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Computer in FISICA:
qual è la vostra esperienza?

• Visualizzazione
• Raccolta e Analisi dati
• Controllo strumenti
• Manipolazione simbolica
• …
• …
• …
• …
• Analisi numerica?
• Simulazioni numeriche?

mailto:peressi@units.it
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• analisi numerica: risolvere equazioni 
che non possono essere affrontate 
con metodi analitici

• simulazioni: modellare e studiare 
fenomeni fisici con tecniche 
numeriche. Ciò significa fare 
esperimenti virtuali in cui la nostra 
rappresentazione della realtà fisica, 
sebbene necessariamente schematica 
e semplificata, possa essere 
modificata e variata a piacimento.

Introduzione

• La nascita della fisica computazionale 
• Simulazioni ed esperimenti “what-if”
• Approcci deterministici e stocastici
• Alcuni esempi
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Qual è il primo computer 
«general purpose»?

Electronic Numerical Integrator And Computer

Perché ci è utile un computer
per fare fisica?

moltissime operazioni in pochissimo tempo!

Ieri (1946): ENIAC poteva eseguire 357 
moltiplicazioni o 38 divisioni al secondo. Alla 
presentazione ufficiale, eseguì 5.000 volte la 
moltiplicazione di 97.367 per se stesso in meno 
di un secondo.
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Qual è la potenza di calcolo
disponibile oggi?

Oggi... (aggiornamento giugno 2023)

https://www.top500.org/

 X

Flop/s: numero di operazioni in virgola mobile eseguite in un secondo 

TERA(T) / PETA(P) / EXA(E) : prefissi che indicano 1012, 1015, 1018
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termalizzazione!

https://discover.lanl.gov/publications/national-
security-science/2020-winter/we-thank-
miss-mary-tsingou/

La nascita della fisica
computazionale

Un PROBLEMA per il computer MANIAC (Los Alamos, 1955)

PROBLEMA: Fermi-Pasta-Ulam-Tsingou 1955

Una catena di N particelle legate da molle (analogo 
unidimensionale degli atomi in un cristallo)

Interazione lineare (legge di Hooke)
analytical solution

ci sono N «modi normali» (cioè schemi di movimento in cui 
tutte le parti del sistema oscillano con la stessa frequenza e 

con una relazione di fase fissa)
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This notion of sharing energy even-
ly among different modes of motion is 
fundamental. This precept, known as 
the equipartition theorem of statistical 
mechanics, can be extended to include 
molecules that are more complicated 
than billiard-ball-like helium, which 
can partition energy in rotational or 
vibrational movements as well. Ap-

plication of the equipartition theorem 
allows physicists to calculate such 
things as the heat capacity of a gas 
from basic theory.

FPU’s premise was that they could 
start their system off with the masses in 
just one simple mode of oscillation. If 
the system had linear springs (and no 
damping forces), that one mode would 
continue indefinitely. With nonlinear 
springs, however, different modes of 
oscillation can become excited. FPU ex-
pected, the system would “thermalize” 
over time: The vibrating masses would 
partition their energy equally among 
all the different modes of oscillation 
that were possible for this system.

Visualizing the possible modes of os-
cillation is a little tricky for FPU’s string 
of masses, but it’s easy to see how differ-
ent modes of vibration arise in, for exam-
ple, a plucked violin string. One mode 
corresponds to the fundamental tone, in 
which the string shifts up and down the 
most at the center and progressively less 
as you approach its fixed ends. Another 
mode is the first harmonic (an octave 
higher), in which one half of the string 
moves up while the other moves down, 
and so forth. A vibrating string has an 
infinite number of modes, but FPU’s 
system has a finite number (equal to the 
number of masses present).

To conduct their study, FPU (along 
with Mary Tsingou, who, although not 
an author on the report, contributed 
significantly to the effort) considered 
different numbers of masses (16, 32 
or 64) in their computational experi-
ments. They then numerically solved 
the coupled nonlinear equations that 
govern the motion of the masses. 
(They could easily derive these equa-
tions from their nonlinear spring func-
tion and Newton’s famous law f = ma.) 
In this way, FPU used the MANIAC to 
compute the behavior for times corre-
sponding to many periods of the fun-
damental mode in which they started 
the system. They were absolutely as-
tonished by the results.

Initially, energy was shared among 
several different modes. After more 
(simulated) time elapsed, their system 
returned to something that resembled 
its starting state. Indeed, 97 percent 
of the energy in the system was even-
tually restored to the mode they had 
initially set up. It was as if the billiard 
balls had magically reassembled from 
their scattered state to the perfect ini-
tial triangle!

Of course, not everybody was con-
vinced by these computations. One 
popular conjecture was that FPU had 
not run the simulations long enough—
or perhaps the time required to achieve 
equipartition for the FPU system was 
simply too long to be observed numeri-
cally. However, in 1972 Los Alamos 
physicist James L. Tuck and Tsingou 
(who at that point was using her mar-
ried name, Menzel) put these doubts to 
rest with extremely arduous numerical 
simulations that found recurrences on 
such amazingly long time scales that 
they have sometimes been dubbed “su-
perrecurrences.” This research made it 
clear that equipartition of energy wasn’t 
hidden from FPU by computer simula-
tions that were too short—something 
more interesting was indeed afoot.

1 + 1 = 3
Why did FPU think that nonlinear 
springs would ensure an equipartition 
of energy in their experiment? And 
what is this strange concept of non-
linearity anyway? Obviously, the term 
refers to a departure from linearity, 
which we’ve discussed thus far only in 
terms of the proportionality of inputs 
and outputs.

Students of physics study linear 
systems in introductory classes be-
cause they are much easier to analyze 
and understand. When a mass is con-
nected to a linear spring and given a 
shove, its subsequent behavior is very 
simple: It will oscillate back and forth 
at the system’s resonant frequency, 
which depends only on the size of the 

Figure 2. Fermi, Pasta and Ulam modeled a series of masses connected to one another by springs. The masses move back and forth according 
to Newton’s law of motion f = ma (force equals mass times acceleration) along the line that connects them. Here the relevant forces are the 
restoring forces applied by the springs. What made the study so novel and fascinating is that the restoring forces were related nonlinearly to 
the amount of spring compression or extension.

Figure 3. Fermi, Pasta and Ulam expected the 
energy in their mass-spring system eventually 
to become shared equally between different 
modes of motion, which are analogous to the 
modes of vibration of a plucked violin string. 
The fundamental mode of vibration for such 
a string (purple) corresponds to the note that 
is heard. Higher-frequency vibrational modes 
give rise to various harmonics of that note. 
The motions shown here correspond to the 
second (pink), third (green), fourth (blue) and 
fifth (orange) harmonics.

La nascita della fisica
computazionale



04/09/24

6

Esempio con 2 oscillatori:
Modi normali

Anche: https://fisicaondemusica.unimore.it/Catena_di_Fermi-Pasta-Ulam.html

http://fisicaondemusica.unimore.it/Oscillatori_accoppiati.html

PROBLEMA: Fermi-Pasta-Ulam-Tsingou 1955

Una catena di N particelle legate da molle (analogo 
unidimensionale degli atomi in un cristallo)

Interazione lineare (legge di Hooke)
soluzione analitica:

L'energia fornita a un singolo «modo normale»
rimane sempre in quel modo

analytical solution
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This notion of sharing energy even-
ly among different modes of motion is 
fundamental. This precept, known as 
the equipartition theorem of statistical 
mechanics, can be extended to include 
molecules that are more complicated 
than billiard-ball-like helium, which 
can partition energy in rotational or 
vibrational movements as well. Ap-

plication of the equipartition theorem 
allows physicists to calculate such 
things as the heat capacity of a gas 
from basic theory.

FPU’s premise was that they could 
start their system off with the masses in 
just one simple mode of oscillation. If 
the system had linear springs (and no 
damping forces), that one mode would 
continue indefinitely. With nonlinear 
springs, however, different modes of 
oscillation can become excited. FPU ex-
pected, the system would “thermalize” 
over time: The vibrating masses would 
partition their energy equally among 
all the different modes of oscillation 
that were possible for this system.

Visualizing the possible modes of os-
cillation is a little tricky for FPU’s string 
of masses, but it’s easy to see how differ-
ent modes of vibration arise in, for exam-
ple, a plucked violin string. One mode 
corresponds to the fundamental tone, in 
which the string shifts up and down the 
most at the center and progressively less 
as you approach its fixed ends. Another 
mode is the first harmonic (an octave 
higher), in which one half of the string 
moves up while the other moves down, 
and so forth. A vibrating string has an 
infinite number of modes, but FPU’s 
system has a finite number (equal to the 
number of masses present).

To conduct their study, FPU (along 
with Mary Tsingou, who, although not 
an author on the report, contributed 
significantly to the effort) considered 
different numbers of masses (16, 32 
or 64) in their computational experi-
ments. They then numerically solved 
the coupled nonlinear equations that 
govern the motion of the masses. 
(They could easily derive these equa-
tions from their nonlinear spring func-
tion and Newton’s famous law f = ma.) 
In this way, FPU used the MANIAC to 
compute the behavior for times corre-
sponding to many periods of the fun-
damental mode in which they started 
the system. They were absolutely as-
tonished by the results.

Initially, energy was shared among 
several different modes. After more 
(simulated) time elapsed, their system 
returned to something that resembled 
its starting state. Indeed, 97 percent 
of the energy in the system was even-
tually restored to the mode they had 
initially set up. It was as if the billiard 
balls had magically reassembled from 
their scattered state to the perfect ini-
tial triangle!

Of course, not everybody was con-
vinced by these computations. One 
popular conjecture was that FPU had 
not run the simulations long enough—
or perhaps the time required to achieve 
equipartition for the FPU system was 
simply too long to be observed numeri-
cally. However, in 1972 Los Alamos 
physicist James L. Tuck and Tsingou 
(who at that point was using her mar-
ried name, Menzel) put these doubts to 
rest with extremely arduous numerical 
simulations that found recurrences on 
such amazingly long time scales that 
they have sometimes been dubbed “su-
perrecurrences.” This research made it 
clear that equipartition of energy wasn’t 
hidden from FPU by computer simula-
tions that were too short—something 
more interesting was indeed afoot.

1 + 1 = 3
Why did FPU think that nonlinear 
springs would ensure an equipartition 
of energy in their experiment? And 
what is this strange concept of non-
linearity anyway? Obviously, the term 
refers to a departure from linearity, 
which we’ve discussed thus far only in 
terms of the proportionality of inputs 
and outputs.

Students of physics study linear 
systems in introductory classes be-
cause they are much easier to analyze 
and understand. When a mass is con-
nected to a linear spring and given a 
shove, its subsequent behavior is very 
simple: It will oscillate back and forth 
at the system’s resonant frequency, 
which depends only on the size of the 

Figure 2. Fermi, Pasta and Ulam modeled a series of masses connected to one another by springs. The masses move back and forth according 
to Newton’s law of motion f = ma (force equals mass times acceleration) along the line that connects them. Here the relevant forces are the 
restoring forces applied by the springs. What made the study so novel and fascinating is that the restoring forces were related nonlinearly to 
the amount of spring compression or extension.

Figure 3. Fermi, Pasta and Ulam expected the 
energy in their mass-spring system eventually 
to become shared equally between different 
modes of motion, which are analogous to the 
modes of vibration of a plucked violin string. 
The fundamental mode of vibration for such 
a string (purple) corresponds to the note that 
is heard. Higher-frequency vibrational modes 
give rise to various harmonics of that note. 
The motions shown here correspond to the 
second (pink), third (green), fourth (blue) and 
fifth (orange) harmonics.

La nascita della fisica
computazionale
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PROBLEMA: Fermi-Pasta-Ulam-Tsingou 1955

in presenza di un debole accoppiamento non 
lineare (correzione quadratica o cubica al termine 

lineare), quali modi verranno eccitati dopo un 
tempo sufficientemente lungo?

Comportamento atteso in base al teorema di equipartizione: 
l'energia sarà equamente distribuita tra tutti i gradi di libertà 
del sistema. Tuttavia: soluzione analitica impossibile
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This notion of sharing energy even-
ly among different modes of motion is 
fundamental. This precept, known as 
the equipartition theorem of statistical 
mechanics, can be extended to include 
molecules that are more complicated 
than billiard-ball-like helium, which 
can partition energy in rotational or 
vibrational movements as well. Ap-

plication of the equipartition theorem 
allows physicists to calculate such 
things as the heat capacity of a gas 
from basic theory.

FPU’s premise was that they could 
start their system off with the masses in 
just one simple mode of oscillation. If 
the system had linear springs (and no 
damping forces), that one mode would 
continue indefinitely. With nonlinear 
springs, however, different modes of 
oscillation can become excited. FPU ex-
pected, the system would “thermalize” 
over time: The vibrating masses would 
partition their energy equally among 
all the different modes of oscillation 
that were possible for this system.

Visualizing the possible modes of os-
cillation is a little tricky for FPU’s string 
of masses, but it’s easy to see how differ-
ent modes of vibration arise in, for exam-
ple, a plucked violin string. One mode 
corresponds to the fundamental tone, in 
which the string shifts up and down the 
most at the center and progressively less 
as you approach its fixed ends. Another 
mode is the first harmonic (an octave 
higher), in which one half of the string 
moves up while the other moves down, 
and so forth. A vibrating string has an 
infinite number of modes, but FPU’s 
system has a finite number (equal to the 
number of masses present).

To conduct their study, FPU (along 
with Mary Tsingou, who, although not 
an author on the report, contributed 
significantly to the effort) considered 
different numbers of masses (16, 32 
or 64) in their computational experi-
ments. They then numerically solved 
the coupled nonlinear equations that 
govern the motion of the masses. 
(They could easily derive these equa-
tions from their nonlinear spring func-
tion and Newton’s famous law f = ma.) 
In this way, FPU used the MANIAC to 
compute the behavior for times corre-
sponding to many periods of the fun-
damental mode in which they started 
the system. They were absolutely as-
tonished by the results.

Initially, energy was shared among 
several different modes. After more 
(simulated) time elapsed, their system 
returned to something that resembled 
its starting state. Indeed, 97 percent 
of the energy in the system was even-
tually restored to the mode they had 
initially set up. It was as if the billiard 
balls had magically reassembled from 
their scattered state to the perfect ini-
tial triangle!

Of course, not everybody was con-
vinced by these computations. One 
popular conjecture was that FPU had 
not run the simulations long enough—
or perhaps the time required to achieve 
equipartition for the FPU system was 
simply too long to be observed numeri-
cally. However, in 1972 Los Alamos 
physicist James L. Tuck and Tsingou 
(who at that point was using her mar-
ried name, Menzel) put these doubts to 
rest with extremely arduous numerical 
simulations that found recurrences on 
such amazingly long time scales that 
they have sometimes been dubbed “su-
perrecurrences.” This research made it 
clear that equipartition of energy wasn’t 
hidden from FPU by computer simula-
tions that were too short—something 
more interesting was indeed afoot.

1 + 1 = 3
Why did FPU think that nonlinear 
springs would ensure an equipartition 
of energy in their experiment? And 
what is this strange concept of non-
linearity anyway? Obviously, the term 
refers to a departure from linearity, 
which we’ve discussed thus far only in 
terms of the proportionality of inputs 
and outputs.

Students of physics study linear 
systems in introductory classes be-
cause they are much easier to analyze 
and understand. When a mass is con-
nected to a linear spring and given a 
shove, its subsequent behavior is very 
simple: It will oscillate back and forth 
at the system’s resonant frequency, 
which depends only on the size of the 

Figure 2. Fermi, Pasta and Ulam modeled a series of masses connected to one another by springs. The masses move back and forth according 
to Newton’s law of motion f = ma (force equals mass times acceleration) along the line that connects them. Here the relevant forces are the 
restoring forces applied by the springs. What made the study so novel and fascinating is that the restoring forces were related nonlinearly to 
the amount of spring compression or extension.

Figure 3. Fermi, Pasta and Ulam expected the 
energy in their mass-spring system eventually 
to become shared equally between different 
modes of motion, which are analogous to the 
modes of vibration of a plucked violin string. 
The fundamental mode of vibration for such 
a string (purple) corresponds to the note that 
is heard. Higher-frequency vibrational modes 
give rise to various harmonics of that note. 
The motions shown here correspond to the 
second (pink), third (green), fourth (blue) and 
fifth (orange) harmonics.

La nascita della fisica
computazionale

PROBLEMA: Fermi-Pasta-Ulam-Tsingou 1955
Soluzione numerica con MANIAC (originalmente: calcolo per N=5)

Immagini da: Thierry Dauxois and Stefano Ruffo (2008), Scholarpedia, 3(8):5538. doi:10.4249/scholarpedia.5538
http://www.scholarpedia.org/article/Fermi-Pasta-Ulam_nonlinear_lattice_oscillations e altri siti web

qui: N=32; dopo 
l'eccitazione 

iniziale del modo 
k=1 e 157 

periodi, quasi 
tutta l'energia 

ritorna in questo 
modo!!!

Energia verso 
tempo per 3 
modi normali:

K= 1 2 3

time

La nascita della fisica
computazionale

http://dx.doi.org/10.4249/scholarpedia.5538
http://www.scholarpedia.org/article/Fermi-Pasta-Ulam_nonlinear_lattice_oscillations
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Simulazioni come
“esperimenti virtuali”

Alcune similitudini:
Esperimento reale            
(in laboratorio tradizionale)

Esperimento virtuale 
(computazionale)

campione modelli e algoritmi
apparato fisico codice
calibrazione degli strumenti test del codice
misure risultati numerici
analisi dati analisi dati

Con errori!!!

• Importance of simulations: “what–if”
experiments (large flexibility in varying 
parameters; e.g. material properties can be 
studied also under conditions not accessible in 
real labs) ; predictions, not just description.

• Use of simulations: not “final goal”, but 
“instruments” to study and shed light on 
complex phenomena and/or systems with many 
degrees of freedom or many variables and 
parameters 

• in the last decades, the numerical simulation 
has emerged as the third fundamental paradigm 
of science, beside theory and experiment 
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experience theory

simulation

• “The computer is a tool for clear 
thinking” (Freeman J. Dyson) 

• “. . . whose [of the calculations] purpose 
is insight, not numbers” (Richard W. 
Hamming) 

The purposes 
of the scientific calculus
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• deterministic
Info can be obtained both on the equilibrium 
properties and on the dynamics of the system 

• stochastic (Monte Carlo, MC) 
Typically to simulate random processes, 
and/or sampling of most likely events 

TWO different approaches 
for numerical simulations

The deterministic approach
We can write the equations of motion 

(Classical => Newton; Quantum => Schroedinger)

and we know the initial condition

the problem is related to the 
numerical integration of differential equations
(or integral-differential in quantum problems)

(like the FPUT problem)
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The deterministic approach
Numerical integration of the eqs. of motion: 

discretization and iteration

Different algorithms according whether
the equation is 1st , 2nd order…

(the equation for the velocity is 1st order),
whether the force is dependent or not on the 

velocity,
to which order…

Examples =>

The deterministic approach

x(1) v(1) F(1) x(2) v(2) F(2) x(3) v(3) F(3) ... ... …

F1
F2

F3
F4

1) Classical Discretization of the equation of motion and iteration:

v1
v2 v3 v4
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The deterministic approach
2) Quantum

Discretization of the Schrödinger equation

The deterministic approach
2) Quantum

Discretization of the Schrödinger equation
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The stochastic approach

1) Some physical processes which are 
inherently probabilistic.
2) Many large classical systems which 
have so many variables, or degrees of 
freedom, that an exact treatment is 
intractable and not useful. 

Useful to model:

1) Probabilistic physical processes
We attempt to follow the `time dependence’ of a 
model where change, or growth, does not proceed 
in some rigorously predefined fashion (e.g. 
according to Newton’s equations of motion) but 
rather in a stochastic manner which depends on a 
sequence of random numbers which is generated 
during the simulation.
E.g.: radioactive decay

The stochastic approach
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2) Systems with many degrees of freedom
E.g.: Thermodynamic properties of gases

Impossible and not useful to know 
the exact positions and velocities of all molecules.

Useful properties are statistical averages: average energy 
of particles (temperature), average momentum change from 
collisions with walls of container (pressure), etc.

The error in the averages decreases as the number of 
particles increases. Macroscopic volume of gas has O(10^23) 
molecules. Thus a statistical approach works very well!

The stochastic approach

2) Systems with many degrees of freedom
The stochastic approach

(problem faced with MANIAC computer)
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Monte Carlo
Monte Carlo refers to any procedure which 
makes use of random numbers (*)

Monte Carlo is used in:
-Numerical analysis
-Stochastic Simulations

(*) a sequence of random numbers is a set 
of numbers which looks unpredictable but 
with well defined statistical properties

Monte Carlo Methods: 
to calculate integrals

“Hit or Miss” Method: Ηοw much is π?

A1

C B

y

x0

1

Algorithm:

•Generate uniform, random 
x and y between 0 and 1

•Calculate the distance from 
the origin: d=(x2+y2)1/2

•If d ≤ 1, thit = thit + 1

•Repeat for ttot trials tot

hit

τ
τ

π

4    

OABC Square of Area
CA Curve Under Area x 4 

=

≈

.
.. .

.
..

.

.
..
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A few selected examples
of applications

(here: limited to condensed matter field !!!)

From “normal” scales…

SIMULATION
of the Brownian motion

Sedimentation of hard spheres in a 2D 
system with walls.
Included interactions with smaller 
particles (not shown here) representing 
the thermohydrodynamic solvent

(deterministic, classical 
simulation)

(classical)



04/09/24

17

with organic molecules 
(thiols)
Au
S

... to the nanoscale:
passivation of nanoparticles

Credits: J. Olmos-Asar

(M.P. in 
collaboration
with TASC;

Science, 2018)

Grafene
@Ni(111)

CLASSICAL 
MOLECULAR 
DYNAMICS

SIMULATION

… to the atomic scale
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A wide scenario…
even within the condensed matter:

• wide range of length scales: ≈12 orders of magnitude 
(nuclei/electrons/atoms/chemical bonds ~ 10−12 m, 
fracture/macroscopic mechanical phenomena ~ 100 m; 
nano / micro / meso / macroscopic scales) 

• wide range of time scales: ≈12 orders of magnitude 
(nuclei/electrons/atoms/chemical bonds ~ 10−12 s, 
fracture/macroscopic mechanical phenomena ~ year)

• wide range of chemical-physical properties: 
structural, elastic, vibrational, electronic, dielectric, 
magnetic, optical, thermal . . . 

• wide range of materials: different phases, traditional 
materials (crystalline / amorphous , metals/ 
semiconductors / insulators . . .), new materials. . . 

different kind of 
interactions

• Classic
• Quantum

different approaches
• Deterministic
• Stochastic
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…and also different specific 
techniques

corresponding to different size/time scales: 
• continuous models (for macroscopic systems) 
• atomistic simulations
- ab - initio techniques (or “first-principles”): up to 

~103 atoms, 10 ps
- Semiempirical techniques: up to 107 atoms, 1 ms
- models at different levels

Some techniques and systems are 
not computationally very demanding
(our experiments will be quite small and simple!!!)

others are very hard and need

…and different computational 
workload

High Performance Computing
resources
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This minicourse
• IS NOT a course on Information 

Technology, Computer Science, 
Programming languages…

• BUT a PHYSICS LAB.
• focusing on modeling, problem 

solving and algorithms 
• Not exhaustive, of course…

A few possible examples
• deterministic approach  

- gas diffusion & thermodynamics
- gravitational problems
- Chaos and determinism: classical billiards and 

chaotic billiards, logistic maps 
• stochastic approach

- Monte Carlo approach for measuring areas
- Random walks 



04/09/24

21

Which tools?
- (Do-it-yourself?) Codes in different languages 

(Fortran90, C++, Java, Python, …) + 
visualization tools

- Excel (electronic sheets)
- Many nice applets available on the web
- …

Consider several factors to reach a goal….
- expertise & interests
- time
- resources
- … 

Course material on Moodle

FI020004-4 - LABORATORIO DI FISICA 
COMPUTAZIONALE 2023

Iscrizione spontanea con chiave d’accesso: 
FI020004-4


