Teorema di sollevamento dei cammini

Teor. $p: X \to Y$ rivestimento. $\forall \gamma: I \to Y$ continua, con $\gamma(0) = y_0$, $\forall x_0 \in p^{-1}(y_0) \Rightarrow \exists! \, \tilde{\gamma}_{x_0}: I \to X$ sollevamento di γ t.c. $\tilde{\gamma}_{x_0}(0) = x_0$.

Dim. J fibra di p. $\{V_{\alpha}\}_{\alpha\in A}$ ricoprimento di Y con aperti banalizzanti p. $\{\gamma^{-1}(V_{\alpha})\}_{\alpha\in A}$ ricoprimento aperto di $I \rightsquigarrow \delta > 0$ numero di Lebesgue $\rightsquigarrow 0 = t_0 < t_1 < \cdots < t_n = 1$ suddivisione di I t.c. $t_i - t_{i-1} < \delta \Rightarrow \gamma([t_i, t_{i+1}]) \subset V_{\alpha_i} =: V_i$ per un certo $\alpha_i \in A \Rightarrow \gamma(t_i) \in V_{i-1} \cap V_i$, $i \geqslant 1$.

$$p^{-1}(V_i) = igsqcup_{i \in J} U_{i,j}, \quad p_{i,j} \vcentcolon= p|_{U_{i,j}} \colon U_{i,j} \stackrel{\cong}{ o} V_i, \quad U_{i,j} ext{ fogLi di } p$$

Esistenza Def. ricorsiva: $\tilde{\gamma}_i$: $[0, t_i] \to X$ t.c. $\tilde{\gamma}_i(0) = x_0$, $p \circ \tilde{\gamma}_i = \gamma|_{[0, t_i]}$. $\tilde{\gamma}_0$: $\{0\} \to X$, $\tilde{\gamma}_0(0) := x_0$. Supponiamo di aver definito $\tilde{\gamma}_i \Rightarrow \exists ! j_i \in J$ t.c. $\tilde{\gamma}_i(t_i) \in U_{i,j_i}$ dato che $\gamma(t_i) \in V_i$.

$$ilde{\gamma}_{i+1} := egin{cases} ilde{\gamma}_i, & ext{su } [0,t_i] \ p_{i,j_i}^{-1} \circ \gamma, & ext{su } [t_i,t_{i+1}]. \end{cases}$$

 $p_{i,j_i}(\tilde{\gamma}_i(t_i)) = p(\tilde{\gamma}_i(t_i)) = \gamma(t_i) \Rightarrow \tilde{\gamma}_i(t_i) = p_{i,j_i}^{-1}(\gamma(t_i)) \Rightarrow \tilde{\gamma}_{i+1} \text{ continua. } \tilde{\gamma}_{i+1} \text{ sollevamento di } \gamma \text{ su } [0,t_{i+1}] \text{ t.c.} \\ \tilde{\gamma}_{i+1}(0) = x_0 \leadsto \tilde{\gamma}_{x_0} \coloneqq \tilde{\gamma}_n.$

 $\begin{array}{|c|c|c|c|c|c|}\hline \textit{Unicità} & \forall \, \tilde{\gamma}' \text{ sollevamento continuo t.c. } \tilde{\gamma}'(0) = x_0. \text{ Per induzione se} \\ \tilde{\gamma}' = \tilde{\gamma}_i \text{ su } [0,t_i] \Rightarrow \tilde{\gamma}'([t_i,t_{i+1}]) \subset U_{i,j_i} \text{ perché } \tilde{\gamma}'([t_i,t_{i+1}]) \text{ connesso} \Rightarrow \\ p_{i,j_i} \circ \tilde{\gamma}' = \gamma \text{ su } [t_i,t_{i+1}] \Rightarrow \tilde{\gamma}' = p_{i,j_i}^{-1} \circ \gamma = \tilde{\gamma} \text{ su } [t_i,t_{i+1}] \Rightarrow \tilde{\gamma}' = \tilde{\gamma}_{x_0}. \end{array}$

Oss. γ cappio $\Rightarrow \tilde{\gamma}_{x_0}$ cammino non necessariamente cappio.

Esempio.
$$p: \mathbb{R} \to S^1$$
, $p(t) = (\cos(2\pi t), \sin(2\pi t))$
 $\gamma: I \to S^1$, $\gamma(t) = (\cos(2\pi t), \sin(2\pi t)) = p(t) \Rightarrow \tilde{\gamma}_0(t) = t$

Omotopie di cammini e di cappi

 $I^2 = I \times I \subset \mathbb{R}^2$ quadrato unitario con coordinate $(t, s) \in I^2$.

$$H: I^2 o X$$
 continua $(t,s) \mapsto H(t,s) =: h_s(t)$ $\gamma_0 := h_0, \ \gamma_1 := h_1$

Def. $H: I^2 \to X$ è detta omotopia

di cammini $\stackrel{\text{def}}{\Longleftrightarrow} H$ rel $\{0,1\}$: $h_s(0) = x_0$, $h_s(1) = x_1$, $\forall s \in I$. $\gamma_0 \sim \gamma_1$. di cappi $\stackrel{\text{def}}{\Longleftrightarrow} H$ rel $\{0,1\}$: $h_s(0) = h_s(1) = x_0$, $\forall s \in I$. $\gamma_0 \sim \gamma_1$. libera di cappi $\stackrel{\text{def}}{\Longleftrightarrow} h_s$ cappio: $h_s(0) = h_s(1)$, $\forall s \in I$.

Teorema di sollevamento delle omotopie

Teor. $p: X \to Y$ rivestimento. $\forall H: I^2 \to Y$ continua, con $H(0,0) = y_0$, $\forall x_0 \in p^{-1}(y_0) \Rightarrow \exists ! \tilde{H}: I^2 \to X$ sollevamento di H t.c. $\tilde{H}(0,0) = x_0$. Inoltre H rel $\{0,1\} \Rightarrow \tilde{H}$ rel $\{0,1\}$.

Dim. L'idea è simile al caso dei cammini e manteniamo la notazione. $\{H^{-1}(V_{\alpha})\}_{\alpha \in A}$ ricoprimento aperto di $I^2 \leadsto \delta > 0$ numero di Lebesgue $\leadsto 0 = t_0 < t_1 < \cdots < t_n = 1$ suddivisione di I t.c. $t_i - t_{i-1} < \frac{\delta}{\sqrt{2}}$.

Numeriamo i rettangoli $[t_i, t_{i+1}] \times [t_k, t_{k+1}]$ secondo l'ordine lessicografico

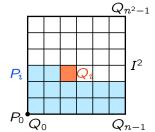
$$(i,k) < (i',k') \Leftrightarrow k < k'$$
 oppure $k=k'$ e $i < i' \leadsto Q_0,\ldots,Q_{n^2-1}$

 $\operatorname{diam} Q_i < \delta \Rightarrow H(Q_i) \subset V_i.$

$$P_0 := \{(0,0)\}$$

$$P_i := \bigcup_{k=0}^{i-1} Q_k \Rightarrow T_i := P_i \cap Q_i = \begin{cases} 1 \text{ vertice } (i=0) \\ 1 \text{ lato} \\ 2 \text{ lati consecutivi} \end{cases}$$

 $T_i \neq \emptyset$ connesso per archi.



Esistenza Def. ricorsiva: $\tilde{H}_i: P_i \to X$ t.c. $\tilde{H}(0,0) = x_0$, $p \circ \tilde{H}_i = H|_{P_i}$. $\tilde{H}_0: P_0 \to X$, $\tilde{H}_0(0,0) := x_0$. Supponiamo di aver definito $\tilde{H}_i \Rightarrow \exists ! j_i \in J$ t.c. $\tilde{H}(T_i) \subset U_{i,j_i}$ dato che $H(T_i) \subset H(Q_i) \subset V_i$ e T_i connesso.

$$ilde{H}_{i+1} := egin{cases} ilde{H}_i, & ext{su } P_i \ p_{i,j_i}^{-1} \circ H, & ext{su } Q_i. \end{cases}$$

 $p_{i,j_i} \circ \tilde{H}_i|_{\mathcal{T}_i} = p \circ \tilde{H}_i|_{\mathcal{T}_i} = H|_{\mathcal{T}_i} \Rightarrow \tilde{H}_i|_{\mathcal{T}_i} = p_{i,j_i}^{-1} \circ H|_{\mathcal{T}_i} \Rightarrow \tilde{H}_{i+1}$ continua. \tilde{H}_{i+1} sollevamento di H su P_{i+1} t.c. $\tilde{H}_{i+1}(0,0) = x_0 \leadsto \tilde{H} := \tilde{H}_{n^2}$.

 $\begin{array}{|c|c|c|c|c|c|}\hline \textit{Unicità} & \forall \, \tilde{H}' \text{ sollevamento continuo t.c. } \tilde{H}'(0,0) = x_0. \text{ Per induzione se} \\ \tilde{H}' = \tilde{H}_i \text{ su } P_i \Rightarrow \tilde{H}'(Q_i) \subset U_{i,j_i} \text{ perché } \tilde{H}'(Q_i) \text{ connesso} \Rightarrow \\ p_{i,j_i} \circ \tilde{H}' = H \text{ su } Q_i \Rightarrow \tilde{H}' = p_{i,j_i}^{-1} \circ H = \tilde{H} \text{ su } Q_i \Rightarrow \tilde{H}' = \tilde{H}. \end{array}$

Rel
$$\{0,1\}$$
 $H(\{0\} \times I) = y_0 \Rightarrow \tilde{H}(\{0\} \times I) \subset p^{-1}(y_0).$

 $x_0 \in \tilde{H}(\{0\} \times I)$ connesso e $p^{-1}(y_0)$ discreto $\Rightarrow \tilde{H}(\{0\} \times I) = x_0$. Analogamente si ha $\tilde{H}(\{1\} \times I) = x_1$, con $p(x_1) = y_1 = H(\{1\} \times I)$.