Geometria 3 - Topologia

Foglio di esercizi 8

Giustificare adeguatamente le risposte.

- 1) Siano $r, s \in \mathbb{R}^3$ due rette sghembe. Dimostrare che esiste un omeomorfismo di \mathbb{R}^3 che manda r e s in due rette parallele.
- 2) Sia X uno spazio topologico e supponiamo $X = \bigcup_{i \in I} X_i$, con $X_i \subset X$ sottospazio topologico e $X_i \cap X_j = \emptyset$, $\forall i \neq j \in I$. Dimostrare che X è unione topologica degli X_i se e solo se X_i è aperto in $X \ \forall i \in I$.
- 3) Determinare le componenti connesse di $X = [1,2] \cup [3,5] \cup [4,6] \subset \mathbb{R}$.
- 4) Dimostrare che \mathbb{R} è connesso.
- 5) Determinare le componenti connesse di $\mathbb{R} \{0\}$.
- 6) Determinare le componenti connesse di $\mathbb{R} \mathbb{Z}$.
- 7) Determinare le componenti connesse di $J = \{0\} \cup \{\frac{1}{n} \mid n \in \mathbb{N}\} \subset \mathbb{R}$. C'è una componente connessa non aperta?
- 8) Consideriamo i seguenti sottospazi topologici di \mathbb{R}^2

$$A = \{0\} \times [-1, 1], \quad B = \left\{ \left(x, \sin \frac{1}{x} \right) \mid x > 0 \right\}, \quad X = A \cup B.$$

 $A, B \in X$ sono connessi?

- 9) Determinare le componenti connesse di \mathbb{R}_{ℓ} .
- 10) Sia X uno spazio topologico di Hausdorff localmente compatto non compatto e connesso. Dimostrare che la compattificazione di Alexandrov di X è connessa.
- 11) Sia $f: X \to Y$ un'applicazione continua. Definiamo $\mathcal{C}_f: \mathcal{C}(X) \to \mathcal{C}(Y)$ ponendo $\mathcal{C}_f(\mathcal{C}_x(X)) := \mathcal{C}_{f(x)}(Y)$. Dimostrare che la definizione è ben posta e che se f è un'omeomorfismo allora \mathcal{C}_f è biiettiva e si ha $(\mathcal{C}_f)^{-1} = \mathcal{C}_{f^{-1}}$.
- 12) Siano X e Y spazi topologici connessi. Dimostrare che $X \times Y$ è connesso. Suggerimento: esprimere $X \times Y$ come unione di connessi con intersezione non vuota.
- 13) Descrivere $\mathbb{R} \vee \mathbb{R}$ identificandolo con sottospazio di \mathbb{R}^2 di semplice descrizione.