Geometria 3 - Topologia

Foglio di esercizi 7

Giustificare adeguatamente le risposte.

- 1) Consideriamo $A \subset X$, con X spazio topologico. Dimostrare che $\operatorname{Int}_X A = \emptyset$ se e solo se X A è denso in X.
- 2) Sia $f \in \mathbb{R}[x_1, \dots, x_n]$. Supponiamo che esista un aperto non vuoto $U \subset \mathbb{R}^n$ t.c. f si annulli su U. Dimostrare che f = 0.
- 3) Consideriamo lo spazio delle matrici quadrate $M_n(\mathbb{R})$ con la topologia Euclidea. Dimostrare che:
 - (a) $\operatorname{GL}_n(\mathbb{R})$ è aperto denso in $M_n(\mathbb{R})$.
 - (b) $\mathrm{SL}_n(\mathbb{R})$ è chiuso non compatto in $M_n(\mathbb{R})$.
 - (c) O(n) e SO(n) sono compatti.
- 4) Dimostrare che SO(2) $\cong S^1$.
- 5) Dimostrare che SO(n) si immerge in $(S^{n-1})^{n-1}$.
- 6) Dimostrare che l'applicazione

$$f: B^n \to S^n, \quad f(x) = \begin{cases} (0, \dots, 0, 1) & \text{se } x = 0 \\ \left(\sin(\pi \|x\|) \frac{x}{\|x\|}, \cos(\pi \|x\|)\right) & \text{se } x \neq 0 \end{cases}$$

induce un omeomorfismo $B^n/S^{n-1} \cong S^n$.

- 7) Dimostrare che T^n si immerge in \mathbb{R}^{n+1} (suggerimento: generalizzare la dimostrazione nel caso di T^2 della Lezione 14, e fare induzione su n).
- 8) Determinare un omeomorfismo di \mathbb{R}^2 che manda l'asse x nel grafico del seno.
- 9) Dimostrare che l'applicazione $\varphi \colon \mathbb{R}\mathrm{P}^n \to \mathbb{R}^{(n+1)^2}$ della Lezione 13 è iniettiva.
- 10) Sia (X, d) uno spazio metrico. Dimostrare che la distanza $d: X \times X \to \mathbb{R}$ è continua (suggerimento: usare la distanza del massimo nel prodotto). Concludere che se X è compatto allora esistono due punti $a, b \in X$ t.c. $d(a, b) = \operatorname{diam} X$.
- 11) Sia $H = \{(x, y) \in \mathbb{R}^2 \mid xy = 1\} \subset \mathbb{R}^2$. Dimostrare che $H \cong \mathbb{R} \cup \mathbb{R}$.