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ABSTRACT
Senescence is a cell state that contributes to several homeostatic
and pathologic processes. In addition to being induced in somatic
cells in response to replicative exhaustion (replicative senescence)
as part of organismal aging, senescence can also be triggered
prematurely by oncogene hyperactivation or tumor suppressor
dysfunction [oncogene-induced senescence (OIS)]. Conse-
quently, senescent cells comprise a major component of precan-
cerous lesions of skin, oral mucosa, nasopharynx, prostate, gut,
and lung. Unfortunately, invasive (or minimally invasive) interven-
tions are currently the only available approach employed to eradi-
cate premalignant lesions that carry the potential for cancer
progression. Senolytics are a newly emerging drug class capable
of selectively eliminating senescent cells. Although senolytics
have been successfully demonstrated to mitigate a myriad of
aging-related pathologies and to cull senescent cancer cells, there
is a paucity of evidence for the potential use of senolytics as a
novel approach to eliminate oncogene-induced senescent cells.
This Emerging Concepts commentary will 1) summarize
evidence in established models of OIS including B-Raf–in-
duced nevi, transgenic lung cancer, and pancreatic

adenocarcinoma models, as well as evidence from clinical
precancerous lesions; 2) suggest that OIS is targetable; and
3) propose the utilization of senolytic agents as a revolution-
ary means to interfere with the ability of senescent premalig-
nant cells to progress to cancer in vitro and in vivo. If proven
to be effective, senolytics will represent an emerging tool to
pharmacologically treat precancerous lesions.

SIGNIFICANCE STATEMENT
The treatment of premalignant lesions is largely based on the
utilization of invasive (or minimally invasive) measures. Onco-
gene-induced senescence (OIS) is one form of senescence that
occurs in response to oncogene overexpression in somatic
cells and is present in precancerous lesions. Although the con-
tribution of OIS to disease progression is undetermined, recent
evidence suggests that senescent cells are permissive for
malignant transformation. Accordingly, the pharmacological
targeting of oncogene-induced senescent cells could poten-
tially provide a novel, less invasive, means for the treatment of
premalignant disease.

Precancerous Lesions: On the Road
of Malignant Transformation

Precancerous (premalignant) lesions describe histopatholog-
ical changes that have increased risk of malignant transforma-
tion. Although not all cancer develops from premalignant
lesions and may instead form de novo, premalignant lesions
are frequently detected in tissues amenable to the develop-
ment of cancer and are often considered a precursor to subse-
quent malignant tumor formation. The rate of diagnosis of
precancerous lesions has increased dramatically due to the
availability of reliable cancer screening modalities. For exam-
ple, ductal carcinoma in situ is a precursor of invasive breast
carcinoma that is readily identified through routine breast
mammography as part of breast cancer screening (Pinder,
2010), whereas prostatic intraepithelial neoplasia (PIN), which
is the main precursor lesion to invasive prostate carcinomas,

is identified in 5% of diagnostic fine-needle aspirations of the
prostate (Zhou, 2018). Importantly, the risk of precancerous
conditions to progress to cancer is variable. For example,
whereas uterine leiomyomas or thyroid adenomas have a very
limited potential of malignant transformation, lesions such as
precancerous skin conditions or colonic adenomas have a rela-
tively higher risk to transform to their respective cancer types
(Tanaka, 2009; Lee et al., 2010). Accordingly, these lesions
warrant clinical intervention designed to reduce the risk of
life-threatening cancer.
The clinical management of precancerous lesions is variable

and largely dependent on the type of the lesion and its risk for
progression to malignancy. For example, low-grade cervical
intraepithelial neoplasia, which has a considerable risk of pro-
gressing into cervical carcinoma, is often treated by minimally
invasive ablative cryotherapy, thermal ablation, cold knife
conization, or large loop electrosurgical excision where hyster-
ectomy is spared for a selected minority of patients (Basu et
al., 2018). The treatment of ductal carcinoma in situ can be
more invasive, involving surgical intervention in the form of
breast-conserving therapy (lumpectomy) or mastectomy
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followed by adjuvant radiotherapy (Fisher et al., 2001). Actinic
keratosis, which can progress to squamous carcinoma of the
skin, is often treated with photodynamic therapy, cryosurgery
and/or chemotherapy (5-fluorouracil) (Eisen et al., 2021); how-
ever, dysplastic nevi, which rarely progress to cutaneous mela-
noma, can be removed by excisional biopsies (Strazzula et al.,
2014). Idiopathic leukoplakia, which represents a fundamen-
tal premalignant lesion of the oral cavity, is frequently man-
aged with surgical excision, cryotherapy ablation, and CO2

laser ablation (Jeong et al., 2012). This variability in treat-
ment options can be explained, in part, by the uncertainty of
the risk for malignant transformation, since the estimated
risk is currently based on mostly epidemiologic evidence with
a limited understanding of the molecular processes that facili-
tate progression to cancer. Subsequently, understanding these
cellular and molecular events that drive the transition to
malignancy is essential for utilizing state-of-the-art, novel
therapeutic options to treat premalignant lesions, reduce their
risk of malignant transformation, and possibly replace inva-
sive or minimally invasive interventional therapy with phar-
macological treatment.

Senescence in Cancer: Guilty Until Proven
Innocent

The Senescent Phenotype. Senescence is a cell stress
response that drives proliferating cells into a terminal state
(Gorgoulis et al., 2019). The primary feature of cellular senes-
cence is the cessation of replicative activity whereby cells
become stably growth-arrested (Sharpless and Sherr, 2015).
However, senescence is also characterized by several signa-
ture hallmarks that collectively constitute the senescent phe-
notype (Hernandez-Segura et al., 2018). In addition to
growth arrest, senescent cells become enlarged and flattened,
exhibit a neuron-like morphology (Cho et al., 2004), and pos-
sess a reduced nucleocytoplasmic ratio (Son et al., 2019).
Despite maintaining a metabolically active state, senescent
cells develop dysregulated energetics and mitochondrial dys-
function and accumulate reactive oxygen species (Kaplon et
al., 2013). This is usually accompanied by macromolecular
damage to DNA (Von Zglinicki et al., 2005; Rodier et al.,
2011), proteins (Ahmed et al., 2010), and lipids (Ogrodnik et
al., 2017). Furthermore, senescent cells have enhanced lyso-
somal biogenesis, which is commonly reflected by the upregu-
lation of the senescence-associated b-galactosidase (SA-b-gal)
enzyme (Kurz et al., 2000). Senescent cells undergo broad
alterations in the expression of several gene sets, including
those involved in cell cycle and cytoskeletal regulation, inter-
feron-related, insulin growth factor–related, mitogen-acti-
vated protein kinase (MAPK), and oxidative stress pathways
(Fridman and Tainsky, 2008; Casella et al., 2019). Changes
in gene expression result in the activation of the highly active
secretory function of senescence, whereupon senescent cells
secrete a spectrum of soluble and insoluble factors into the
microenvironment, collectively representing the functional
arm of senescence, termed the senescence-associated secre-
tory phenotype (SASP) (Coppe et al., 2008). Lastly, senescent
cells undergo epigenetic changes in the form of heterochro-
matic condensations, referred to as senescence-associated
heterochromatic foci (SAHF) (Kosar et al., 2011).

Oncogene-Induced Senescence Is a Component of
Premalignant Lesions. Cells can enter into senescence in
response to a variety of exogenous and endogenous stimuli or
stresses. Classically, senescence develops as an end-stage cell
fate in dividing cells that have reached their maximum num-
ber of divisions due to telomere dysfunction (Karlseder et al.,
2002). This form of senescence is termed replicative senes-
cence and is an insidious process that occurs as part of organ-
ismal aging (Liu et al., 2019). However, senescence can also
be induced prematurely in response to stressful stimuli
(Fridlyanskaya et al., 2015). For example, somatic cells
undergo senescence under oxidative stress, DNA damage
(d’Adda di Fagagna et al., 2003), or oncogenic hyperstimulation
[oncogene-induced senescence (OIS)] (Galluzzi and Vitale,
2018). Tumor cells, which are fundamentally immortal, can
also be forced into senescence by 1) stress elicited by exposure
to cancer chemotherapeutics, termed therapy-induced senes-
cence (TIS) (Saleh et al., 2020a), or 2) by interference with onco-
gene addiction (Wu et al., 2007).
Senescence has a distinct tumor suppressive function,

reflected in the arrested replication of somatic cells harboring
oncogenic mutations, thereby serving as a defensive barrier
against malignant transformation. Consequently, transform-
ing cells undergoing senescence are committed into a stable
growth arrest that halts further proliferative progression, con-
tributing to effective tumor suppression (Mooi and Peeper,
2006). This tumor-suppressive function of senescence is fur-
ther supported by observations indicating that reversal (or
evasion) of the senescent growth arrest can accelerate tumori-
genesis (Rane et al., 2002; Beausejour et al., 2003; Sarkisian
et al., 2007; Carri�ere et al., 2011), which explains, in part, the
accumulation of OIS cells in premalignant lesions of both
spontaneous and ectopic (vector-driven oncogene expression)
experimental models (Collado et al., 2005). In this context, early
evidence of senescent cell accumulation in spontaneous pre-
malignant phenotypes was marked by evident p16INK4a expres-
sion (a major cell cycle regulator of the senescent growth arrest)
in dysplastic skin and oral mucosal lesions (Natarajan et al.,
2003). Subsequently, evidence for senescent cell accumulation
has been reported in an array of precancerous proces-
ses including human preneoplastic gastrointestinal lesions
(Bartkova et al., 2006; Tateishi et al., 2006; Miyasaka et al.,
2011), pre-melanoma nevi (Gray-Schopfer et al., 2006), pros-
tatic intraepithelial neoplasia (Majumder et al., 2008), oral leu-
koplakia (Bascones-Mart�ınez et al., 2012), and premalignant
nasopharyngeal epithelium (Tsang et al., 2012). The evidence
on the existence of senescence in precancerous lesions is ample,
and some examples are summarized in Table 1. In experi-
mental models where oncogene overexpression is induced exog-
enously, senescent cells are also identified in abundance. For
example, senescent cells are found more frequently in a Ras-
driven mouse lung adenoma model than when the lung ade-
nocarcinoma lesions have been established spontaneously
(Collado et al., 2005; Baek et al., 2013). Similar observations to
the accumulation of senescent cells in precancerous lesions
were reported in Ras-driven pre-lymphoma murine phenotypes
(Braig et al., 2005), murine mammary epithelial hyperplasia
(Sarkisian et al., 2007), and murine prelymphomagenic thymo-
cytes (Xu et al., 2008).
The induction of OIS can be demonstrated experimentally

by the overexpression of an oncogene in a somatic cell. For
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example, the vector-mediated ectopic expression of oncogenic
Ras (H-Ras V12) results in the promotion of accelerated
senescence in human and murine cells in vitro (Serrano et
al., 1997; Malumbres et al., 2000; Mason et al., 2004;
Takaoka et al., 2004). The enduring expression of mutant
BRAF (BRAF-V600E) in melanocytes induces senescence
marked by growth arrest, p16INK4a expression, and SA-b-gal
upregulation (Michaloglou et al., 2005; Kaplon et al., 2013).
Constitutively active protein kinase B (AKT) can also drive
primary human endothelial cells into senescence (Miyauchi
et al., 2004), as might be predicted given AKT’s role in signal
transduction downstream of RAS and BRAF. Overexpression
of cyclins, such as cyclin E, also promotes OIS (Bartkova et
al., 2006). The induction of senescence in response to onco-
gene overexpression is a consequence of DNA damage result-
ing from a hyper-replicative state, which is consistent with
other forms of senescence in which the activation of the DNA
damage repair response is a central event in the development
of the phenotype (Di Micco et al., 2006). Interestingly, similar
to oncogene hyperactivation, the inactivation of certain
tumor suppressor genes can also commit somatic cells into
senescence. For example, the loss of phosphatase and tensin
homolog function (PTEN) can precipitate p53-dependent OIS
that halts further cellular proliferation and interferes with
initial malignant transformation in vivo (Chen et al., 2005).
Cell-Autonomous and Nonautonomous Pro-Malig-

nant Potential of Senescence. Although the cell-autono-
mous tumor suppressive potential of senescence is
established, the overall contribution of senescence to tumor
development is double-edged. Despite the pronounced and
durable growth arrest, senescent cells engage in an active
secretory function through the SASP, which enables senescent
cells to interact with both senescent and nonsenescent neigh-
boring cells. Importantly, the cells impacted by the SASP can
be nonmalignant (such as fibroblasts and immune cells), pre-
malignant, or malignant. Components of the SASP can elicit
differing effects on the surrounding environment, and the role
of the SASP in its entirety as either a pro- or antitumorigenic
signal strongly depends upon its composition (Faget et al.,
2019). For example, in a model of KRASG12D-induced OIS in
pancreatic cells, the secretion of Activin A as a component of
the OIS-associated SASP interfered with the growth of pre-
neoplastic lesions (Zhao et al., 2020); in dramatic contrast,
inhibition of Activin A binding or knockout of the Activin A
receptor promoted growth of preneoplastic lesions and disease
progression (Zhao et al., 2020). This enhanced growth after

Activin A receptor knockout correlated with a loss of the
senescent phenotype, suggesting that Activin A secreted by
senescent cells contributes to delayed disease progression, at
least in part, by reinforcing the senescent growth arrest
throughout the lesion. In contrast, replicative- or stress-
induced senescent fibroblasts have been shown to promote
growth of co-cultured transformed human keratinocytes via
secretion of osteopontin (Pazolli et al., 2009). Furthermore, the
SASP can promote epithelial-to-mesenchymal transition, inva-
sion, plasticity, and proliferation of nonsenescent tumor cells
(Ortiz-Montero et al., 2017; Ritschka et al., 2017; Alimirah et
al., 2020). These less-desirable effects of the SASP on the non-
senescent cells within both premalignant and malignant
tumor cell populations support the hypothesis that senescence
induction favors malignant transformation of neighboring
cells, rather than malignant transformation and outgrowth of
senescent cells themselves. In this respect, increased senes-
cent tumor burden and the resulting SASP were shown to ele-
vate p38 MAPK and MAPK/extracellular signal-regulated
kinase signaling , contributing to the formation of squamous
cell skin carcinomas (Alimirah et al., 2020). The authors from
this work concluded that senescent cells are therefore “tumor
promoters” that drive progression via paracrine interactions
with nonsenescent neighbors, and not tumor “initiators.”
Although we agree that the SASP itself likely drives tumor
promotion from neighboring, nonsenescent cells, we maintain
that there exists a distinct potential for OIS cells to serve as
“initiators” as well, should they be capable of escaping the
senescence-associated growth arrest.
This assertion is based on evidence showing that, although

the cell-autonomous tumor suppressive function of senes-
cence is largely a function of the stability of the senescent
growth arrest, the senescent growth arrest is not always
inescapable (Chakradeo et al., 2016). Escape from senescent
growth arrest has perhaps been best demonstrated in models
of TIS, where a subpopulation of senescent tumor cells can
recover proliferative capacity (Sabisz and Skladanowski,
2009; Wang et al., 2013; Saleh et al., 2019) and, more strik-
ingly, allow for the evolution of more aggressive tumor phe-
notypes (Yang et al., 2017; Milanovic et al., 2018). However,
the evasion of the stable growth arrest is not limited to senes-
cent tumor cells and has been reported in other models of
senescence. For example, short hairpin RNA–mediated sup-
pression of TP53 expression is sufficient to reverse the senes-
cent growth arrest of murine fibroblasts after telomere
dysfunction (Dirac and Bernards, 2003). Further disabling of

TABLE 1
Evidence on the existence of senescence as a component of precancerous lesions

Precancerous condition Identified senescence-associated markers Reference

Actinic keratosis cH2AX Hida et al., 2009
Bowen’s disease p27Kip1 Oh and Penneys, 2004
Ductal carcinoma in situ p53, DEC1, and DCR2 Pare et al., 2019
Lichen planus p21Cip1 Bascones-Ilundain et al., 2007
Oral leukoplakia Rb Bascones-Mart�ınez et al., 2012
Colonic adenomas p16INK4a Kriegl et al., 2011
Cervical intraepithelial neoplasia p15INK4b, p16INK4a, and p21Cip1 Zhang et al., 2014

This table summarizes examples of experimental evidence demonstrating the expression of senescence-associated biomarkers in human tissue specimens derived
from premalignant lesions. Increased expression of SA-b-gal is the canonical marker of the senescent phenotype. Rb, p15INK4b, p16INK4a, p21Kip1, and p21Cip1 are cell
cycle regulators that are often involved in the initiation or maintenance of the senescent growth arrest. p53 is an established player in mediating DNA damage–in-
duced senescence, whereas the phosphorylated form of H2A histone family member X (cH2AX) is a histone modification that reflects the development of DNA dou-
ble-stranded breaks that often accompany senescence induction. Deleted in esophageal cancer 1 (DEC1) is a basic helix-loop-helix transcription factor that is
involved in p53-mediated senescence, and decoy receptor 2 (DCR2) is a novel marker of senescence especially of the renal epithelium. None of these markers is spe-
cific to senescence, but all are frequently utilized in the experimental identification of senescence.
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p53 or p16INK4a, which play important roles in mediating the
stability of the senescent cell cycle arrest, allows senescent
human fibroblasts, induced by replicative exhaustion, to
resume proliferation (Beausejour et al., 2003). In the case of
OIS, proliferative recovery is likely permissive for progres-
sive malignant transformation, as somatic cells harboring
oncogenic mutations that were forced into senescence can
resume growth with increased risk of acquiring additional
carcinogenic mutations (de Carn�e Tr�ecesson et al., 2011).
This premise is supported by the fact that the loss of
p16INK4a function is an early step during tumorigenesis of
many malignancies (Liggett and Sidransky, 1998), whereas
inactivation of p53 in premalignant cells accelerates the
development of cancerous lesions through evasion of senes-
cence (Harajly et al., 2015). Moreover, the loss of Rb function
in Ras-induced senescent pancreatic cells results in an
increased rate of cystic neoplasms formation and accelerated
progression towards pancreatic adenocarcinoma (Carri�ere et
al., 2011). Loss of Rb function has also been shown to facili-
tate the transformation of oncogene-induced senescent astro-
cytes into malignant gliomas (Seoane et al., 2008). Another
relevant example involves the induction of p27Kip1-dependent
OIS in an AKT1-induced prostatic intraepithelial neoplasia
model, where the genetic suppression of p27Kip1 function
facilitates the escape from senescence and progression into
prostatic carcinoma (Majumder et al., 2008). Although the
expectation is that the majority of oncogene-induced senes-
cent cells will remain in a terminal growth arrested state,
the natural acquisition of additional mutations that produce
critical dysfunction of senescence-associated effector proteins
might lead to the slippage of a premalignant cell into a repli-
cative phase. Accordingly, OIS cells might represent dormant
foci that harbor the potential to erupt into cancer progenitor
cells.
Altogether, the evidence that senescence is a component of

precancerous lesions, that senescent cells contribute to a pro-
tumorigenic microenvironment through the SASP, and that
the tumor-suppressive senescent growth arrest can be
reversed, support the premise that the elimination of senes-
cent cells could serve as a strategy for preventing premalig-
nant lesions from developing into actual cancers (Galluzzi
and Vitale, 2018). In fact, this exact proposition was put for-
ward after the first report by Serrano et al. (1997) that iden-
tified OIS. However, it remained largely hypothetical due to
the lack of effective and selective pharmacological agents
that can target senescent cells.

Senolytic Removal of Oncogene-Induced
Senescent Cells: New Approach to Prevent

Cancer?
Recently, a number of compounds have been identified to

exert a “senolytic” effect, i.e., the ability to selectively elimi-
nate senescent cells (Zhu et al., 2015). The primary distin-
guishing feature of senolytics is their potential to induce cell
death, primarily apoptosis, in senescent cells while sparing
proliferating counterparts (Chang et al., 2016). Senolysis can
be accomplished through the targeting of multiple, different
pro-survival pathways in senescent cells (Zhu et al., 2015).
The ability of senolytic agents to eliminate senescent cells
in vitro has been robustly demonstrated in several models of

senescence including somatic cells undergoing replicative
exhaustion (Chang et al., 2016) and tumor cells exposed to
anticancer therapy (Saleh et al., 2020b). Functionally, the
senolytic removal of senescent cells resulted in the ameliora-
tion of several aging-related processes in mouse models of
tau-dependent neurodegenerative disease (Bussian et al.,
2018), Alzheimer’s disease (Musi et al., 2018; Zhang et al.,
2019), insulin resistance (Aguayo-Mazzucato et al., 2019),
osteoarthritis (Sessions et al., 2019; Yang et al., 2020), and
aging-associated hepatic steatosis (Ogrodnik et al., 2017).
Moreover, senolytics have improved the outcome of other dis-
ease models where the accumulation of senescent cells
appears to contribute to their pathogenesis such as myocar-
dial infarction and ischemia-reperfusion injury (Walaszczyk
et al., 2019; Dookun et al., 2020), chronic kidney disease
(Nath et al., 2018), pulmonary fibrosis (Pan et al., 2017), and
bone degeneration (Kim et al., 2017; Yao et al., 2020). Fur-
thermore, senolytics are being investigated in several ongo-
ing clinical trials for their ability to produce symptomatic
relief or slow down the progression of chronic kidney disease,
pulmonary fibrosis, and Alzheimer’s disease (NCT02848131,
NCT02874989, NCT04210986).
Although OIS models are commonly used to investigate

senescence-related biology, the majority of studies evaluating
senolytics have thus far been focused on alternative senes-
cence-inducing stimuli, such as radiation or chemotherapy
(Shahbandi et al., 2020; Carpenter et al., 2021). However,
there is still strong, albeit limited, evidence supporting the
ability of certain senolytics to selectively kill oncogene-
induced senescent cells (Table 2). For example, human WI-38
fibroblasts induced into senescence by ectopic expression of
oncogenic H-Ras were selectively eliminated in culture by the
BH3 mimetic navitoclax (ABT-263) (Chang et al., 2016). Sim-
ilarly, navitoclax successfully exerted senolytic effect in the
targeting of the transgenic, KIAA1549:BRAF fusion–driven,
pilocytic astrocytoma DKFZ-BT66 cell model (Selt et al.,
2017; Buhl et al., 2019). This evidence supports the utility of
ABT-263 in exerting a universal senolytic activity against
senescent cells induced by different stimuli (Carpenter et al.,
2021). Other agents that have demonstrated senolytic activ-
ity against OIS cells include the natural product piperlongu-
mine (Wang et al., 2016) and the cardiac glycoside ouabain
(Guerrero et al., 2019), but not the dasatinib plus quercetin
(D1Q) combination (Buhl et al., 2019).
Ouabain is capable of eliminating senescent hepatocytes

induced by a transposon-mediated transfer of oncogenic N-
Ras (Guerrero et al., 2019). In C.B17 SCID/beige mice engi-
neered to overexpress N-Ras, ouabain treatment reduced the
number of N-Ras–positive, SA-b-gal–positive senescent hepa-
tocytes in vivo. Guerrero et al. (2019) have extended the utili-
zation of ouabain to a mouse model of adamantinomatous
craniopharyngioma, a rare but relevant pediatric pituitary
tumor (Gonzalez-Meljem et al., 2017). In this model, expres-
sion of oncogenic b-catenin in Sox21 pituitary stem cells and
Hesx11 embryonic precursor cells results in senescence
induction coupled with a robust paracrine activity that drives
the development of adamantinomatous craniopharyngioma
supporting the pro-tumorigenic contribution of the SASP
(Gonzalez-Meljem et al., 2017). b-catenin–positive Hesx11
embryonic precursor cell clusters were dissected, extracted,
and cultured ex vivo, and b-catenin–driven senescence in
Hesx11 embryonic precursor cells was confirmed by their
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p21Cip1 expression, SA-b-gal expression, and lack of Ki67
expression (Guerrero et al., 2019). Interestingly, ouabain and
ABT-737 [another pan–B-cell lymphoma-2 (Bcl-2) inhibitor],
were able to senolytically eliminate b-catenin–positive senes-
cent cells sparing other nonsenescent pituitary cell types
(Guerrero et al., 2019). Observations from the reviewed liter-
ature confirm that senolytics are effective in eliminating
oncogene-induced senescent cells both in vitro and in vivo;
however, direct evidence on the outcome of the senolytic
removal of oncogene-induced senescent cells on malignant
progression is lacking. Despite the ability of ouabain to elimi-
nate oncogene-induced senescent cells, it is noteworthy that,
in the previous literature, ouabain’s concentrations used to
demonstrate its senolytic potential are significantly higher
than the clinically relevant plasma concentrations, which are
typically within the picomolar range (Selden and Smith,
1972). However, a recent report by L’Hôte et al. (2021) pro-
vided new evidence confirming the ability of ouabain to eradi-
cate oncogene-induced senescent cells using a nanomolar
concentration range of the drug (albeit still higher than the
physiologic ranges). In this work, OIS was induced in BJ
human fibroblasts using exogenous overexpression of the
oncogene BRAF-V600E (L’Hôte et al., 2021). Ouabain was
successful in inducing cell death in senescent cells via its
established ability to inhibit the Na1-K1-ATPase but also
through interfering with autophagic flux where autophagy
appears to play a critical role in the survival of senescent
cells in this model (L’Hôte et al., 2021).
Perhaps the most direct effort that investigated the poten-

tial use of senolytics against OIS to prevent malignant pro-
gression was provided by Kolodkin-Gal et al. (2021) in a model
of pancreatic adenocarcinoma. In this work, the authors used
a triple-transgenic mouse model that allows for the activation
of K-Ras specifically in pancreatic acinar cells upon exposure
to tamoxifen, which consequently led to 1) the induction of
OIS in vivo, 2) the development of precancerous pancreatic
lesions, i.e., pancreatic intraepithelial neoplasia, and more
importantly, 3) the confirmation that the developing precan-
cerous lesions have an abundance of senescent cells (Kolodkin-
Gal et al., 2021). When oncogene overexpression was coupled
with treatment with caerulein, an inflammation inducing
agent, the premalignant pancreatic lesions progressed rapidly
to the adenocarcinoma phase. However, the treatment of mice
with ABT-737 reduced the burden of senescent cells in the
pancreatic premalignant lesions, reduced the expression of the

SASP, and consequently, reduced premalignant lesion forma-
tion. Interestingly, only 25% of the ABT-737–treated mice (as
opposed to 71% of the control mice) developed full pancreatic
adenocarcinoma after dual Ras overexpression and caerulein
treatment, strongly suggesting that the removal of oncogene-
induced senescent cells directly interferes with disease pro-
gression (Kolodkin-Gal et al., 2021). Although this work pro-
vided evidence on the role of paracrine senescence in
malignant transformation, it did not investigate whether
escape from OIS was a participating factor in the transition
from premalignancy to malignancy. Moreover, this work did
not explain why the removal of the senescent cells from the
pancreatic premalignant lesions would increase the division
rate of the surviving, nonsenescent premalignant cells that
were not amenable to senolysis (Kolodkin-Gal et al., 2021).
This study indicates that the elimination of senescent cells
likely has more complex ramifications that reiterate the dual
role of the SASP in tumor suppression. Consequently, further
studies to investigate the characteristics of the protumorigenic
senescent cell subpopulations in premalignant lesions and
methods to improve the selective removal of only “harmful”
senescent cells would be of significant preclinical importance
(Carpenter et al., 2021). Collectively, the removal of senescent
cells could provide a novel approach to delay the progression of
premalignant lesions pharmacologically, especially in lesions
that are inaccessible for surgical resection (Fig. 1).
This proposed strategy is still subject to several concerns.

First, senolytic targeting is not restricted to the “harmful”
oncogene-induced senescent cells and can potentially inter-
fere with other physiologic functions of senescence and the
beneficial elements of the SASP (Zhu et al., 2020). Second,
and as can be interpreted from the work by Kolodkin-Gal et
al. (2021), the elimination of senescent cells existing in pre-
cancerous lesions could be associated with increased prolifer-
ation of nonsenescent cells after senolysis, which poses the
risk for the selection for rapidly growing cells in a precancer-
ous lesion. Furthermore, certain senolytics, particularly the
most established agents such as BH3 mimetics, have been
associated with adverse effects (such as thrombocytopenia),
which might limit their clinical use. Moreover, further under-
standing of the mechanisms underlying OIS might pave the
way for the development of senolytics that target processes
specific to OIS (Kaplon et al., 2013). Third, the lack of reliable
in vivo markers for OIS, or for in vivo senescence in general
(Saleh et al., 2021), can lead to failure of detecting senescent

TABLE 2
Senolytic agents capable of eliminating OIS

OIS model Senolytic Reference

In vitro: H-Ras–induced WI-38 fibroblasts Navitoclax (ABT-263) Chang et al., 2016
In vitro: KIAA1549:BRAF fusion–driven pilocytic astrocytoma DKFZ-BT66 cells Navitoclax (ABT-263), ABT-737 Buhl et al., 2019
In vitro: Ras-induced WI-38 fibroblasts Piperlongumine Wang et al., 2016
In vitro: N-RasG12V–induced murine hepatocytes Ouabain Guerrero et al., 2019
In vivo: C.B17 SCID/beige mice Ouabain Guerrero et al., 2019
Ex vivo: b-catenin–positive Hesx11 embryonic precursor cells Ouabain, ABT-737 Guerrero et al., 2019
In vitro: Ras-induced IMR90 lung fibroblasts Navitoclax (ABT-263) Guerrero et al., 2019
In vivo: K-Ras–induced pancreatic premalignant senescence in transgenic mice ABT-737 Kolodkin-Gal et al., 2021
In vitro: BRAF-V600E–induced BJ human fibroblasts Ouabain L’Hôte et al., 2021

The table lists examples of senolytics that have been successfully tested in models of OIS both in vitro and in vivo. Despite the limited number of studies, senolytics
such as Bcl-2 inhibitors or cardiac glycosides have a promising potential for eliminating oncogene-induced senescent cells accumulating in premalignant lesions. Both
ABT-263 and ABT-737 are pan-Bcl-2 inhibitors that interfere with Bcl-2, Bcl-XL, and Bcl-w. Ouabain is a cardiac glycoside that inhibits the Na1/K1-ATPase ion
pump. Piperlongumine is a phytochemical that exerts its senolytic activity through inducing oxidative stress in senescent cells.
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cells among premalignant cells (Tran et al., 2012; Baek and
Ryeom, 2017). The development of routine methods to iden-
tify senescent cells in premalignant samples/biopsies can
pave the way for a more individualized usage of senolytics.
Finally, since several currently investigated senolytics are
associated with undesirable adverse effects, particularly the
Bcl-2 inhibitors, the identification or development of safer
senolytics would accelerate their consideration for the use to
mitigate aging-related pathologies including cancer. Never-
theless, we propose that further investigation into senolytic
agents and their effectiveness against OIS models may pro-
duce a noninvasive method to treat precancerous lesions that
carry high risk of malignant transformation.
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