Assiomi di separazione T_3 e T_4

Def. Uno spazio topologico X è detto:

 T_3 o regolare se X è T_1 e $\forall A \subset X$ chiuso, $\forall x \in X - A$ $\Rightarrow \exists U, V \subset X$ aperti t.c. $x \in U$, $A \subset V$ e $U \cap V = \emptyset$.

 T_4 o normale se X è T_1 e $\forall A, B \subset X$ chiusi t.c. $A \cap B = \emptyset$ $\Rightarrow \exists U, V \subset X$ aperti t.c. $A \subset U$, $B \subset V$ e $U \cap V = \emptyset$.

Oss. $T_4 \not\leftarrow \Rightarrow T_3 \not\leftarrow \Rightarrow T_2 \not\leftarrow \Rightarrow T_1$.

N.B. In alcune referenze non si assume T_1 per regolare e normale. T_3 e T_4 sono accettati secondo la definizione data.

N.B. Esistono spazi T_3 non T_4 , uno lo vedremo (forse) più avanti. Esempi di spazi T_2 non T_3 esistono ma non li esamineremo.

Prop. T_3 e T_4 sono proprietà topologiche e T_3 è ereditaria.

 $Dim.\ T_3$ e T_4 proprietà topologiche: simile a T_2 nella lezione precedente. Mostriamo che T_3 è ereditaria. Sia X spazio T_3 e $Y\subset X$. Facciamo vedere che Y è T_3 . Y è T_1 perché T_1 è ereditaria.

 $\forall A \subset Y \text{ chiuso in } Y, \ \forall y \in Y - A, \ \exists \tilde{A} \subset X \text{ chiuso in } X \text{ t.c. } A = \tilde{A} \cap Y \\ \Rightarrow y \in X - \tilde{A} \Rightarrow \exists U, V \subset X \text{ aperti t.c. } y \in U, \ \tilde{A} \subset V, \ U \cap V = \emptyset \Rightarrow \\ U' = U \cap Y \text{ e } V' = V \cap Y \text{ aperti in } Y \text{ t.c. } y \in U', \ A \subset V', \ U' \cap V' = \emptyset. \quad \Box$

Oss. La dimostrazione non si estende a T_4 perché non è detto che esistano chiusi disgiunti \tilde{A} , $\tilde{B} \subset X$ t.c. $A = \tilde{A} \cap Y$, $B = \tilde{B} \cap Y$.

N.B. T_4 non è ereditaria, esistono controesempi ma non li esaminiamo. Per controesempi in topologia vedi Steen e Seebach, Counterexamples in Topology, e il sito π -Base https://topology.pi-base.org/

Oss. I sottospazi *chiusi* di spazi topologici T_4 sono T_4 .

Esempio. La retta di Sorgenfrey \mathbb{R}_{ℓ} è T_4 . \mathbb{R}_{ℓ} è T_1 (punti chiusi). $\forall A, B \subset \mathbb{R}_{\ell}$ chiusi disgiunti non vuoti \Rightarrow

$$\forall a \in A \ \exists a' > a \ \mathrm{t.c.} \ [a,a'[\ \subset \mathbb{R}_\ell - B \ \leadsto \ U = \bigcup_{a \in A} [a,a'[$$

$$\forall b \in B \ \exists b' > b \ \text{t.c.} \ [b, b'[\subset \mathbb{R}_{\ell} - A \ \leadsto V = \bigcup_{b \in B} [b, b'[$$
 aperti t.c. $A \subset U, B \subset V, U \cap V = \emptyset$.

Oss. Per scegliere gli a' e b' occorre l'Assioma della scelta.

Teor. Ogni spazio metrizzabile è T_4 .

Dim. (X, d) spazio metrico $\Rightarrow T_2 \Rightarrow T_1$. $\forall A, B \subset X$ chiusi non vuoti disgiunti \rightsquigarrow

$$U = \{x \in X \mid d(x, A) < d(x, B)\}\$$
$$V = \{x \in X \mid d(x, A) > d(x, B)\}.$$

Disuguaglianze continue strette incompatibili $\Rightarrow U, V$ aperti e $U \cap V = \emptyset$. A e B chiusi disgiunti $\Rightarrow A \subset U$ e $B \subset V$. Quindi $X \in T_4$.

Oss. \mathbb{R}^n , \mathbb{C}^n e i loro sottospazi sono T_4 perché metrizzabili. In particolare I^n , B^n , S^n e T^n sono T_4 .

Prop. Sia X spazio T_3 . $\forall x \in X$, $\forall U \subset X$ intorno aperto di x, $\exists V \subset X$ intorno aperto di x t.c. $Cl_X V \subset U$.

Cor. Supponiamo che X sia T_1 . Allora X è T_3 \Leftrightarrow ogni punto $x \in X$ ammette base di intorni chiusi.

Per gli spazi T_4 valgono enunciati analoghi, le dimostrazioni sono simili e vengono lasciate per <u>Esercizio</u>.

Prop. Sia X spazio T_4 . $\forall A \subset X$ chiuso, $\forall U \subset X$ intorno aperto di A $\exists V \subset X$ intorno aperto di A t.c. $Cl_X V \subset U$.

Cor. Supponiamo che X sia T_1 . Allora X è T_4 \Leftrightarrow ogni chiuso $A \subset X$ ammette base di intorni chiusi.