
Count-Min Sketch with Variable Number
of Hash Functions: An Experimental Study

Éric Fusy and Gregory Kucherov(B)

LIGM, CNRS, Univ. Gustave Eiffel, Marne-la-Vallée, France
{Eric.Fusy,Gregory.Kucherov}@univ-eiffel.fr

Abstract. Conservative Count-Min, a stronger version of the popu-
lar Count-Min sketch [Cormode, Muthukrishnan 2005], is an online-
maintained hashing-based sketch summarizing element frequency infor-
mation of a stream. Although several works attempted to analyze the
error of conservative Count-Min, its behavior remains poorly understood.
In [Fusy, Kucherov 2022], we demonstrated that under the uniform dis-
tribution of input elements, the error of conservative Count-Min follows
two distinct regimes depending on its load factor.

In this work, we present a series of results providing new insights into
the behavior of conservative Count-Min. Our contribution is twofold.
On one hand, we provide a detailed experimental analysis of Count-Min
sketch in different regimes and under several representative probabil-
ity distributions of input elements. On the other hand, we demonstrate
improvements that can be made by assigning a variable number of hash
functions to different elements. This includes, in particular, reduced space
of the data structure while still supporting a small error.

1 Introduction

In most general terms, Count-Min sketch is a data structure for representing
an associative array of numbers indexed by elements (keys) drawn from a large
universe, where the array is provided through a stream of (key, value) updates
so that the current value associated to a key is the sum of all previous updates
of this key. Perhaps the most common setting for applying Count-Min, that we
focus on in this paper, is the counting setting where all update values are +1.
In this case, the value of a key is its count telling how many times this key has
appeared in the stream. In other words, Count-Min can be seen as representing
a multiset, that is a mapping of a subset of keys to non-negative integers. With
this latter interpretation in mind, each update will be called insertion. The main
supported query of Count-Min is retrieving the count of a given key, and the
returned estimate may not be exact, but can only overestimate the true count.

The counting version of Count-Min is applied to different practical problems
related to data stream mining and data summarization. One example is tracking
frequent items (heavy hitters) in streams [7,11,23]. It occurs in network traffic
monitoring [17], optimization of cache usage [16]. It also occurs in non-streaming
big data applications, e.g. in bioinformatics [1,25,29].
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Count-Min relies on hash functions but, unlike classic hash tables, does not
store elements but only count information (hence the term sketch). It was pro-
posed in [12], however a very similar data structure was proposed earlier in [9]
under the name Spectral Bloom filter. The latter, in turn, is closely related to
Counting Bloom filters [19]. In this work, we adopt the definition of [9] but still
call it Count-Min to be consistent with the name commonly adopted in the
literature. A survey on Count-Min can be found e.g. in [10].

In this paper, we study a stronger version of Count-Min called conservative.
This modification of Count-Min was introduced in [17] under the name con-
servative update, see [10]. It was also discussed in [9] under the name minimal
increase. Conservative Count-Min provides strictly tighter count estimates using
the same memory and thus strictly outperforms the original version. The price
to pay is the impossibility to deal with deletions (negative updates), whereas the
original Count-Min can handle deletions as well, provided that the cumulative
counts remain non-negative (condition known as strict turnstile model [23]).

Analysis of error of conservative Count-Min is a difficult problem having
direct consequences on practical applications. Below in Sect. 2.2 we survey known
related results in more details. In our previous work [21], we approached this
problem through the relationship with random hypergraphs. We proved, in par-
ticular, that if the elements represented in the data structure are uniformly
distributed in the input, the error follows two different regimes depending on
the peelability property of the underlying hash hypergraph. While properties of
random hypergraphs have been known to be crucially related to some data struc-
tures (see Sect. 2.3), this had not been known for Count-Min.

Starting out from these results, in this paper we extend and strengthen this
analysis in several ways, providing experimental demonstrations in support of our
claims. Our first goal is to provide a fine analysis of the “anatomy” of conservative
Count-Min, describing its behavior in different regimes. Our main novel contri-
bution is the demonstration that assigning different number of hash functions
to different elements can significantly improve the error, and, as a consequence,
lead to memory saving. Another major extension concerns the probability dis-
tribution of input elements: here we study non-uniform distributions as well, in
particular step distribution and Zipf’s distribution, and analyze the behavior of
Count-Min for these distributions. This analysis is important not only because
non-uniform distributions commonly occur in practice, but also because this
provides important insights for the heavy hitters problem [7,11,23]). In partic-
ular, we consider the “small memory regime” (supercritical, in our terminology)
when the number of distinct represented elements is considerably larger than
the size of the data structure, and analyse conditions under which most frequent
elements are evaluated with negligible error. This has direct applications to the
frequent elements problem.
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2 Background and Related Work

2.1 Conservative Count-Min: Definitions

A Count-Min sketch is a counter array A of size n together with a set of hash
functions mapping elements (keys) of a given universe U to [1..n]. In this work,
each element e ∈ U can in general be assigned a different number ke of hash
functions. Hash functions are assumed fully random, therefore we assume w.l.o.g.
that an element e is assigned hash functions h1, . . . , hke

.
At initialization, counters A[i] are set to 0. When processing an insertion

of an input element e, basic Count-Min increments by 1 each counter A[hi(e)],
1 ≤ i ≤ ke. The conservative version of Count-Min increments by 1 only the
smallest of all A[hi(e)]. That is, A[hi(e)] is incremented by 1 if and only if
A[hi(e)] = min1≤j≤ke

{A[hj(e)]} and is left unchanged otherwise.
In both versions, the estimate of the number of occurrences of a queried

element e is computed by c(e) = min1≤i≤ke
{A[hi(e)]}. It is easily seen that for

any input sequence of elements, the estimate computed by original Count-Min
is greater than or equal to the one computed by the conservative version.

In this work, we study the conservative version of Count-Min. Let H denote
a selection of hash functions H = {h1, h2, . . .}. Consider an input sequence I of
N insertions and let E be the set of distinct elements in I. The relative error of
an element e is defined by err(e) = (c(e) − occ(e))/occ(e), where occ(e) is the
number of occurrences of e in the input. The combined error is an average error
over all elements in I weighted by the number of occurrences, i.e.

err =
1
N

∑

e∈E

occ(e) · err(e) = 1
N

∑

e∈E

(c(e) − occ(e)).

We assume that I is an i.i.d. random sequence drawn from a probability
distribution on a set of elements E ⊆ U . A key parameter is the size of E
relative to the size n of A. By analogy to hash tables, λ = |E|/n is called the
load factor, or simply the load.

2.2 Analysis of Conservative Count-Min: Prior Works

Motivated by applications to traffic monitoring, [5] was probably the first work
devoted to the analysis of conservative Count-Min in the counting setting. Their
model assumed that all

(
n
k

)
counter combinations are equally likely, where k hash

functions are applied to each element. This implies the regime when |E| � n.
The focus of [5] was on the analysis of the growth rate of counters, i.e. the
average number of counter increments per insertion, using a technique based
on Markov chains and differential equations. Another approach proposed in [16]
simulates a conservative Count-Min sketch by a hierarchy of ordinary Bloom
filters. Obtained error bounds are expressed via a recursive relation based on
false positive rates of corresponding Bloom filters.
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Recent works [2,3] propose an analytical approach for computing error
bounds depending on element probabilities assumed independent but not neces-
sarily uniform, in particular leading to improved precision bounds for detecting
heavy hitters. However the efficiency of this technique is more limited when all
element probabilities are small. In particular, if the input distribution is uniform,
their approach does not bring out any improvement over the general bounds
known for original Count-Min.

In our recent work [21], we proposed an analysis of conservative Count-Min
based on its relationship with random hypergraphs. We summarize the main
results of this work below in Sect. 2.4.

2.3 Hash Hypergraph

Many hashing-based data structures are naturally associated with hash hyper-
graphs so that hypergraph properties are directly related to the proper function-
ing of the data structure. This is the case with Cuckoo hashing [27] and Cuckoo
filters [18], Minimal Perfect Hash Functions and Static Functions [24], Invertible
Bloom Lookup Tables [22], and some others. [30] provides an extended study of
relationships between hash hypergraphs and some of those data structures.

A Count-Min sketch is associated with a hash hypergraph H = (V,E) where
V = {1..n} and E = {{h1(e), ...hke

(e)}} over all distinct input elements e. We
use notation Hn,m for hypergraphs with n vertices and m edges, and Hk

n,m for
k-uniform such hypergraphs, where all edges have cardinality k. In the latter
case, since our hash functions are assumed fully random, a hash hypergraph is
a k-uniform Erdős-Rényi random hypergraph.

As inserted elements are assumed to be drawn from a random distribution,
it is convenient to look at the functioning of a Count-Min sketch as a stochastic
process on the associated hash hypergraph [21]. Each vertex holds a counter
initially set to zero, and therefore each edge is associated with a set of counters
held by corresponding vertices. Inserting an element consists in incrementing the
minimal counters of the corresponding edge, and retrieving the estimate of an
element returns the minimum value among the counters of the corresponding
edge. From now on in our presentation, we will interchangeably speak of distinct
elements and edges of the associated hash hypergraph, as well as of counters
and vertices. Thus, we will call the vertex value the value of the corresponding
counter, and the edge value the estimate of the corresponding element. Also, we
will speak about the load of a hypergraph understood as the density |E|/|V |.

2.4 Hypergraph Peelability and Phase Transition of Error

A hypergraph H = (V,E) is called peelable if iterating the following step start-
ing from H results in the empty graph: if the graph has a vertex of degree 1
or 0, delete this vertex together with the incident edge (if any). As many other
properties of random hypergraphs, peelability undergoes a phase transition. Con-
sider the Erdős-Rényi k-uniform hypergraph model where graphs are drawn from
Hk

n,m uniformly at random. It is shown in [26] that a phase transition occurs at a
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(computable) peelability threshold λk: a random graph from Hk
n,λn is with high

probability (w.h.p.) peelable if λ < λk, and w.h.p. non-peelable if λ > λk. The
first values are λ2 = 0.5, λ3 ≈ 0.818, λ4 ≈ 0.772, etc., λ3 being the largest. Note
that the case k = 2 makes an exception to peelability: for λ < λ2, a negligible
fraction of vertices remain after peeling.

Peelability is known to be directly relevant to certain constructions of Mini-
mal Perfect Hash Functions [24] as well as to the proper functioning of Invertible
Bloom filters [22]. In [21], we proved that it is relevant to Count-Min as well.

Theorem 1 ([21]). Consider a conservative Count-Min where each element is
hashed using k random hash functions. Assume that the input I of length N is
drawn from a uniform distribution on a set E ⊆ U of elements and let λ = |E|/n,
where n is the number of counters. If λ < λk, then for a randomly chosen element
e, the relative error err(e) is o(1) w.h.p. when both n and N/n grow.

In the complementary regime λ > λk, we showed in [21], under some additional
assumptions, that err is Θ(1). Thus, the peelability threshold for random hash
hypergraphs corresponds to phase transition in the error produced by conserva-
tive Count-Min for uniform distribution of input. We call regimes λ < λk and
λ > λk subcritical and supercritical, respectively.

2.5 Variable Number of Hash Functions: Mixed Hypergraphs

The best peelability threshold λ3 ≈ 0.818 can be improved in at least two dif-
ferent ways. One way is to use a carefully defined class of hash functions which
replace uniform sampling of k-edges by a specific non-uniform sampling. Thus,
[15] showed that the peelability threshold can be increased to ≈0.918 for k = 3
and up to ≈0.999 for larger k’s if a special class of hypergraphs is used.

Another somewhat surprising idea, that we apply in this paper, is to apply a
different number of hash functions to differents elements, that is to consider non-
uniform hypergraphs. Following [14], [28] showed that non-uniform hypergraphs
may have a larger peelability threshold than uniform ones. More precisely, [28]
showed that mixed hypergraphs with two types of edges of different cardinalities,
each constituting a constant fraction of all edges, may have a larger peelability
threshold: for example, hypergraphs with a fraction of ≈0.887 of edges of cardi-
nality 3 and the remaining edges of cardinality 21 have the peelability threshold
≈0.920, larger than the best threshold 0.818 achieved by uniform hypergraphs.
We adopt the notation of [28] for mixed hypergraphs: by writing k = (k1, k2)
we express that the hypergraph contains edges of cardinality k1 and k2, and
k = (k1, k2;α) specifies in addition that the fraction of k1-edges is α.

The idea of using different number of hash functions for different elements
has also appeared in data structures design. [6] proposed weighted Bloom filters
which apply a different number of hash functions depending on the frequency
with which elements are queried and on probabilities for elements to belong to
the set. It is shown that this leads to a reduced false positive probability, where
the latter is defined to be weighted by query frequencies. This idea was further
refined in [31], and then further in [4], under the name Daisy Bloom filter.
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3 Results

3.1 Uniform Distribution

We start with the case where input elements are uniformly distributed, i.e. edges
of the associated hash hypergraph have equal probabilities to be processed for
updates.

Subcritical Regime. Theorem 1 in conjunction with the results of Sect. 2.5
leads to the assumption that using a different number of hash functions for
different elements one could “extend” the regime of o(1) error of Count-Min
sketch, which can be made into a rigorous statement (for simplicity we only give
it with two different edge cardinalities).

Theorem 2. Consider a conservative Count-Min with n counters. Assume that
the input of length N is drawn from a uniform distribution on E ⊆ U and let
λ < λk. Assume further that elements of E are hashed according to a mixed
hypergraph model k = (k1, k2;α). Let ck be the peelability ratio associated to k.
Then, when λ < ck, the relative error err(e) of a randomly chosen key e is o(1)
w.h.p., as both n and N/n grow.

The proof can be found in the full version [20].
Figure 1 shows the average relative error as a function of the load factor for

three types of hypergraphs: 2-uniform, 3-uniform and mixed hypergraph where
a 0.885 fraction of edges are of cardinality 3 and the remaining ones are of
cardinality 14. 2-uniform and 3-uniform hypergraphs illustrate phase transitions
at load factors approaching respectively 0.5 and ≈0.818, peelability thresholds
for 2-uniform and 3-uniform hypergraphs respectively. It is clearly seen that the
phase transition for the mixed hypergraphs occurs at a larger value approaching
≈0.898 which is the peelability threshold for this class of hypergraphs [28].

While this result follows by combining results of [28] and [21], it has not been
observed earlier and has an important practical consequence: using a variable
number of hash functions in Count-Min sketch allows one to increase the load
factor while keeping negligibly small error. In particular, for the same input, this
leads to space saving compared to the uniform case.

Note that parameters k = (3, 14; 0.885) are borrowed from [28] in order
to make sure that the phase transition corresponds to the peelability threshold
obtained in [28]. In practice, “simpler” parameters can be chosen, for example we
found that k = (2, 5; 0.5) produces essentially the same curve as k = (3, 14; 0.885)
(data not shown).

Supercritical Regime. When the load factor becomes large (supercritical
regime), the situation changes drastically. When the load factor just surpasses
the threshold, some edges are still evaluated with small or zero error, whereas for
the other edges, the error becomes large. This “intermediate regime” has been
illustrated in [21]. When the load factor goes even larger, the multi-level pattern
of edge values disappears and all edge values become concentrated around the
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Fig. 1. err for small λ = m/n, for uniform distribution and different types of hyper-
graphs: 2-uniform, 3-uniform and (3,14)-mixed with a fraction of 0.885 of 3-edges
(parameters borrowed from [28]). Data obtained for n = 1000. The input size in each
experiment is 5, 000 times the number of edges. Each average is taken over 10 random
hypergraphs.

same value. We call this phenomenon saturation. For example, for k = 3 satu-
ration occurs at around λ = 6 (data not shown). Under this regime, the hash
hypergraph is dense enough so that its specific topology is likely to be irrelevant
and the largest counter level “percolates” into all vertex counters. In other words,
all counters grow at the same rate, without any of them “lagging behind” because
of particular graph structural patterns (such as edges containing leaf vertices).

3.2 Step Distribution

In this section, we focus on the simplest non-uniform distribution – step dis-
tribution – in order to examine the behavior of Count-Min sketch in presence
of elements with different frequencies. Our model is as follows. We assume that
input elements are classified into two groups that we call hot and cold, where
a hot element has a larger appearance probability than a cold one. Note that
we assume that we have a prior knowledge on whether a given element belongs
to hot or cold ones. This setting is similar to the one studied for Bloom fil-
ters augmented with prior membership and query probabilities [4]. Note that
our definition of err assumes that the query probability of an element and its
appearance probability in the input are equal.

We assume that the load factors of hot and cold elements are λh and λc

respectively. That is, there are λhn hot and λcn cold edges in the hash hyper-
graph. G > 1, called gap factor, denotes the ratio between probabilities of a
hot and a cold element respectively. Let ph (resp. pc) denote the probability
for an input element to be hot (resp. cold). Then ph/pc = Gλh/λc, and since
ph + pc = 1, we have

ph =
Gλh

λc + Gλh
, pc =

λc

λc + Gλh
.
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For example, if there are 10 times more distinct cold elements than hot ones
(λh/λc = 0.1) but each hot element is 10 times more frequent than a cold one
(G = 10), than we have about the same fraction of hot and cold elements in the
input (ph = pc = 0.5).

In the rest of this section, we will be interested in the combined error of hot
elements alone, denoted errhot . If Eh ⊆ E is the subset of hot elements, and Nh

is the total number of occurrences of hot elements in the input, then errhot is
defined by

errhot =
1

Nh

∑

e∈Eh

occ(e) · err(e) = 1
Nh

∑

e∈Eh

(c(e) − occ(e)).

“Interaction” of Hot and Cold Elements. A partition of elements into
hot and cold induces the partition of the underlying hash hypergraph into two
subgraphs that we call hot and cold subgraphs respectively. Since hot elements
have larger counts, one might speculate that counters associated with hot edges
are larger than counts of cold elements and therefore are not incremented by
those. Then, errhot is entirely defined by the hot subgraph, considered under
the uniform distribution of elements. In particular, errhot as a function of λh

should behave the same way as err for the uniform distribution (see Sect. 3.1).
This conjecture, however, is not true in general. One reason is that there is

a positive probability that all nodes of a cold edge are incident to hot edges
as well. As a consequence, “hot counters” (i.e. those incident to hot edges) gain
an additional increment due to cold edges, and the latter contribute to the
overestimate of hot edge counts. Fig. 2a illustrates this point. It shows, for k = 3,
errhot as a function of λh in presence of cold elements with λc = 5, for the gap
value G = 20. For the purpose of comparison, the orange curve shows the error
for the uniform distribution (as in Fig. 1), that is the error that hot elements
would have if cold elements were not there. We clearly observe the contribution
of cold elements to the error, even in the load interval below the peelability
threshold.

Fig. 2. errhot for k = 3 depending on λh, in presence of cold elements with λc = 5
(blue curves) and without any cold elements (orange curve). (Color figure online)
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Figure 2b illustrates that when the gap becomes larger (here, G = 50), the
contribution of cold elements diminishes and the curve approaches the one of the
uniform distribution. A larger gap leads to larger values of hot elements and, as
a consequence, to a smaller relative impact of cold ones.

Another reason for which the above conjecture may not hold is the follow-
ing: even if the number of hot elements is very small but the gap factor is not
large enough, the cold edges may cause the counters to become large if λc is
large enough, in particular in the saturation regime described in Sect. 3. As a
consequence, the “background level” of counters created by cold edges may be
larger than true counts of hot edges, causing their overestimates. As an example,
consider again the configuration with k = 3 and λc = 5. The cold elements taken
alone would have an error of about 6 on average (≈6.25, to be precise, data not
shown) which means an about 7× overestimate. Since the graph is saturated in
this regime (see Sect. 3), this means that most of the counters will be about 7
times larger than counts of cold edges. Now, if a hot element is only 5 times
more frequent than a cold one, those will be about 1.4× overestimated, i.e. will
have an error of about 0.4, This situation is illustrated in Fig. 2c.

Mixed Hypergraphs. The analysis above shows that in presence of a “back-
ground” formed by large number of cold elements, the error of hot elements
starts growing for much smaller load factors than without cold elements, even if
the latter are much less frequent than the former. Inspired by results of Sect. 3,
one may ask if the interval of negligible error can be extended by employing
the idea of variable number of hash functions. Note that here this idea applies
more naturally by assigning a different number of hash functions to hot and cold
elements.

Fig. 3. errhot as a function of λh for k = 3, λc = 5 and G = 20 (same as in Fig. 2a)
vs. k = (2, 5) for hot and cold elements respectively

Figure 3 illustrates that this is indeed possible by assigning a smaller number
of hash functions to hot elements and a larger number to cold ones. It is clearly
seen that the interval supporting close-to-zero errors is extended. This happens
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because when the hot subgraph is not too dense, increasing the cardinality of
cold edges leads to a higher probability that at least one of the vertices of such
an edge is not incident to a hot edge. As a consequence, this element does not
affect the error of hot edges. For the same reason, decreasing the cardinality of
hot edges (here, from 3 to 2) improves the error, as this increases the fraction of
vertices non-incident to hot edges.

Saturation in Supercritical Regime. In Sect. 3 we discussed the saturation
regime occurring for large load values: when the load grows sufficiently large,
i.e. the hash hypergraph becomes sufficiently dense, all counters reach the same
level, erasing distinctions between edges. In this regime, assuming a fixed load
(graph density) and the uniform distribution of input, the edge value depends
only on input size and not on the graph structure (with high probability).

It is an interesting, natural and practically important question whether this
saturation phenomenon holds for non-uniform distributions as well, as it is
directly related to the capacity of distinguishing elements of different frequency.
A full and precise answer to this question is not within the scope of this work.
We believe that the answer is positive at least when the distribution is piecewise
uniform, when edges are partitioned into several classes and are equiprobable
within each class, provided that each class takes a linear fraction of all elements.
Here we illustrate this thesis with the step distribution.

Fig. 4. Convergence of average estimates of hot and cold elements for 2-uniform (4a), 3-
uniform (4b) and (2,5)-mixed (4c) hypergraphs. x-axis shows the total load λ = λh+λc

with λh = 0.1 · λ and λc = 0.9 · λ and G = 10 in all cases.

Figure 4 illustrates the saturation phenomenon by showing average values
of hot and cold edges (G = 10) with three different configurations: 2-uniform,
3-uniform, and (2,5)-mixed. Note that the x-axis shows here the total load λ =
λh + λc, where λh = 0.1 · λ and λc = 0.9 · λ. That is, the number of both hot
and cold edges grows linearly when the total number of edges grows.

One can observe that in all configurations, values of hot and cold edges
converge, which is a demonstration of the saturation phenomenon. Interestingly,
the “convergence speed” heavily depends on the configuration: the convergence
is “slower” for uniform configurations, whereas in the mixed configuration, it
occurs right after the small error regime for hot edges.
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3.3 Zipf’s Distribution

Power law distributions are omnipresent in practical applications. The simplest
of those is Zipf’s distribution which is often used as a test case for different algo-
rithms including Count-Min sketches [3,5,8,13,16]. Under Zipf’s distribution,
element probabilities in descending order are proportional to 1/iβ , where i is the
rank of the key and β ≥ 0 is the skewness parameter. Note that for β = 0, Zipf’s
distribution reduces to the uniform one.

Zipf’s distribution is an important test case for our study as well, as it forces
several (few) most frequent elements to have very large counts and a large num-
ber of elements (heavy tail) to have small counts whose values decrease only poly-
nomially on the element rank and are therefore of the same order of magnitude.
Bianchi et al. [5, Fig. 1] observed that for Zipf’s distribution in the supercriti-
cal regime, the estimates follow the “waterfall-type behavior”: the most frequent
elements have essentially exact estimates whereas the other elements have all
about the same estimate regardless of their frequency. Figure 5 illustrates this
phenomenon for different skewness values.

Fig. 5. Exact (blue) and estimated (orange) edge values for Zipf’s distribution as a
function on the element frequency rank, plotted in double log scale. All plots obtained
for n = 1000, λ = 5, k = 2, and the input size 50 · 106. Estimates are averaged over 10
hash function draws. (Color figure online)

The waterfall-type behavior for Zipf’s distribution is well explained by the
analysis we developed in the previous sections. The “waterfall pool level” of values
(called error floor in [5]) is the effect of saturation formed by heavy tail elements.
The few “exceptionally frequent” elements are too few to affect the saturation
level (their number is � n), they turn out to constitute “peaks” above the level
and are thus estimated without error. Naturally, smaller skewness values make
the distribution less steep and reduce the number of “exceptionally frequent”
elements. For example, according to Fig. 5, for λ = 5 and k = 2, about 50 most
frequent elements are evaluated without error for β = 0.7, about 40 for β = 0.5
and only 5 for β = 0.3.

Following our results from previous sections, we studied whether using a
variable number of hash functions can extend the range of frequent elements



Count-Min Sketch with Variable Number of Hash Functions 229

estimated with small error. We found that for moderate loads λ, this is possible
indeed. More specifically, using a variable number of hash functions can lead to
a sharper “break point” compared to the constant number of hash functions, see
Fig. 5. As a result, although the “waterfall pool level” may be higher, a larger
range of most frequent elements are evaluated with small error. This observation
matches the phenomenon illustrated earlier in Fig. 4. Due to space limitation,
we refer to the full version [20] for the data illustrating this point.

4 Conclusions

In this paper, we presented a series of experimental results providing new insights
into the behavior of conservative Count-Min sketch. Some of them have direct
applications to practical usage of this data structure. Main results can be sum-
marized as follows.

– For the uniform distribution of input elements, assigning a different num-
ber of hash functions to different elements extends the subcritical regime
(range of load factors λ) that supports asymptotically vanishing relative error.
This immediately implies space saving for Count-Min configurations verifying
this regime. For non-uniform distributions, variable number of hash functions
allows extending the regime of negligible error for most frequent elements,

– Under “sufficiently uniform distributions”, including uniform and step distri-
butions, a Count-Min sketch reaches a saturation regime when λ becomes
sufficiently large. In this regime, counters become concentrated around the
same value and elements with different frequency become indistinguishable,

– Frequent elements that can be estimated with small error can be seen as
those which surpass the saturation level formed by the majority of other
elements. For example, in case of Zipf’s distribution, those elements are a
few “exceptionally frequent elements”, whereas the saturation is insured by
the heavy-tail elements. Applying a variable number of hash functions can
increase the number of those elements for moderate loads λ.

Many of those results lack a precise mathematical analysis. Perhaps the
most relevant to practical usage of Count-Min is the question of saturation level
(“waterfall pool level”), as it provides a lower bound to the frequency of elements
that will be estimated with small error, which in turn is a fundamental informa-
tion for heavy-hitter type of applications. Bianchi et al. [5] observed that in the
case of non-uniform distribution of input elements, the “waterfall pool level” is
upper-bounded by the saturation level for the uniform distribution of input. This
latter is computed in [5] using a method based on Markov chains and differential
equations. We believe that this method can be extended to the case of mixed
graphs as well and leave it for future work. However, providing an analysis for
more complex distributions including Zipf’s distribution is an open problem.
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