
Instruments for Radioastronomy

Elements of a radio telescope
A radio telescope is a specialized antenna and radio receiver, used to detect radio waves from 
astronomical radio sources in the sky. 

An antenna is a passive device that converts electromagnetic radiation in space into electrical currents in 
conductors, or vice versa, depending on whether it is used for receiving or for transmitting. Radio 
telescopes are receiving antennas

A radio receiver is an electronic device which receives alternating currents from the antenna and converts 
the information carried by them into a usable form. It uses electronic filters to select the desired 
frequencies and an electronic amplifier to increase the power of the signal for further processing.



Antenna fundamentals
The most important characteristic of an antenna is its ability to absorb radio waves incident upon it. This is 
typically described in terms of antenna effective aperture:

Ae =
Power density available at the antenna terminals

Flux density of the incident wave
= [

W/Hz
W/m2/Hz

] = [m2]

The effective area depends on the direction of the incident wave: the antenna works better is some 
directions than in others:

Ae = Ae(θ, ϕ)

This directional property of the antenna is often described in the 
form of a power pattern, i.e. an effective area normalized to be 
unity at the maximum

P(θ, ϕ) =
Ae(θ, ϕ)

Amax
e

Main lobe: primary maximum of the antenna pattern

Side lobes: subsidiary maxima of the antenna pattern

Half Power Beamwidth : angular distance between the two points at which P = Pmax/2ΘHPBW

ΘHPBW ∼
λ
D



Antenna fundamentals

Another patter often used to describe antennas is the gain:

G(θ, ϕ) = Power emitted into (θ, ϕ)
(Total power input)/4π

For any lossless antenna, energy conservation requires that the gain averaged over all directions is 
<G>=1, from which

∫sphere
G(θ, ϕ)sin(θ)dθdϕ = 4π

The main beam solid angle is defined as the region containing the principal response out to the first zero

ΩMB =
1

Gmax ∫MB
G(θ, ϕ)sin(θ)dθdϕ

And we can define the concept of main beam efficiency as ηMB ≡
ΩMB

ΩA

where Gmax is the maximum gain

For reflector antennas, the aperture efficiency is defined as:

ηA =
Amax

e

Ag
where Ag is the geometric cross-sectional area of the main reflector



Patterns of Aperture Antennas
How to calculate the beam pattern, or power gain as a function of direction, of an antenna aperture? 

Consider the case of a 1-dimensional aperture and for simplicity 
assume that the antenna is transmitting. We want to calculate the 
electric field pattern at a large distance R.

R source distance
D aperture size

x distance from aperture center

The antenna feed illuminates the antenna aperture with a sine wave. 
Illumination induces currents in the reflector. Currents vary with 
position and time.

I ∝ g(x)exp(−iωt) ν = ω/(2π)
g(x)

wave frequency

electric field strength

Huygens’s principle: the aperture is an ensemble of small elements 
individually acting as small antennas. The electric field produced by 
the whole aperture at large distances is just the vector sum of the 
elemental electric fields from these small antennas.

df ∝ g(x)
exp(−i2πr(x)/λ)

r(x)
electric field strength
r(x) distance between the source and aperture element at position x

As R>>Rff the plane wave approximation is valid and   usually written as r ∼ R + xsinθ r ∼ R + xl
(l = sinθ)



Patterns of Aperture Antennas

R source distance
D aperture size

x distance from aperture center

df ∝ g(x)
exp(−i2π(R + xl)/λ)

R 1
r

∼
1
R

constant

df ∝ g(x)
exp(−i2πxl)/λ)

R

The phase varies linearly across the aperture. Different 
parts of the aperture add constructively or destructively to the 
total electric field.

2πxl /λ

Defining the position along the aperture in units of wavelength 
u = x /λ

f(l) = ∫aperture
g(u)e−i2πludu

In the far field, the electric-field pattern of an aperture antenna is the Fourier transform of the electric 
field distribution illuminating that aperture.



Patterns of a uniformly illuminated antenna

f(l) = ∫aperture
g(u)e−i2πludu

In the far field, the electric-field pattern of an aperture 
antenna is the  Fourier transform of the electric field 
distribution illuminating that aperture.

Uniform illumination:  g(u) = constant −D
2λ

< u <
D
2λ

Unit rectangle function:  Π(u) = 1 −1/2 < u < 1/2

f(l) = ∫
1/2

−1/2
Π(u)e−i2πludu = ∫

1/2

−1/2
e−i2πludu

Unit aperture ( )D = λ

=
e−iπl − eiπl

−i2πl
=

sin(πl)
πl

= sinc(l)

electr ic-field pattern of a 
uniformly illuminated antenna

developing in

cos and sin



Patterns of a uniformly illuminated antenna

f(l) = ∫aperture
g(u)e−i2πludu

In the far field, the electric-field pattern of an aperture 
antenna is the  Fourier transform of the electric field 
distribution illuminating that aperture.

Uniform illumination:  g(u) = constant −D
2λ

< u <
D
2λ

The power pattern is the square of the field pattern

Unit aperture ( )D = λ

power pattern of a uniformly illuminated antenna

Main beam: peak of the power pattern between the first 
nulls ( )l = ± 1

P(l) = sinc2(l)



Patterns of a uniformly illuminated antenna

In general, we can exploit the similarity theorem for Fourier transforms to derive the power pattern for a 
one-dimensional aperture of size D operating at wavelength λ

g(au) =
1

|a |
f(

u
a

)f(l)
g(u)

generic function

Fourier transform of f



Patterns of a uniformly illuminated antenna

P(l) = ( D
λ )

2

sinc2 ( lD
λ )

P increases with the aperture size D
P increases at smaller  (higher frequency)λ

In general, we can exploit the similarity theorem for Fourier transforms to derive the power pattern for a 
one-dimensional aperture of size D operating at wavelength λ

P(θ) = ( D
λ )

2

sinc2 ( θD
λ )

Or, equivalently, as a function of θ

For large apertures 
the relevant angles are   
radian, so that 

D/λ > > 1
θ < < 1

l = sinθ ∼ θ



Patterns of a uniformly illuminated antenna

P(l) = ( D
λ )

2

sinc2 ( lD
λ )

P increases with the aperture size D
P increases at smaller  (higher frequency)λ

P(θHPBW/2) =
1
2

= sinc2 ( θHPBWD
2λ )

θHPBW ∼ 0.89
λ
D

Recalling the definition of half power beamwidth

In general, we can exploit the similarity theorem for Fourier transforms to derive the power pattern for a 
one-dimensional aperture of size D operating at wavelength λ

the exact constant depends on the 
illumination taper, that is the variation of the 
illumination  amplitude across the aperture

Reciprocity theorem: the derived transmitting power 
pattern of an aperture antenna also yields its 
receiving power pattern. In receiving terms, the 
analog of the power pattern is called the point-source 
response.



Patterns of an antenna with tapered illumination

Real antenna feeds cannot illuminate a large aperture uniformly. A better approximation to their 
illumination is the cosine-tapered field pattern (cosine-squared tapered power pattern)

 g(u) =
π
2

cos(πu) −1/2 < u < 1/2

 g(u) = ∫
1/2

−1/2
g(u)du = 1

f(l) =
cos(πl)
1 − 4l2

P(l) = [
cos(πl)
1 − 4l2

]2



Patterns of an antenna with tapered illumination

Real antenna feeds cannot illuminate a large aperture uniformly. A better approximation to their 
illumination is the cosine-tapered field pattern (cosine-squared tapered power pattern)

 g(u) =
π
2

cos(πu) −1/2 < u < 1/2

 g(u) = ∫
1/2

−1/2
g(u)du = 1

f(l) =
cos(πl)
1 − 4l2

P(l) = [
cos(πl)
1 − 4l2

]2

P(dB) = 10log10P



Patterns of an antenna with tapered illumination

Real antenna feeds cannot illuminate a large aperture uniformly. A better approximation to their 
illumination is the cosine-tapered field pattern (cosine-squared tapered power pattern)

P(l) = [
cos(πl)
1 − 4l2

]2

P(dB) = 10log10P

θHPBW ∼ 1.2
λ
D

P(θHPBW/2) =
1
2

D/λ > > 1

Tapering increases the half-power beamwidth.

Typical beamwidth of most radio telescopes. 



Antenna spillovers

The perfectly sharp cutoff of illumination at the edge of the aperture (  ) cannot be achieved in 
practice. Any illumination extending beyond the reflector is called spillover.

u = ± 1/2

In the case of a receiving antenna, a prime-focus feed looking down at an aperture also sees spillover 
radiation from the surrounding ground.  

Sols emit blackbody radiation at the ambient temperature T∼300K. Ground radiation can therefore add 
significantly to the system noise temperature of a radio telescope. 

spillover

feed

reflector

illumination 
taper

feed pattern



Antenna spillovers

The perfectly sharp cutoff of illumination at the edge of the aperture (  ) cannot be achieved in 
practice. Any illumination extending beyond the reflector is called spillover.

u = ± 1/2

spillover

feed

reflector

illumination 
taper

feed pattern

ground screen @Arecibo

In the case of a receiving antenna, a prime-focus feed looking down at an aperture also sees spillover 
radiation from the surrounding ground.  

Sols emit blackbody radiation at the ambient temperature T∼300K. Ground radiation can therefore add 
significantly to the system noise temperature of a radio telescope. 



Gaussian beam solid angle and beamwidth

ΩA ≡
1

Gmax ∫4π
G(θ, ϕ)dΩ

We have introduced the definition of beam solid angle:

where G is the antenna gain

Or, equivalently, as a function of the antenna effective aperture:

ΩA ≡
1

Amax ∫4π
Ae(θ, ϕ)dΩ

as the reciprocity theorem implies that  Ae(θ, ϕ) =
λ2G(θ, ϕ)

4π

A e
/A

m
ax

θ/ΘHPBW

ΘHPBW

θ offset from beam center

*



Gaussian beam solid angle and beamwidth

The beams of most radio telescopes (single dish but also interferometers) are nearly Gaussian and can 
be written as

ΩA ≡
1

Gmax ∫4π
G(θ, ϕ)dΩ

We have introduced the definition of beam solid angle:

where G is the antenna gain

Or, equivalently, as a function of the antenna effective aperture:

ΩA ≡
1

Amax ∫4π
Ae(θ, ϕ)dΩ

as the reciprocity theorem implies that  Ae(θ, ϕ) =
λ2G(θ, ϕ)

4π

A e
/A

m
ax

θ/ΘHPBW

ΘHPBW

θ offset from beam center

Ae

Amax
− exp(−xθ2) where  is a scaling factor so that  when x =

4ln2
Θ2

HPBW
Ae /Amax = 1/2 θ = ΘHPBW

Substituting into * and integrating, we have that the beam solid angle of a Gaussian beam is

*

ΩA ≡ ( π
4ln2 ) Θ2

HPBW ∼ 1.133Θ2
HPBW



Reflector accuracy requirements

Real radio telescopes don’t have perfectly smooth paraboloidal reflectors. Deviations from the paraboloid 
may be caused by permanent manufacturing errors, changing gravitational deformations as the reflector is 
tilted, thermal distortions resulting from solar heating, and bending by strong winds.

We have introduced the concept of aperture efficiency, defined as:

η =
Amax

e

Ag geometric cross-sectional area of the main reflector (perfect paraboloid)

actual antenna efficiency

Where the actual reflector surface deviates from the perfect 
paraboloid by a distance , the path length of the reflected wave 
will be in error by ~2 , and the phase error will be

ϵ
ϵ

δ ∼
2π
λ

2ϵ =
4πϵ

λ

perfect aperture imperfect aperture

electric field
The contribution of each area element to the far electric field will 
be reduced by a factor
E(δ)
E(0)

= cosδ ∼ 1 −
δ2

2
+ . . . in the limit  radδ < < 1

A(δ)
Ag

= ∼ ( E(δ)
E(0) )

2

∼ 1 − δ2 ∼ 1 − ( 4πϵ
λ )

2



Reflector accuracy requirements

We have introduced the concept of aperture efficiency, defined as:

η =
Amax

e

Ag geometric cross-sectional area of the main reflector (perfect paraboloid)

actual antenna efficiency

Where the actual reflector surface deviates from the perfect 
paraboloid by a distance , the path length of the reflected wave 
will be in error by ~2 , and the phase error will be

ϵ
ϵ

δ ∼
2π
λ

2ϵ =
4πϵ

λ

The contribution of each area element to the far electric field will 
be reduced by a factor
E(δ)
E(0)

= cosδ ∼ 1 −
δ2

2
+ . . . in the limit  radδ < < 1

A(δ)
Ag

= ∼ ( E(δ)
E(0) )

2

∼ 1 − δ2 ∼ 1 − ( 4πϵ
λ )

2
surface errors must be << than the shortest usable 

wavelength

Real radio telescopes don’t have perfectly smooth paraboloidal reflectors. Deviations from the paraboloid 
may be caused by permanent manufacturing errors, changing gravitational deformations as the reflector is 
tilted, thermal distortions resulting from solar heating, and bending by strong winds.



Reflector accuracy requirements

A more realistic scenario considers that surface errors have a roughly Gaussian probability distribution  

<
E

E(0)
> = ∫

∞

−∞
cos ( 4πϵ

λ ) ⋅
1

2πσ
exp (−

ϵ2

2σ2 ) dϵ

P(ϵ) =
1

2πσ
exp (−

ϵ2

2σ2 ) σ = rms

reduction due to ϵ distribution of ϵ

This is the Fourier transform of a Gaussian ( , similarity theorem)…which is another 
Gaussian 

eix = cosx + isinx

<
E

E(0)
> = exp (−

8π2σ2

λ2 )

Real radio telescopes don’t have perfectly smooth paraboloidal reflectors. Deviations from the paraboloid 
may be caused by permanent manufacturing errors, changing gravitational deformations as the reflector is 
tilted, thermal distortions resulting from solar heating, and bending by strong winds.



Reflector accuracy requirements

η = exp[−( 4πσ
λ )

2

]

Power is proportional to E2 so the reflector surface efficiency is

Ruze equation

The surface efficiency  is closely related to the  Strehl ratio 
used by optical astronomers to specify the peak intensity loss 
caused by optical aberrations or atmospheric turbulence.

σ ∼
λmin

16

As a rule of thumb the shortest wavelength at which a radio telescope works reasonably well is

which corresponds to

η ∼ exp[−( π
4 )

2

] ∼ 0.54

For example in the case of IRAM 30m, which operates up to ~250 GHz or  mm, the deviations 
from a perfect paraboloid must not exceed , which is about the thickness of a paper sheet.

λmin ∼ 1.2
σ ∼ 75μm



Real radio telescopes don’t have perfectly accurate pointing. Small errors in tracking a target source 
reduce the aperture efficiency in the source direction and contribute to the uncertainty in flux-density 
measurements of compact sources. Tracking errors are as important as surface errors in limiting the short-
wavelength performance of large radio telescopes.

Pointing accuracy requirements

(  offset angle with respect to beam axis)ρ
Ae

Amax
= exp(−

4ln2ρ2

Θ2
HPBW

)

If the one-dimensional tracking error in each coordinate (e.g., azimuth or elevation angle) has a Gaussian 
distribution with rms σ

< ρ2 > = ∫
∞

0
ρ2P(ρ)dρ = 2σ2

The mean squared tracking error is

P(ρ) =
ρ
σ2

exp (−
ρ2

2σ2 ) Rayleigh distribution

So the average loss in antenna efficiency is <
Ae

Amax
> =

1

1 + 4ln2 ( 2σ
ΘHPBW )

2



Real radio telescopes don’t have perfectly accurate pointing. Small errors in tracking a target source 
reduce the aperture efficiency in the source direction and contribute to the uncertainty in flux-density 
measurements of compact sources. Tracking errors are as important as surface errors in limiting the short-
wavelength performance of large radio telescopes.

Pointing accuracy requirements

The fluctuating on-source antenna efficiency caused by tracking errors contributes a fractional uncertainty

σ
S

=
z

(1 + 2z)1/2
S source flux density

z = 4ln2 ( σ
ΘHPBW )

2

Thus an rms tracking error of 0.2  will contribute to a 10% rms flux density uncertainty. 0.14  will 
result in 5% uncertainty.

ΘHPBW ΘHPBW

IRAM 30-meter (Pico Veleta, ES)

250 GHz ~ m1.2 × 10−3

ΘHPBW ∼
1.2 × 10−3

30
∼ 4 × 10−5 rad ∼ 8.3′ ′ 

To achieve rms flux uncertainties <~5%, the total tracking error must be 
smaller than 1.1 “. 
For a steel antenna a differential temperature variation of 1º corresponds 
to a pointing shift of ~2”. Pointing has to be calibrated frequently!



Instruments for Radioastronomy

Why Interferometers?

In (radio)astronomy, we aim to know the angular distribution of the electromagnetic emission coming from 
a source in the sky. This means that we are interested in the brightness of the emission 

Iν [W m-2 Hz-1 sr-1]

and not only in its total flux

Sν = ∫Ωs

Iν(θ, ϕ)cosθdΩ  [W m-2 Hz-1]  solid angle subtended by the sourceΩs

Measuring the brightness of a source means making a “map” of the source

ALMA map of CO(3-2) and 
blackbody continuum emission 
in the galaxy of PDS456 
z =0.185

Bischetti et al. 2019a

 arcsec ΘHPBW ∼ 0.2
ν ∼ 290GHz(λ ∼ 1mm)



Instruments for Radioastronomy

Why Interferometers?

In (radio)astronomy, we aim to know the angular distribution of the electromagnetic emission coming from 
a source in the sky. This means that we are interested in the brightness of the emission 

Iν [W m-2 Hz-1 sr-1]

and not only in its total flux

Sν = ∫Ωs

Iν(θ, ϕ)cosθdΩ  [W m-2 Hz-1]  solid angle subtended by the sourceΩs

Measuring the brightness of a source means making a “map” of the source

Because targets are distant, 
emission is extremely weak and of 
small angular size. 

High-angular resolution (<< 
arcsec) observations are needed 
to map high-redshift sources!

Cosmic noon
Reionization



We have seen that even the largest single-dish radio telescopes have relatively low angular resolution, 
especially at low frequency:

ΘHPBW ∼
λ
D

[rad]

Impossibly large diameters would be needed to achieve (sub-)arcsecond resolution at radio wavelengths. 

As an example, to observe the H 21 cm emission with 1 arcsec resolution, an aperture of 42 km would be 
needed! The currently largest, fully-steerable apertures are only 100m (Effelsberg telescope DE, Green 
Bank telescope US). 

We have also seen that it is problematic to satisfy reflector requirements (deviations from a perfect 
paraboloid of ) and pointing/tracking accuracy requirements (at best ~arcsec) in the case of large 
single dishes. 

≲ 100 μm

Aperture synthesis

Can we synthesize an aperture of km size with pairs of antennas? 

YES: the technique of synthesizing a larger aperture through combination of separated pairs of antennas 
is called aperture synthesis



Interferometry: basic concepts

We have seen that a parabolic dish coherently sums 
all electromagnetic fields at the focus

The same result can be achieved by adding in a 
network voltages from individual antennas 

This is the basic concept of interferometry. Aperture 
synthesis is an extension of this concept.

Interferometer: ensemble of  relatively small (easier to build and operate) dishes. N ≥ 2

NOEMA (Plateau de Bure, FR)

bmax

✴The collecting area of an interferometer is  and 
can be arbitrarily increased as  is the # of antennas.

NπD2/4
N

✴The angular resolution is  where  is 
the longest baseline, i.e. the largest distance between 
two antennas in the array.

ΘHPBW ∼ λ /bmax bmax



ALMA 
interferometer 

54 antennas

ΘHPBW ∼
λ

bmax
≲

0.007m
14000m

∼ 0.1′ ′ 

band 1

✴The angular resolution is  where  is the longest baseline, i.e. the largest distance 
between two antennas in the array.

ΘHPBW ∼ λ /bmax bmax

Interferometry: basic concepts



Coherent interferometry is based on the ability to correlate electric fields measured at spatially separated 
locations (i.e. from different antennas)

Interferometry: basic concepts

Doing this (without mirrors) requires a conversion of the electric field  at a given location  to a 
voltage  that can be conveyed to the receiver for processing

E(r, ν, t) r
V(ν, t)

To this purpose, the sensor (“antenna”) is simply a device with is sensitive to the electric field at a given 
location and converts it into a voltage retaining the amplitude and phase of electric field.

Electromagnetic waves in

Voltage out  
(amplitude and phase of 
input fields are preserved)



The two-element quasi-monochromatic interferometer

The simplest radio interferometer is a pair of radio telescopes whose voltage outputs are correlated. Even 
the most elaborate interferometers with  antennas can be treated as N(N-1)/2 independent two 
element interferometers.

N > > 2

 # antenna pairs

Consider two dishes, separated by the baseline vector 
. Both dishes point the same direction .  

 is the angle between  and 

⃗b ̂s
θ ⃗b ̂s

Plane waves from a distant point source have to travel an 
extra distance  to reach antenna 1, with 
respect to antenna 2.

⃗b ⋅ ̂s = bcosθ

The output of antenna 1 is therefore the same of antenna 
2 but it lags in time by the geometric delay

τg =
⃗b ⋅ ̂s
c

=
bcosθ

c

For simplicity, we consider a quasi-monochromatic 
interferometer that responds to radiation in a narrow 
band  centered on frequency Δν < < ν ν = ω/(2π)



The two-element quasi-monochromatic interferometer

The output voltages of antennas 1 and 2 at time  can be written ast

V1 = Ecos[ω(t − τg)]

V2 = Ecos(ωt)

✴ the minimum step to have independent time 
samplings is  s t ∼ 1/(2Δν) ≲ 10−3

V1V2 = E2cos[ω(t − τg)]cos(ωt)

=
E2

2
[cos(2ωt − ωτg) + cos(ωτg)]

cosxcosy = [cos(x+y)+cos(x-y)]/2

rapidly varying slowly varying

A correlator multiplies the two voltages (assuming that path 
lengths from sensors to the multiplier are equal for 1 and 2)

✴  varies slowly with time as Earth rotation changes the 
source direction relative to the baseline vector. 
where  varies on ~105 s 

τg
τg = bcosθ/c

θ



The two-element quasi-monochromatic interferometer

The output voltages of antennas 1 and 2 at time  can be written ast

R = < V1V2 > =
E2

2
cos(ωτg) =

E2

2
cosϕ

The correlator response is a measurement of the spatial 
correlation of the signal

V1 = Ecos[ω(t − τg)]

V2 = Ecos(ωt)

V1V2 = E2cos[ω(t − τg)]cos(ωt)

=
E2

2
[cos(2ωt − ωτg) + cos(ωτg)]

cosxcosy = [cos(x+y)+cos(x-y)]/2

rapidly varying slowly varying

The correlator takes a time average long enough to 
remove the high-frequency term from the correlator 
response (output voltage)

A correlator multiplies the two voltages (assuming that path 
lengths from sensors to the multiplier are equal for 1 and 2)



The two-element quasi-monochromatic interferometer

The output voltages of antennas 1 and 2 at time  can be written ast

R = < V1V2 > =
E2

2
cos(ωτg) =

E2

2
cosϕ

The correlator response varies sinusoidally. This sinusoids 
are called fringes and  is the fringe phaseϕ

V1 = Ecos[ω(t − τg)]

V2 = Ecos(ωt)

V1V2 = E2cos[ω(t − τg)]cos(ωt)

=
E2

2
[cos(2ωt − ωτg) + cos(ωτg)]

cosxcosy = [cos(x+y)+cos(x-y)]/2

rapidly varying slowly varying

The correlator takes a time average long enough to 
remove the high-frequency term from the correlator 
response (output voltage)

A correlator multiplies the two voltages (assuming that path 
lengths from sensors to the multiplier are equal for 1 and 2)



Example: signals in phase

V1

V2

V1V2

<V1V2>

Example: voltages in phase 
b ⋅ s = nλ, τg = nν

τg =
⃗b ⋅ ̂s
c

ν = 2GHz

R = < V1V2 > =
E2

2
cos(ωτg) =

E2

2
cosϕ



V1

V2

V1V2

<V1V2>

Example: voltages in quadrature phase
b ⋅ s = (n ± 1/4)λ, τg = (4n ± 1)/4ν

ν = 2GHz

R = < V1V2 > =
E2

2
cos(ωτg) =

E2

2
cosϕ τg =

⃗b ⋅ ̂s
c

Example: signals in quadrature phase



V1

V2

V1V2

<V1V2>

Example: voltages out of phase
b ⋅ s = (n ± 1/2)λ, τg = (2n ± 1)/2ν

ν = 2GHz

R = < V1V2 > =
E2

2
cos(ωτg) =

E2

2
cosϕ τg =

⃗b ⋅ ̂s
c

Example: signals out of phase


