
Radiative processes relevant to radioastronomy
Summary of 

A solid knowledge of the astrophysics behind radio observables is necessary to achieve a 
complete understanding of the various phenomena/astrophysical sources that will be 
investigated in this course.

Continuum emission processes 

Line emission/absorption processes

Chapters 1,10, 12, 13, 14, 15, 16



• Black body emission  

galaxies, star forming regions 

• Synchrotron emission and Inverse Compton 

supermassive black-holes, supernovae, clusters of galaxies 

• Bremsstrahlung emission 

clusters of galaxies, star forming regions

Continuum emission processes 



Basic definitions

dP = IνcosθdΩdσdν
Iνbrightness or specific intensity [W m-2 Hz-1 sr-1]

The infinitesimal power dP intercepted by an infinitesimal surface d  isσ

dP1 = dP2

dPi = Iνi
dσidΩidν

dΩi = dσj /R2

Iν1
= Iν2

Iν changes only if radiation is absorbed or emitted, following the equation of transfer

dIν

ds
= − kνIν + ϵν

ϵν

kν

emission coefficient
absorption coefficient

 is conserved along a ray (in free space)Iν

It is the same at the source and at the detector



Basic definitions

dP = IνcosθdΩdσdν
Iνbrightness or specific intensity [W m-2 Hz-1 sr-1]

The infinitesimal power dP intercepted by an infinitesimal surface d  isσ

| Iνdν | = | Iλdλ | relation between intensity per unit frequency and intensity per unit wavelength

Iλ

Iν
= |

dν
dλ

| =
c
λ2

=
ν2

c

1 Jansky (Jy) = 10-26 W m-2 Hz-1 = 10-23 erg s-1 cm-2 Hz-1 AB magnitude = −2.5log10 ( Sν

3631Jy )

Flux  
per unit  

frequency



Sν = ∫Ωs

Iν(θ, ϕ)cosθdΩ total flux or flux density     [W m-2 Hz-1]

 solid angle subtended by the sourceΩs

Basic definitions

as  ∫Ωs

dΩ ∝ 1/R2 where R can be interpreted as the source-detector distance

Sν ∝ R−2 flux density depends on the source distance

Lν = 4πR2Sν source spectral luminosity  [W Hz-1]

Luminosity distance
(for an isotropic source)

radio emission can  
be highly anisotropic

L = ∫
∞

0
Lνdν bolometric luminosity



Basic definitions

Emission only: 
dIν

ds
= ϵν

kν = 0 Absorption only: 
dIν

ds
= − kνIν

ϵν = 0

Thermodynamic equilibrium
dIν

ds
= 0 Iν = Bν(T ) =

2hν3

c2

1
ehν/kT − 1

Local thermodynamic equilibrium

dτν = − kνds optical depth
dIν

dτν
= Iν − Bν(T )

Iν(s) = Iν(0)e−τν(s) + Bν(T )(1 − e−τν(s))

dIν

ds
= − kνIν + ϵν

ϵν

kν

emission coefficient
absorption coefficient

ϵν /kν = Bν(T ) Kirkoff’s law



Black body radiation and Brightness Temperature

Bν(T ) =
2hν3

c2

1
ehν/kT − 1

The spectral distribution for a black body in thermodynamic equilibrium is (previous slide):

νmax

GHz
= 58.789 ( T

K )

Radio astronomy mostly probes BB radiation in the Rayleigh-Jeans regime: 

hν < < kTBRJ(ν, T ) =
2ν2

c2
kT

This implies that brightness and temperature are directly proportional: radio astronomers often measure 
the brightness of an extended source by its Rayleigh-Jeans Brightness Temperature: 

Tb(ν) =
c2

2kν2
Iν even if  an “equivalent temperature” can be derivedIν ≠ Bν



Bremsstrahlung radiation (or free-free)
Electromagnetic bremsstrahlung radiation is emitted by an accelerating (or decelerating) charged particle 
due to an electrostatic force. Thermal emission is produced if the emitting electrons are in LTE (non-
thermal if electrons have a power-law energy distribution).

In HII regions, a free electron passing by an ion undergoes an acceleration and emits according to the 
Larmor formula. The electron is free both before and after the interaction. For reasonable densities of the 
ionized clouds, electron and photons are in LTE.

P =
2
2

e2 ·v2

c3
=

2e2

3c3 ( Ze2

mer2 )
2

 ion-electron distancer

Coulomb acceleration ·v ∝
1
m

·v//

·v⊥

pulse duration/collision time

Strong emission at 
radio frequencies 
(due to ) 
from  to 

·v⊥
ν ∼ 0 νmax

~1014 Hz in HII 
regions
νmax



Bremsstrahlung radiation (or free-free)

Strong emission at 
radio frequencies 
(due to ) 
from  to 

·v⊥
ν ∼ 0 νmax

~1014 Hz in HII 
regions
νmax

What we have seen so far is valid for optically thin emission

Optical depth of an HII region

τ = − ∫los
kds ∝ ∫

n2
e

ν2.1T3/2
ds

For frequencies low enough that , the HII region becomes opaque and its spectrum approaches a 
blackbody in the Rayleigh-Jeans regime

τ > > 1

ν

S ∝ ν2

S ∝ ν2τ ∼ ν−0.1

Rayleigh-Jeans + small dependence of  on the maximum impact 
parameter (and, in turn, on )  

k
ν





Synchrotron emission 

Synchrotron emission is produced when charged particles moving at relativistic speed are subject to an 
acceleration that is perpendicular to both the direction of motion, typically in a magnetic field. 

Audibert et al. 2023, DOI: 10.1051/0004-6361/202345964

https://doi.org/10.1051/0004-6361/202345964


Synchrotron emission 

Synchrotron emission is produced when charged particles moving at relativistic speed are subject to an 
acceleration that is perpendicular to both the direction of motion, typically in a magnetic field. 

d
dt

(γmv) =
e
c

(v × B)
dv//

dt
= 0

dv⊥

dt
=

e
γmc

(v⊥ × B)

Einstein-Planck relativistic equations

|v⊥ | = cost

d
dt

(γmc2) = 0 γ = cost, |v | = cost

v// = cost

uniform rectilinear + uniform circular motion: helix winding around B  

with pitch angle (between the particle’s velocity and the local magnetic field)  tanα =
|v⊥ |
|v// |

if no electric field 
energy conservation

and  gyro frequency ωG =
eB
mc



Synchrotron emission 

Synchrotron emission is produced when charged particles moving at relativistic speed are subject to an 
acceleration that is perpendicular to both the direction of motion, typically in a magnetic field. 

The gyro frequency  represent the actual 

orbital frequency if v<<c  

ωG =
eB
mc

ωG

MHz
= 17.6 ( B

Gauss ) if γ ≃ 1

Location Field strength 
(gauss)Interstellar medium 10-6

Supermassive black-hole 104

Neutron star 1012

This room 0.3
Supernova remnants/Crab nebula 10-3

In typical ISM conditions (e.g. Milky Way)  Hz. The associated gyro radiation cannot propagate as its 
frequency is lower than the plasma frequency (kHz) 

ωG ∼ 20

ωp

kHz
= 28.2 ( ne

cm−3 )
1/2

∼ kHz for ne ∼ 0.03 cm−3



Synchrotron emission 

γ =
1

1 − v2/c2

In the case of relativistic particles with , 
power pattern is that of a dipole modified by 

relativistic beaming into a cone with angle , 

and the orbital frequency decreases even further

γ > > 1

θ ∼
1
γ

ωsync =
eB

γmc
< < ωG

(examples: Comic rays interacting with the interstellar magnetic field produce most of the continuum 
emission below 30 GHz  from our Galaxy)

However, two compensating relativistic effects can explain the strong synchrotron radiation observed at 
radio frequencies:  
1) the total radiated power in the observer’s frame is proportional to    
2) relativistic beaming turns the low-frequency sinusoidal radiation in the electron frame into a series of 

sharp pulses containing power at much higher frequencies   = in the observer’s frame. 

γ2

∝ γ2ωG γ3ωsync



Synchrotron emission 

γ =
1

1 − v2/c2

In the case of relativistic particles with , 
power pattern is that of a dipole modified by 
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and the orbital frequency decreases even further

γ > > 1

θ ∼
1
γ

ωsync =
eB

γmc
< < ωG
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1) the total radiated power in the observer’s frame is proportional to    
2) relativistic beaming turns the low-frequency sinusoidal radiation in the electron frame into a series of 

sharp pulses containing power at much higher frequencies   = in the observer’s frame. 
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Synchrotron emission 

For a single relativistic electron

The total emitted power is given by the relativistic Larmor equation P =
2e2

3c2
γ2 e2B2

mec2
v2sin2α

Or, equivalently, as , where  is the Thomson cross section and  is the 
magnetic energy density

P = 2σT β2γ2cUBsin2α σT UB = B2/8π

Synchrotron power depends on the electron kinetic energy (via , the magnetic field strength and 
the pitch angle

γ2)

In radio sources  (multiple scattering by magnetic field fluctuations and other charged 
particles) 

< sin2α > ∼ 2/3



Synchrotron emission 

For a single relativistic electron

The total emitted power is given by the relativistic Larmor equation P =
2e2

3c2
γ2 e2B2

mec2
v2sin2α

Or, equivalently, as , where  is the Thomson cross section and  is the 
magnetic energy density

P = 2σT β2γ2cUBsin2α σT UB = B2/8π

Synchrotron power depends on the electron kinetic energy (via , the magnetic field strength and 
the pitch angle

γ2)

In radio sources  (multiple scattering by magnetic field fluctuations and other charged 
particles) 

< sin2α > ∼ 2/3

The spectrum peaks at a critical frequency ωc =
3

4π
γ2ωGsinα

Spectrum of 1 electron

∝ q2a2



Synchrotron emission 

For a single relativistic electron

The total emitted power is given by the relativistic Larmor equation P =
2e2

3c2
γ2 e2B2

mec2
v2sin2α

Or, equivalently, as , where  is the Thomson cross section and  is the 
magnetic energy density

P = 2σT β2γ2cUBsin2α σT UB = B2/8π

Synchrotron power depends on the electron kinetic energy (via , the magnetic field strength and 
the pitch angle

γ2)

In radio sources  (multiple scattering by magnetic field fluctuations and other charged 
particles) 

< sin2α > ∼ 2/3

Electrons in a plasma emitting synchrotron radiation cool down. The cooling time of an electron is given by 
its energy divided by the energy radiation rate

tcool =
E
P

=
γmc2

P
∼ 16yr ( 1Gauss

B )
2 1

γ
Location tcool

Interstellar medium 1010 yrs

Supermassive black-hole 5 days

Neutron star 10-19 s



Synchrotron emission 
In radio astronomy, we usually observe the radiation from an ensemble of electrons whose energies can be 
very different. To obtain a realistic synchrotron spectrum, it is necessary to convolve the mono-energetic 
electron spectrum with an energy distribution function. 

For many astrophysical sources, it is reasonable to assume a power law energy distribution, as it would be 
expected for a stochastic acceleration mechanism: N(E) ∝ KE−δ

In this case, the total radiated flux is: S ∝ ν−n

There is a simple relation between  and :δ n n =
δ − 1

2

The spectrum of 
older radio sources 
breaks at lower 
frequency
tcool ∝

1
γ

Log S



Synchrotron emission 

What we have seen so far is valid for optically thin emission

The brightness temperatures of synchrotron sources cannot become arbitrarily large at low frequencies.  

In the case of a thermal source (LTE), brightness temperature cannot be greater than the kinetic 
temperature of the emitting particles. If the energy distribution of relativistic electrons in a synchrotron 
source were a (relativistic) Maxwellian, the electrons would have a well-defined kinetic temperature, 
and synchrotron self-absorption would prevent the brightness temperature of the synchrotron radiation 
from exceeding the kinetic temperature of the emitting electrons

If the frequency is low enough, the relativistic electrons in the same field can absorb the synchrotron 
photons produced by other electrons. Synchrotron self-absorption  occurs for any electron energy 
distribution



Synchrotron emission 

ωc ∼
γ2eB

2πmec
Electrons with energy  emit most of their power at nearly the critical frequencyE = γmc2

γ ∼ ( 2πmecν
eB )

1/2

Synchrotron emission at frequency  thus mostly comes from electrons with Lorentz factorν

As   the electron effective temperature is  E = 3kTe Te ∼
E
3k

=
γmec2

3k
∼ ( 2πmecν

eB )
1/2 mec2

3k
Ultrarelativistic gas

At low frequency, the brightness temperature approaches the effective temperature Te. From the definition 
of brightness temperature in the Rayleigh-Jeans regime we have

Iν ∼
2kTeν2

c2
∝ ν2ν1/2B−1/2 = ν5/2B−1/2

S ∝ ν−n

S ∝
ν5/2

B1/2



e.g. radio active galactic 
nuclei

Orienti & Dallacasa 2008

Synchrotron emission 

ωc ∼
γ2eB

2πmec
Electrons with energy  emit most of their power at nearly the critical frequencyE = γmc2

γ ∼ ( 2πmecν
eB )

1/2

Synchrotron emission at frequency  thus mostly comes from electrons with Lorentz factorν

As   the electron effective temperature is  E = 3kTe Te ∼
E
3k

=
γmec2

3k
∼ ( 2πmecν

eB )
1/2 mec2

3k
Ultrarelativistic gas

At low frequency, the brightness temperature approaches the effective temperature Te. From the definition 
of brightness temperature in the Rayleigh-Jeans regime we have

For self-absorbed radio sources  
The magnetic field strength can be therefore 
measured via a measurement of  at a given 
frequency 

B ∝ νT−2
b

Tb
ν

( B
gauss ) ∼ 1.4 × 1012 ( ν

Hz ) ( Tb

K )
−2

Iν ∼
2kTeν2

c2
∝ ν2ν1/2B−1/2 = ν5/2B−1/2



Synchrotron emission 

The existence of a synchrotron source implies the presence of relativistic electrons with energy density Ue 
and of a magnetic field whose energy density is UB.  
What is the minimum total energy to produce a synchrotron source of a given radio luminosity?

L = ∫
νmax

νmin

Lνdν = − ∫
Emax

Emin

dE
dt

n(E)dE

Ue = ∫
Emax

Emin

En(E)dE n(E) number density of electrons with energy between E and E+dE

From the definition of critical frequency, we know that most electrons emit at a frequency ν ∝ E2B
E2Their energy (for a given ) is therefore ν E ∝ B−1/2

From the Larmor’s equation, we know that the synchrotron power emitted per electron is −
dE
dt

∝ E2B2

For electrons with a power-law energy distribution, we have n(E) ∝ E−δ

The ratio 
Ue

L
∝

E2−δ |Emax
Emin

B2E3−δ |Emax
Emin

∝
(B−1/2)2−δ

B2(B−1/2)3−δ
= B−3/2

To produce an observed luminosity, the electron energy has to scale as Ue ∝ B−3/2

While UB ∝ B2

ωc ∼
γ2eB

2πmec



Synchrotron emission 

The total energy density is U ∼ Ue + UB

UB ∝ B2

Ue ∝ B−3/2

There is a minimum close to equipartition ( )Ue ∼ UB

dU
dB

= 0
Ue

UB
∼

4
3

- Luminous, extragalactic sources have enormous total energies even near equipartition. A common 
problem is to understand what is a viable source of energy to these systems. 

- Particle energies and magnetic field strength can be measured knowing L and the emitting volume V 
e.g. for a spherical radio source at distance R 

Beq = (6π
G
H

R2

V
Sννn)

2/7

G(n)

H(n) n = observed spectral index

Ueq =
7
4

(6π)−3/7( Gνn

H
Sν)

4/7

R8/7V3/7

prop to B-3/2 + B2

Radio astronomers often assume that synchrotron sources are in 
equipartition:



Synchrotron emission 

The synchrotron lifetime of a source with luminosity L is therefore

τ ∼
Ue

L
= cB−3/2

c

Log S

S ∝ ν−n

n

where c accounts for the  dependence on n, ( ) and ( )Ue νmax Emax νmin Emin

Steeper spectra (larger n) correspond to older synchrotron sources




