Suffix Trees

Ben Langmead

=X
@
JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

Department of Computer Science

Please sign guestbook (www.langmead-lab.org/teaching-materials)
|@ @ | to tell me briefly how you are using the slides. For original Keynote

files, email me (ben.langmead@gmail.com).

http://www.langmead-lab.org/teaching-materials
mailto:ben.langmead@gmail.com

Suffix trie

We saw the suffix trie, but
we also saw its size grows
quadratically with the
length of the string

Human genomeis 3 -107
bases long.

If m=3-109 m2is way
huge, far beyond what we
can store in memory

suffix trie nodes

20000 40000 60000 80000 100000 120000

0

100 200 300 400

Length prefix over which suffix trie was built

500

Suffix trie: making it smaller

T = abaaba$ /Q\ A
.7 b

.“*‘O‘mﬁo_

Suffix trie: making it smaller

T = abaaba$ /Q\ A
b

\. e ldea 1: Coalesce non-branching paths
Sj Cb ? into a single edge with a string label

oy TR

AT A
J bé T ¢
xS N

$
. . @
é Reduces # nodes, edges,
s guarantees non-leaf nodes have >1 child

Suffix trie: making it smaller

T = abaaba$ /3\ $
5 b

Suffix tree

T=abaaba$S |[T|=m

a ba
ﬁ{ \‘ # leaves? m
S
b - ?7 <m-
a \“$ bas # non-leaf nodes (bound) m-1
f \ < 2m -1 nodes total — O(m)

¢ aba$

aba$. l

No: total length of edge

Is total size O(m) now? .
(m) labels grows with m?2

Suffix tree

ldea 2: Store T itself in addition to the tree. Convert tree’s
edge labels to (offset, length) pairs with respectto T.

/Q\ T = abaaba$ /Ci\
? 0, 1)

(1,2

6,1)

Suffix tree

ldea 2: Store T itself in addition to the tree. Convert tree’s
edge labels to (offset, length) pairs with respectto T.

T = abaaba$ /Ci\
(0, 1)

(1,2

6,1)

Space is now O(m) Suffix trie was O(m?2)!

Suffix tree: leaves hold offsets

(6, 1)
(1,2)

(6, 1)

T = abaaba$
0.1 'y N\

T = abaaba$ /Ci\
(0, 1)

)

6
(6, 1) (6, 1)
(11 2) (611) > (11 2) A (611)
\‘ (3 L (3

 4) 5 A ('@
© 1.) (3, 4) ‘ 6.1 (3,<) 1

Suffix tree: leaves hold offsets

T = abaaba$ /Ci\ T = abaaba$ /Ci\
6, 1
(0, 1) 6,1) (0, 1) (\)

(1,2) ' (1,2)

(3, 3,
z / 2 |« Label ="aaba$”
0

Suffix tree: leaves hold offsets

Offset 2
T = abaaba$ /Ci\ T = abaaba$
6, 1) /Ci\(m)
DD, 2) P
6
6, 1) 6, 1)
(1, 2) \‘(6 1) > (1, 2) N (6,1)
(3, 4) 5 éll (3, 4)
6, 1) (3, 4) 2 1) (3, 4) \1
4) o (3,4) |3 \

(3, 3,
z / 2 | < Label ="aaba$”
0

Suffix tree: labels

T = abaaba$

Two notions of depth:

e Node depth: # edges from root to node

« Label depth: total length of edge labels
(3, 4) from root to node

0 Node depth =2
Label depth=2+4=6

Suffix tree: building

Method 1: build suffix trie, coalesce non-
branching paths, relabel edges

O(m?2) time, O(m?2) space

Method 2: build single-edge tree
representing longest suffix, augment to
include the 2nd-longest, augment to
include 3rd-longest, etc (Gusfield 5.4)

O(m?2) time, O(m) space

Suffix tree: implementation

http://bit.ly/CG_SuffixTree

http://bit.ly/CG_SuffixTree

Suffix tree: building

Canonical method: Ukkonen’s algorithm

Ukkonen, Esko. "On-line construction of suffix trees."
Algorithmica 14.3 (1995): 249-260.

O(m) time and space!

Won't cover it in class; see Gusfield Ch. 6 for details

Algorithmica (1993) 14: 249-260

Algorithmica

©) 1995 Springer-Yerlag New York Inc.

On-Line Construction of Suffix Trees!
E. Ukkonen?

Abstract. An on-line algonthm is presented for constructing the suffix tree for a given string in time
linear in the length of the string. The new algorithm has the desirable property of processing the string
symbol by symbol from left to right. It always has the suffix tree for the scanned part of the string
ready. The method is developed as a linear-time version of a very simple algorithm for (quadratic size)
suffix #ries. Regardless of its quadratic worst case this latter algorithm can be a good practical method
when the string i1s not too long. Another vanation of this method 15 shown to give, in a natural way,
the well-known algorithms for constructing suffix automata (DAWGs),

Key Words. Linear-time algorithm, Suffix tree, Suffix trie, Suffix automaton, DAWG.

Canonical algorithm for O(m) time & space suffix tree construction

suffix trie nodes

Suffix tree: actual growth

Built suffix trees for the first
500 prefixes of the lambda

phage virus genome

Black curve shows # nodes
increasing with prefix length

Remember suffix trie plot:

= m(m+1)/2
— actual
—_— 2m+2

20000 40000 60000 80000 100000 120000

0
L

0 100 200 300 400

Length prefix over which suffix trie was built

500

suffix tree nodes

123 K
nodes

400 600 800 1000

200

2m

—6— Qgctual
e m

I I I I
100 200 300 400

Length prefix over which suffix tree was built

500

suffix trie nodes

Suffix tree: actual growth

Built suffix trees for the first
500 prefixes of the lambda

phage virus genome

Black curve shows # nodes
increasing with prefix length

Remember suffix trie plot:

= m(m+1)/2
— actual
—_— 2m+2

20000 40000 60000 80000 100000 120000

0
L

0 100 200 300 400

Length prefix over which suffix trie was built

500

suffix tree nodes

123 K
nodes

400 600 800 1000

200

2m

—6— Qgctual
e m

I I I I I
0 100 200 300 400

Length prefix over which suffix tree was built

500

suffix trie nodes

20000 40000 60000 80000 100000 120000

0

Suffix trie
>100K nodes

= m(m+1)/2
— gctual
— 2M+2

I I I I I
0 100 200 300 400

Length prefix over which suffix trie was built

500

suffix tree nodes

400 600 800 1000

200

Suffix tree

<1K nodes

2m
—6— actual
e m

I I I I
100 200 300 400

Length prefix over which suffix tree was built

500

Suffix tree

How do we check whether a string S'is a

: S
substring of T? ° b \‘
: S=baa
Same procedure as for suffix trie, but $ oy
: ba S Yes, it's a
we have to deal with coalesced edges \‘ abas ¢ bstring

Suffix tree

How do we check whether a string S'is a /Q\
suffix of T? ° ba $\‘
Same procedure as for suffix trie, but $
, ba S
we have to deal with coalesced edges \“ aba$
\
alls = aba

Yes, it's a suffix

aba$

{ o

Suffix tree

How do we check whether a string S'is a

suffix of T?
Same procedure as for suffix trie, but
: ba
we have to deal with coalesced edges
; S aba$

S = abaaba
Yes, it's a suffix

Suffix tree

How do we check whether a string S'is a /9\$
suffix of T? 4 ba \‘
Same procedure as for suffix trie, but o | 3. ,ﬁ{
we have to deal with coalesced edges S=ab
f \ No, not a suffix
5 aba b

Suffix tree

How do we count the number of times
a string S occurs as a substring of T?

Same procedure as for suffix trie

S =aba
Occurs twice

Suffix tree

We can also count or find all the matches of Pto T. Let k = # matches.

E.g., P=ab, T=abaaba$

Step 1: walk down ab path
O(n)

If we “fall off” there are no matches

.

Step 2: visit all leaf nodes below

O(k)
\ Report each leaf offset as match offset

leaves in subtree isis k,
non-leaves is < k-1

O(n + k) time overall

Suffix tree: some bounds

Suffix tree
Time: Does P occur? O(n)
Time: Count k
occurrences of P O(n T k)
Time: Report k
locations of P O(n T k)
Space O(m)

m=|T|, n=|P|, k=#occurrencesof PinT

Suffix tree: long common substrings

Helicobacter_pylor_strain_J99

160406 | '~

1.2e+06 - |
1e+06 |
800000 |
800000 |

400000 i

200000 + i

v 1 | 1 1 | l 1 |
0 200000 400000 600000 800000 1e406 120406 148406 1.60+06

Helicobacter_pylorn_26695

Axes are strains of Helicobacter pylori, bacterium
found in stomach & associated with ulcers

Dots are maximal unique
matches (MUMs), a kind of
long substring shared by
two sequences

Red = match between
like strands
green = different strands

Suffix tree application: find longest common substring

Find longest common substring (LCS) of X and Y, make a new string X#Y$
where #, $ are both terminal symbols. Build a suffix tree for X#Y§.

X =xabxa Y =babxba ()
X#YS = xabxa#babxba$ 2 /x ibabxba$\b N\
‘ ‘ 5 ‘ 12
#babxba$ /bx \$ a \ba$: X
4 ‘ ¥ ‘ 9 ‘ ‘
aftbabxba$ pa$ #babxba$ |bxa#babxba$ bxba$ \$ aftbabxba$ \ba$
1 7 3 0 6 10 2 8

For clarity, if a suffix includes part of both strings,
let's hide the portion after the #

Suffix tree application: find longest common substring

Find longest common substring (LCS) of X and Y, make a new string X#Y$

where #, $ are both terminal symbols. Build a suffix tree for X#Y§.

X =xabxa Y =babxba ()
X#YS = xabxa#babxba$ A BN\

(O G

12

d \X
(

a#t ba$ # bxa# bxba$ |$

aft ba$

1 7 3 0 6 10

2 8

For clarity, if a suffix includes part of bot
let's hide the portion after the #

Now suffixes of X end in # and suffixes o

n strings,

fYendin$

Suffix tree application: find longest common substring

Find longest common substring (LCS) of X and Y, make a new string X#Y$
where #, $ are both terminal symbols. Build a suffix tree for X#Y§.

X =xabxa Y =babxba XV
X#YS = xabxa#babxba$ A BN\

@ @ 5 @ 12
abx L
Leaves with labels in [0, 5] ' o 0 ’ a @

are suffixes of X#, labels of ail ba$ i bxa bxbas |$. bas

[6, 12] are suffixes of Y$ | ; 3 0] ol [g

Traverse tree, annotating each node according to whether leaves below
include suffixes of X, Y or both

Node w/ greatest label depth annotated XY corresponds to LCS

O(| X|+]|Y]|) timeand
space!

Suffix tree application: generalized suffix trees

It's often useful to build a suffix tree of many strings at once

This is a generalized suffix tree. See Gusfield 6.4.

a X b $
abx
bx \$ a \ba$ X
4 AP ORE (¥) &Y
a# ba$ # bx a# bxba$ \$ a#t ba$

Suffix trees in the real world

Alignment of whole genomes (MUMmer):
Delcher, Arthur L., et al. "Alignment of whole genomes." Nucleic Acids Research 27.11 (1999): 2369-2376.

Delcher, Arthur L., et al. "Fast algorithms for large-scale genome alignment and comparison." Nucleic
Acids Research 30.11 (2002): 2478-2483.

Kurtz, Stefan, et al. "Versatile and open software for comparing large genomes." Genome Biol 5.2 (2004): R12.

~ 4,000 citations http://mummer.sourceforge.net

Computing and visualizing repeats in whole genomes (REPuter):

Kurtz, Stefan, and Chris Schleiermacher. "REPuter: Fast computation of maximal repeats in complete genomes."
Bioinformatics 15.5 (1999): 426-427.

Kurtz, Stefan, et al. "REPuter: the manifold applications of repeat analysis on a genomic scale." Nucleic acids
research 29.22 (2001): 4633-4642.

> 1,000 citations http://bibiserv.techfak.uni-bielefeld.de/reputer

ldentifying sequence motifs

Marsan, Laurent, and Marie-France Sagot. "Algorithms for extracting structured motifs using a suffix tree with
an application to promoter and regulatory site consensus identification." Journal of Computational Biology 7.3-4

(2000): 345-362.

Sagot, Marie. "Spelling approximate repeated or common motifs using a suffix tree." LATIN'98: Theoretical
Informatics (1998): 374-390.

~ 600 citations

Also used in: multiple alignment

http://mummer.sourceforge.net
http://bibiserv.techfak.uni-bielefeld.de/reputer/

Suffix trees in the real world: MUMmer

FASTA file containing “reference” (“text”) .
FASTA file containing

ALU string

_ NS .. mummer — langmead@igm1:~ — bash — 12Qx31

Bens-MacBook-Pro:mummer langmead$ cat alu50.fa
>Alu
GCGCGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGCGGE

Bens-MacBook-Pro:mummer langmead$ $HOME/software/MUMmer3.23/mummer -maxmatch $HOME/fasta/hgl9/chrl.fa alu50.fa
reading input file "/Users/langmead/fasta/hgl9/chrl.fa" of length 2492560621

construct suffix tree for sequence of length 249250621

(maximum reference length is 536870908)
#
¥

Indexing
phaSeZ ~2 ¢ (maximum query length is 4294967295)
. process 2492506 characters per dot
minutes ettt tee e eee e e e e e e m e e e e s e e e e e e e e e et e e r e e
CONSTRUCTIONTIME /Users/langmead/software/MUMmer3.23/mummer /Users/langmead/fasta/hgl9/chrl.fa 125.30
reading input file "alu56.fa" of length 5@
matching query-file "alu5@.fa"
against subject-file "/Users/langmead/fasta/hgl9/chri. fa"

> Alu
61769671 1 22
, 219929011 1 22
Matching 162396657 1 22
109737840 1 22
phase: 82615090 1 22
32083678 1 22
very fast 84730371 1 22
248036256 1 22
150558745 1 22
11127213 1 22
236385661 1 22
31639677 1 22
16027333 1 22
21577225 1 22
26327837 1 22

243352583 1 22

Suffix trees in the real world: MUMmer

MUMmer v3.32 time and memory scaling when indexing increasingly larger
fractions of human chromosome 1

Peak memory usage (megabytes)

1500 2000 2500 3000 3500

1000

500
I

I I I I I
0.2 0.4 0.6 0.8 1.0

Fraction of human chromosome 1 indexed

Time (seconds)

40 60 80 100 120 140

20

I I I I I
0.2 0.4 0.6 0.8 1.0

Fraction of human chromosome 1 indexed

For whole chromosome 1, took 2m:14s and used 3.94 GB memory

Suffix trees in the real world: the constant factor

O(m) is desirable, but “constant factor” is significant, sometimes
making the suffix tree inconvenient

Constant factor varies depending on implementation:

MUMmer constant factor = 3.94 GB / 250 million nt = 15.76 bytes per nt

Kurtz, Stefan. "Reducing the space requirement of suffix trees." Software
Practice and Experience 29.13 (1999): 1149-1171.

Suffix tree of human genome will be >45GB, perhaps much larger
depending on exact data structures underlying suffix tree nodes/edges

