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Leading Slovenian research organization
The Jožef Stefan Institute is named after the distinguished 19th century physicist Jožef Stefan, most famous for his work on the Stefan-
Boltzmann law of black-body radiation and Stefan’s problems (study of ice growth)

Jožef Stefan Institute
B a s i c  i n f o

main laboratories

JSI HQ in Ljubljana, Jamova cesta 39 IJS Reactor Center Podgorica

JSI in numbers

1200 employees  

Revenue approximately - 85 M€ 

60 % national programme – 10 % applied research  - 10 % 
international projects – 20 % industrial contracts

430+ ongoing national and international projects



There are three main research branches at JSI

Jožef Stefan Institute
B a s i c  i n f o

Physics:
▪ Theoretical Physics

▪ Low and Medium Energy Physics

▪ Thin Films and Surfaces,

▪ Surface Engineering and Optoelectronics,

▪ Condensed Matter Physics,

▪ Complex Matter, Reactor Physics,

▪ Experimental Particle Physics

Electronics and Information Technologies
▪ Automation,

▪ Bio-cybernetics and Robotics, 

▪ Systems and Control, 

▪ Artificial Intelligence,  

▪ Open Computer Systems and Networks, 

▪ Communication Systems (P-Lab)
▪ Computer Systems, 

▪ Knowledge Technologies, 

▪ Intelligent Systems

Chemistry and Biochemistry:
• Biochemistry and Molecular Biology

• Molecular and Biomedical Sciences,

• Biotechnology,

• Inorganic Chemistry and Technology, 

• Electronic Ceramics,  Engineering Ceramics,

• Nanostructured Materials, 

• Synthesis of Materials, 

• Advanced Materials

• Environmental Sciences 



O n e  o f  t h r e e  L a b o r a t o r i e s  f r o m  C o m m u n i c a t i o n  S y s t e m s d e p a r t m e n t

Parallel and distributed systems laboratory

Team: 6 full time researchers (3 PhD students) :: 2 part time researches  :: 1 technician :: 7 MSc students

Advanced concept of 
efficient use of transformers 

leveraging the DTR 
technology (Applied)

Inertial effects on 
fluid flow in 

complex porous 
media (NCN-ARRS)

Cryptographically 
secure random 

number 
generator(Applied)

Advanced modelling 
of radio channels 
using meshless 

methods (ARRS)

AiCoachU – Artificial 
intelligence is 
coaching you 

(ARRS)

Modelling the Decay 
of an invasive 

ctenophore blooms 
(ARRS)

Past climate change 
and glaciation at the 

Alps-Dinarides
junction(ARRS)

DiTeR: Dynamic 
thermal line rating 

of power lines  
(Applied)

Forecasting tap changer 
regulatory maintenance 
with advanced analytics 

(Applied)

Graph Theory and 
Combinatorial Scientific 

Computing 
(OTKA-ARRS)

Active projects

Interested in: Scientific computing.

Downscaling 
meteorological 

variables over complex 
terrain(applied)

Holistic Approach 
towards Empowerment 

of the DiGitalization of the 
Energy Ecosystem(HE)



Meshless numerical methods for solving PDEs

class trivial2D : public optimObjBase{ 

 typedef trivial2D TT;  

public: 

 ///PARAMETERs AND CRITERIA definition 

 enum CriteriaName{R1,endCrit}; 

 enum ParamName{X,Y,endParam}; 

 trivial2D(){ 

  params.resize(endParam);   

  criteria.resize(endCrit); 

 } 

}; 

Employ numerical 
method to 
transform PDE  to 
the system of 
algebraic 
equations

Traditional mesh-
based methods FDM, 

FVM, FEM

Meshless methods 
RBF-FD, MLPG, DAM, 

LRBFCM, SPHFinal goal is to create expressive, robust and computationally 
efficient implementation of numerical solution procedure 

Implement and execute it on different 
computer architectures 

We want to solve PDEs
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… that do not have closed form 
solution. 

Discretize the domain into final 
number of elements or nodes.  

Approximate partial 
differential operator

Approximate PDE resulting in a 
linear system 

Solve the linear system



Differential operator approximation

Differential operator is approximated as

Imposing exactness for a certain set of basis functions, e.g. 
monomials, MQs, Gaussians, etc., results in a system 

That can be subjected to additional weighting (W), when working with more 
nodes in support than basis functions (n>m) [1]

To enforce consistency of the approximation system can be augmented with 
monomials up to a certain order

The main idea behind meshless method is the
approximation of differential operators over the local
cluster of nodes, in many cases simply n closest nodes

[1] http://e6.ijs.si/medusa/wiki/index.php/Computation_of_shape_functions



Differential operator approximation

More details on differential operator approximation such as complexity analysis, ghost nodes, boundary conditions,
implementation notes, stability, … can be found at out discussion wiki page --
http://e6.ijs.si/medusa/wiki/index.php/Medusa

Several strong form methods that can be described with this approach

Finite Differences Method

Local Radial Basis Function Collocation Method

Šarler, B. (2007): From global to local radial basis function collocation 

method for transport phenomena,  Advances in Meshfree Techniques, 

Springer, Berlin, pp. 257-282.

Finite pointset method

S Tiwari, J Kuhnert - Meshfree methods for partial differential equations, 

2003 - Springer

Diffuse Approximate Method 

Diffuse approximation method for solving natural convection in porous 

media,C Prax, H Sadat, P Salagnac - Transport in Porous Media, 1996 –

Springer

Radial basis function generated finite differences (RBF-FD)

Accuracy of radial basis function interpolation and derivative approximations 

on 1-D infinite grids, B Fornberg, N. Flyer - Advances in Computational 

Mathematics, 2005 – Springer

… and many more

n=3, W(p)=1, b={1, x, x2} on regular nodes

n, W(p)=1, b={sqrt(1+(p/c)2)}, m=n 

n=20-50, W(p)=exp(-(p/s)2), b={1, x, x^2, …}

n=13, W(p)=exp(-(p/s)2), b ={1, x, y, x^2, y^2, xy}

n=12,  basis = r^3, augmentation ={1, x, y, x^2, y^2, xy}



Discretization of the domain

The most basic way to generate node sets is to employ existing tools and algorithms for mesh generation, use the generated nodes and
simply discard the connectivity relations
(G.-R. Liu, Mesh free methods: moving beyond the finite element method, CRC press, 2002)
• Conceptually flawed
• Expensive
• Inappropriate for meshless

A common iterative approach is to position nodes by simulating free charged particles, obtaining so-called minimal energy nodes, Other
iterative methods include bubble simulation, Voronoi relaxation or a combination of both. [17, 24, 1]
(D. P. Hardin and E. B. Saff, Discretizing manifolds via minimum energy points, Notices of the AMS, 51 (2004), pp. 1186-1194
Y. Liu, Y. Nie, W. Zhang, and L. Wang, Node placement method by bubble simulation and its application, Computer Modeling in Engineering and Sciences( CMES), 55 (2010),
p. 89)
• Iterative methods are computationally expensive and require an initial distribution
• can be used as a post processing

Advancing front methods, which usually begin at the boundary and advance towards the domain interior, filling it in the process.
(R. Lohner and E. Onate , A general advancing front technique for filling space with arbitrary objects, Int. J. Numer. Methods Eng., 61 (2004), pp. 1977)
• Often limited to 2D

Circle or sphere packing methods
(X.-Y. Li, S.-H. Teng, and A. Ungor, Point placement for meshless methods using sphere packing and advancing front methods, in ICCES’00, Los Angeles, CA,
Citeseer, 2000.)
• Expensive
• Good quality of nodal distribution

Poisson Disk sampling based algorithms (also advancing front type node generation)
(R. L. Cook, Stochastic sampling in computer graphics, ACM Trans. Graphics, 5 (1986), pp. 51
V. Shankar, R. M. Kirby, and A. L. Fogelson, Robust node generation for meshfree discretizations on irregular domains and surfaces, SIAM J. Sci. Comput., 40 (2018), pp. 2584
Slak J., Kosec G., On Generation of Node Distributions for Meshless PDE Discretizations, SIAM Journal on Scientific Computing, 41(5))
• Computationally effective
• Dimension independent
• Good quality of nodal distribution

It is generally accepted that quasi-uniformly-spaced node sets improve the stability of meshless methods
Holger Wendland. Scattered data approximation. Number 17 in Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, 2004



Meshless node generation

• Local regularity with minimal spacing guaranteed

• Spatially variable density

• Scalable

• Compatible with irregular domains

• Dimension independent 

Dimension independent Poisson disc sampling based node generation algorithm supporting spatially variable density distribution



Extension to parametric surfaces and CAD geometry 

Node sets generated by NURBS-DIVG on a CAD Utah Teapot (left) and a CAD 
model of tiger (right). The Utah Teapot model is made of 32 patches and has 

7031 nodes; the tiger has 124 patches and 4753 boundary nodes. 

CAD models typically consist of multiple non-overlapping and abutting
NURBS surface patches. A NURBS patch meets another NURBS patch at a
NURBS curve (the boundary curves of the respective patches)



Adaptivity

We can change the order of the method by varying order of 
augmenting monomials (p-adaptivity/refinement)

• Higher order method requires bigger stencil  -- 𝑛 = 2 𝑚+𝑑
𝑑

We can control local internodal distance via density function
in DIVG node positioning algorithm (h-adaptivity/refinement)

• h – adaptivity/refinement is inherently included in the

meshless methods

Density function DIVG nodes

Adaptive solution procedure
• Solve governing PDE with given 

node and order  distribution.
• Estimate error
• Mark nodes for refinement/de-

refinement 
• Recompute with new setup
• repeat



The modified Texas Three-Fold marking strategy

Each node is tested for refinement action based on error indicator  
(or actual error or any other quantity we would like to consider)

Example of 4 step h-refinement of a simple test function approximation with nodal density increase factor f

Test function



IMEX Error indicator



High order solution of Poisson’s problem



Adaptive solution of Poisson’s problem  



Adaptive fretting fatigue simulation
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Consideration of irregular 3D domains

Non-Newtonian natural convection in randomly
generated domain with differentially heated
vertical walls and isolated horizontal walls

Elastic deformation of a 3D gear object that is
subjected to the external torque resulting in the
tangential traction on axis, while the gear teeth are
blocked.



Moving boundary problems  

Meshless interface tracking for the simulation of dendrite envelope growth including surface reconstruction and h-adaptive cloud points.

Growth of six interacting dendrites with different orientations of the tip growth directions.



Solidification of a binary alloy 
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Concentration and velocity at different stages of Sn-10%Pb alloy
solidification. Last (bottom right) plot stands for fully solidified

state.

Adaptive upwind



Small-strain elasto-plastic deformation
Internally Pressurized Thick-Walled Cylinder 

Displacement magnitude vs radial coordinate – comparison of 
pure RBF-FD solution with ABAQUS solution

Elastic regime – Navier Cauchy problem

Upon surpassing a critical stress threshold the material experiences
localized irreversible plastic deformation – von Mises criterion

plastic regime a correction

Return mapping algorithm



Inertial effects on fluid flow in complex porous media

J.S. Andrade, U.M.S. Costa, M.P. Almeida, H.A. Makse, H.E.
Stanley, Inertia effectson fluid flow through disordered porous
media, The American Physical Society,Physical Review Letters
82 (26) (1999) 5249–5252.

Flow through disordered porous media
Randomly placed square obstructions on a 64x64 grid

Body force driven Flow through periodic lattice

D. W. Holmes, J. R. Williams, P. Tilke, Smooth particle hydrodynamics 
simulations of low reynolds number flows through porous media, 
International Journal for Numerical and Analytical Methods in 
Geomechanics 35 (4) (2011) 419–437

Permeability

Solid volume fraction

Friction coefficient



Simulation of overhead power line cooling

The transfer capabilities of overhead power lines are limited
by the critical power line temperature that depends on the
magnitude of the transferred current and the ambient
conditions.
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Heat transport and generation

Natural convection problem:



DTRi back end  C++14
SUMO BUS

DTRi front end  web app

NGINX SQL 

Plotly

Rivets HTML 5 

Protocol Buffer

Spdlog Eigen

Middle end
python

Bootstrap

Django

operaters

Analyses
Model setup
Case studies

Checks for icing alarms
Supply minimal current

Dynamic thermal rating operational module
Extension and simplification of the model
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Coupling with ALADIN model

Comparison of simulated and measured line temperature at Podlog power line in August 2019.

Validation



Mesh-free open source project Medusa

Main features:
• Modular design
• Coordinate free and dimension independent implementation
• Support different strong form meshless methods
• Explicit transformation of equations into code
• Minimal overheads due to the programming abstraction 
• Tested code 

http://e6.ijs.si/medusa/docs/html

http://e6.ijs.si/medusa/wiki/index.php/Medusa

Medusa is C++ template library using
• Eigen library for linear algebra
• Google test testing framework 
• XML and HDF5 support for IO
• Nanoflann for spatial-search structures

https://gitlab.com/e62Lab/medusa



Conclusions

Thank you for your attention

Medusa
• tested modular open source library for mesh-free simulations
• dimension independent
• explicit transformation of equations into code
• Supports hp – adaptivity

open source meshless project
Medusa: Coordinate Free Mehless
Method implementation
https://gitlab.com/e62Lab/medusa
http://e6.ijs.si/medusa/

Meshless methods have some nice properties
• Simplified spatial discretisation
• Suitable for adaptive analysis

Future work
• Better marking strategy based on local data regularity
• Better understanding of the effect of the stencil size and shape on the accuracy and stability
• …

We are open for collaboration
• joint projects
• Student exchange
• Or just working together on fun problems


