*), what is the
critical velocity shear for the instability -2 mixing?

Consider a 2-d (x,z) inviscid, non-rotating, non-diffusive fluid with
velocity (u,w), dynamic pressure p and density anomaly p

ou ou ou

ow ow ow
E + u E + w 87;
ou ow

Ox i 0z

()_,0 + u()—p + w o

ot Ox 0z

1 Op
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Basic state + small Perturbation and Linearization

Our basic state consists of a steady, sheared horizontal flow [u = u(z), w = 0] 1n a vertical
density stratification [p = p(z)]. The accompanying pressure field p(z) obeys dp/dz =
—gp(z). The addition of an infinitesimally small perturbation (v = u + v/, w = w', p =
p+7p',p=p+p)and a subsequent|linearization pf the equations yield:

» 0(2)—-0



Basic state + small Perturbation and Linearization

Our basic state consists of a steady, sheared horizontal flow [u = u(z), w = 0] 1n a vertical
density stratification [p = p(z)]. The accompanying pressure field p(z) obeys dp/dz =
—gp(z). The addition of an infinitesimally small perturbation (v = u + v/, w = w', p =
p+7p',p=p+p)and a subsequent|linearization pf the equations yield:

» 0(2)—-0
ou’ o’ , du 1 op
1) ‘ - U = - w — = — ‘
ot Ox dz po Ox
‘ / ‘ / PP /
2) ow o ow o 1 Op Py
ot Ox po 0z 00
3) ou’ I ow’ 0
ox 0z
op’ oy’ , dp
4 - U | — = 0.
) ot Yo Yz

def. Perturbation streamfunction y : 1,/ = +0 / 0z, w = — O / Ox




Basic state + small Perturbation and Linearization

Hypotheses:

a linear density vertical profile: N* = — pi% = cost
0

the horizontal and temporal evolution of the perturbations u'w’p’y’ are
formally harmonic functions in (x, t), propagating with A,, = 2w /k and
having a Fourier-like wave structure ~e'**=¢t) | BUT f{z) = ?

—N?pg
gu-c)y
[after some maths] we obtain the Taylor-Goldstein equation governing the
vertical structure of a perturbation ¥’ = P(z)e*!*~¢Y in a stratified shear

flow: ; ; -
(7 — c) (%—k%) + (N —d—“>¢:o

U—c dz?

substituting in Eq. 4 we obtain the density perturbation p’ =

with the boundary conditions w'(0) = w'(H) = 0= ¢(0) =y (H) =0
in a domain vertically bounded by two horizontal planes at z = 0, H we
obtain an eigenvalue problem which in general may have complex
eigenvalues ¢ = ¢, + ic; and ¢ = ¢, — ic;



Basic state + small Perturbation and Linearization
o fromc=c, +ic;and c* =c, —ic; = '~ eklx=(Criicit] L pikxo—ikert o Fhcit
 real exponential: the presence of ¢; # 0 = 3 at least one unstable mode
e the flowis stable & ¢; =0



Basic state + small Perturbation and Linearization
from ¢ = ¢, +ic; and ¢* = ¢, — ic; = P'~ etklx=(Criict] L pikxo—ikert o Fhcit
real exponential: the presence of ¢; #+ 0 = 3 at least one unstable mode
the flow 1s stable & ¢; = 0

using integral constraints we can analyze the T.-G. eq.: with ) = u — ¢ ¢
i[(a )dﬂ — lk2(ﬂ—6)+ + — (i(j—j) —N2>]¢_0
¢(0) = ¢(H) = 0.

dz dz
[after some math and using the BCs] we obtain a complex equation:

1 /du |¢|2 d2
A 9 _ % d
/0 [N 4 (_dz> ] u—c e = /o =0 ( k2|¢|2> * /0 ‘ |2 ’

2
. Y . 2 1 /17/
whose 1maginary part 1s cz- [ -5 <d_)

d

IS
—_

Ay
|

1
2

dz

+ k2|¢>|2> dz

e, /H do
la—c? c|2 “Jo dz



Basic state + small Perturbation and Linearization
from ¢ = ¢, +ic; and ¢* = ¢, — ic; = P'~ etklx=(Criict] L pikxo—ikert o Fhcit
real exponential: the presence of ¢; # 0 = 3 at least one unstable mode
the flow 1s stable & ¢; = 0

using integral constraints we can analyze the T.-G. eq.: with ) = u — ¢ ¢
il(a )dﬂ — lkz(a—c)+ + - (i(i—j) —N2>]¢_O
¢(0) = ¢(H) = 0.

dz dz
[after some math and using the BCs] we obtain a complex equation:

H 1 /du |gb|2 _ ¢ d2 d
2 . /1 + + ¢
/0 [N 4 (_dz) ] u—c dz = /0 (@-c) (’d k2|¢|2 e /0 ‘ |2 ’

2
whose imaginary part 1s cz' H N? - %(d—u) n |u|¢’26|2 = TG /OH (‘@

d

IS
—_

Ay
|

1
2

+ k2|¢|2> dz

5 _ 1 (dw\? B B
IF N >Z(E) = ¢+ (>0)=—c;- (>0)=c; = 0 = STABLE

—\ 2
IF N2 < i(i—’z‘) = ¢;- (< 0) = —c; - (> 0) = Vc; = STABLE or UNSTABLE



Q: For a given density stratification (N*), what is the
critical velocity shear for the instability = mixing?

[from ¢ = ¢, + ic; and ¢* = ¢, — ic; = YP'~ eklx=(CrEict] L gikxp—ikt o tke;t]

(
[F Ri > i — STABLE

def. Richardson number Ri =

(é)z IF Ri < i=> STABLE or UNSTABLE
\

sufficient condition for stability is N? > (ZZ) Ri > —...(> STABLE)

du

necessary condition for instability is N? < <3 (E) ' Ri < i ..(& UNSTABLE)

But measurements in atmosphere / ocean / laboratory indicate that Ri < 1/4 is a

) > 4N?

reliable condition of instability = (fTu

Z

if the shear flow has linear variations of velocity and density we may refer to the
2-layer flow case, finding a similarity with KEj,55 > PE g4, (complete vertical

mixing) = Ri is the ratio between PE and KE !!!
Ri =

__potential energy barrier that mixing — if occurring — must overcome

kinetic energy available in the shear flow



Q. can we say something more about the properties of
the growing perturbation?

if we introduce the vertical displacement a caused by the small wave

perturbation: 9da  _da y which correspondsto  (u — ¢)a = — .

ot + U% a I a~a(z) plk(x—ct) ! r i

———————————————

we can rewrite the T.-G. eq. obtaining an eigenvalue problem for a :

a4 [(a — ¢)? %] + [N? —K*(a - ¢)?*la=0

dz
a(0) = a(H) = 0.



Q. can we say something more about the properties of
the growing perturbation?

if we introduce the vertical displacement a caused by the small wave

perturbation: 9da  _da which correspondsto (. — ¢)a = — .
— U— =— W il 1 -
ot ox ! aNa(Z) elk(x_Ct) : EUJI = —()L‘/()’li

———————————————

we can rewrite the T.-G. eq. obtaining an eigenvalue problem for a :

diz [(ﬂ — ¢)? %] + [Nz — k*(u — 0)2} a =0
a(0) = a(H) = 0.

lafter some math and using the BCs]: /H (@ — ¢)?Pdz = /H N2|a|? dz
0 0

through the analysis of the real and the imaginary parts of the integral and
requiring the instability condition ¢; # O :

» Unin < ¢ < Unax the growing perturbation travels with the flow at some intermediate speed

Umin + Umax 2 Umax - Umin ? . . .
> (cr - 5 ) +c < ( 5 > in the complex plane, ¢ = ¢, + ic; must lie
within the circle with the range of u as the
diameter on the real axis




Q. can we say something more about the properties of
the growing perturbation?

instability condition ¢; # O :

» Unin < ¢ < Umax the growing perturbation travels with the flow at some intermediate speed

Umin + Umax 2 2 Urnax - Umin ? . .
>~ 5 T s 5 in the complex plane (c,, ¢;): ¢ = ¢, + ic; must
lie within the circle with the range of u as the
diameter on the real axis
tkx —iktekCit

since instability requires ¢c; > 0 = YP'~ et¥e we are interested in the

upper part of the circle = Howard semicircle theorem

c; < M = kc; < S(Umax — Umin) = the perturbation does not grow to infinite

(C,. Cr']

g

)
Unin ggnax + Ui Unax

2

https://www.dartmouth.edu/~cushman/books/EFM/chap5.pdf
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Rayleigh Benard Thermal Convection
https://www.youtube.com/watch?v=buskqZIPdvl

stable NN

atmosphere P

https://www.youtube.com/watch?v=alvk2cbsvzM

https://www.youtube.com/watch?v=0YatiDf9OASA



https://www.youtube.com/watch?v=aLvk2cbsvzM
https://www.youtube.com/watch?v=0YatiDf9A8A
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