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1 Colloids

1.1 Generalized Langevin equation

[Sources: R. Zwanzig "Nonequilibrium statistical mechanics", sec. 1.5]

The Langevin equation describes the motion of a colloidal particle in which the friction at time t is proportional
to the velocity at the same time. In general, however, we expect that the friction will depend also on the history of
the velocity ẋ(s) for times s earlier than t. To model such a memory effect, we replace the friction coefficient ξ
with a memory function M(t) so that the frictional force becomes

−ξẋ(t) → −
∫ t

−∞
F (t− s)ẋ(s)

This leads to the generalized Langevin equation

mẍ(t) = −m

∫ t

0
M(t− s)ẋ(s)ds+ F (t)

At this stage the equation is purely phenomenological, but it can be establised both from a microscopic model
(see the Caldeira-Leggett model below), as well as from the general formalism of the projection operator. Here,
we will show that such the generalized Langevin equation also arises also when we eliminate the momentum in
the Brownian motion of a harmonic oscillator.

1. Write the Langevin equation of a colloidal particle of mass m in a harmonic external potential ϕ(x) = 1
2kx

2

and determine the equations of motion as a system of two non-linear stochastic differential equations
2. Determine (formally) the momentum p(t), assuming p(t = −∞) = 0

3. Show that the equation of motion for the colloidal particle can be put in the form

dx

dt
= −

∫ t

−∞
M(t− s)x(s) + Fx(t)

and provide explicit expressions forM(t) and for the new fluctuating force Fx(t).
4. Find the generalized fluctuation-dissipation relation between Fx andM by assuming that the particles is at

equilibrium and therefore ⟨x2⟩ = kBT/(mω2), where ω2 = k/m

1.2 Caldeira-Leggett model

[Sources: R. Zwanzig "Nonequilibrium statistical mechanics", sec. 1.6]

We now study the dynamics of a free particle interacting with a large number of independent harmonic oscillators
in thermal equilibrium. The model we will present, known as the Caldeira-Leggett model, can be solved exactly
and provides a microscopic basis to the Langevin equation, in both its original and generalized form.

Consider a particle of mass m described by its coordinate x and conjugate momentum p. The particle is coupled
to a heat bath ofN independent harmonic oscillators of massesmn, described by the coordinates xi and momenta
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pi, with i = 1, . . . , N . We assume a bilinear coupling between the particle and each oscillator. The Hamiltonian
of the system thus reads

H =
p2

2m
+

1

2

N∑
i=1

[
p2i
mi

+miω
2
i

(
xi −

ci
miω2

i

x

)2
]

where ci are coupling constants.

1. Write the equations of motion of the particle and of the harmonic oscillators
2. We now use a trick: we assume that x(t) is known. Show that the equations of motion for the oscillators can

then be solved (formally) to give

xi(t) = xi(0) cos(wit) +
pi(0)

miωi
sin(ωit) + ci

∫ t

0

sin [ωi(t− t′)]

miωi
x(t′)dt′

3. Integrate by parts the integral on the right-hand side and find an expression for xi(t)− ci
miω2

i
x(t).

4. Use the previous results to express the particle’s equations of motion in the form of a generalized Langevin
equation

mẍ(t) = m

∫ t

0
M(t− s)ẋ(s)ds+ Fx(t)

and provide the explict expressions for the memory functionM(t) and the random force F (t).
5. Under which conditions does one recover the simple (Markovian) Langevin equation?
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2 Non-equilibrium thermodynamics

2.1 Onsager reciprocity relations

[Sources: Callen 14-4; Laundau & Lifshitz vol.5 120]

We consider the out-of-equilibrium evolution of an observable Xj , defined in a macroscopic subsystem in local
equilibrium conditions at time t and at point r⃗. Physical examples areXk = E orXk = N . For small deviations
from equilibrium, the currents of Xj are expressed as linear combinations of the thermodynamic forces, that is∑

i Lij∇Yi, where Yi is the variable conjugated toXi, Fi = ∇Yi is the associated thermodynamic force and Lij

are the kinetic coefficients.

At equilibrium, the equilibrium average value of X is ⟨X⟩, while the time-dependent correlation function
evaluated from the fluctuations is ⟨δXk(t)δXj(0)⟩. Our goal is to establish the famous symmetry property
Lij = Lji, known as Onsager reciprocity relation.

1. Assume that the microscopic equations of motion are invariant under time reversal. Discuss the conditions of
validity of the equation ⟨δXk(t)δXj(0)⟩ = ⟨δXk(−t)δXj(0)⟩. We will assume these conditions are met in
the next equations.

2. From consideration of the limit t → 0 for the correlation function, show that ⟨δẊkδXj⟩ = ⟨δẊjδXk⟩
3. Assuming that the decay of a fluctuation δXk is governed by the same linear dynamic equations as in a

macroscopic transport process, show that∑
i

Lik⟨δXjδFi⟩ =
∑
i

Lij⟨δXkδFi⟩

4. Using thermodynamic fluctuations theory, show that ⟨δXjδFi⟩ = kδij , where k is a constant, and hence
Lij = Lji
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3 Liquids

3.1 Short-time dynamics

[Sources: J.-P. Hansen and I. MacDonald "Theory of simple liquids", sec. 7.1 and 7.2]

We want to determine the short-time behavior of the velocity autocorrelation function

Z(t) =
1

3
⟨v⃗(t+ s)v⃗(s)⟩

of a tagged particle of massm in a liquid.

To this end, it will be useful to establish some general "sum rules" concerning time-dependent correlation
functions CAB(t) = ⟨A(s+ t)B(s)⟩. We will assume that the correlation function is stationary,

dCAB

ds
= 0

1. Show that
⟨Ȧ(t+ s)B(s)⟩ = −⟨A(t+ s)Ḃ(s)⟩

2. Show that
⟨Ä(t+ s)B(s)⟩ = −⟨Ȧ(t+ s)Ḃ(s)⟩

3. Consider now the simple but important case in which A and B are the same variable. It can be shown that the
correlation function CAA(t) is even in time, if it is stationary. Determine the Taylor expansion of CAA(t)

around t = 0 up to second order

We now focus on the velocity auto-correlation Z(t). Show that the short time expansion of Z(t) can be put in the
form

Z(t) =
kBT

m

(
1− 1

2
Ω2
0t

2 + . . .

)
where Ω0 is the so-called Einstein frequency. Assuming that the fluid is at equilibrium at temperature T , express
Ω0 in terms of the average square force ⟨|F⃗ |2⟩ acting on the tagged particle.

3.2 Memory effects

[Sources: J.-P. Hansen and I. MacDonald "Theory of simple liquids", sec. 7.3]

We consider a generalized Langevin equation for a tagged particle in a liquid at equilibrium at a temperature T

m ˙⃗v(t) = −m

∫ t

0
M(t− s)v⃗(s)ds+R(t)

where M(t) is a memory kernel and R(t) is the random force. This equation is formally exact and can be
established using the projector operator formalism. However, an explicit expression for the memory kernel is not
available. Here, we will model the memory functionM(t) as a simple exponential

M(t) = M(0) exp (−|t|/τ)

1. Show that the velocity autocorrelation function Z(t) obeys the following integro-differential equation

Ż(t) = −
∫ t

0
M(t− s)Z(s)ds
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2. By a Laplace transform, show that

Z̃(z) =
kBT/m

−iz + M̃(z)

3. Use the short-time expansion of Z(t) obtained in the previous exercise to show thatM(0) = −Z̈(0)/Z(0) =

Ω2
0 and determine M̃(z)

4. By an inverse Laplace transformation, show that

Z(t) =

(
kBT/m

α− − α+

)
[α+ exp (−α−|t|)− α− exp (−α+|t|)]

where α+ and α− are the two poles of Z̃(z = iα).
5. Show that if τ < 1/(2Ω0), Z(t) decays monotonically to zero and with the correct curvature at the origin
6. Show that if τ > 1/(2Ω0), Z(t) displays dampled oscillations, with a negative region at intermediate times

Note that the memory relaxation time τ is a free parameter of the model and would have to be determined from
experimental or numerical data.
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4 Supercooled liquids

4.1 Gaussian landscape

[Sources: S. Sastry, Nature 409, 164 (2001)]

We develop a simple model of the potential energy surface of systems with short range interactions and a large
number N of interacting particles. The potential energy density of local minima is um = Um/N . The two basis
hyopthesis of the model are

– The density of states of local minima is Gaussian

Ω(Um) = exp (αN) · 1√
2πσ2

exp

[
−(U0 − Um)2

2σ2

]
where U0 is a reference energy and α a combinatorial factor (N -independent). This functional form arises
from the idea that a that for large N and short-range interactions the system can be decomposed into weakly
interacting sub-systems. According to the central limit theorem, the distribution of the total potential energy
can then be approximated by a Gaussian with σ2 ∼ N .

– The vibrational free energy is given by the harmonic approximation

fvib(um, T ) = fvib(u0, T )− kBTb(um − u0)

where b is a constant

For a comparison between the model predictions and computer simulation data, see S. Sastry, Nature 409, 164
(2001) http://dx.doi.org/10.1038/35051524.

1. Compute the average energy density ⟨um⟩ and plot it as a function of T and 1/T . Compare with the behavior
observed at high and low T in the simulations of Sastry.

2. Compute the configurational entropy Sc as a function of Um. Find the Kauzmann temperature TK at which
the configurational entropy vanishes. Is TK finite in the thermdynamic limit?

4.2 Schematic mode-coupling theory

[Sources: Barrat Hansen 12.4; E. Leutheusser Phys. Rev. A, 29 2765 (1984)]

The schematic mode-coupling equation

ϕ̈+Ω2ϕ(t) + λ2

∫ t

0
dsϕ2(t− s)ϕ̇(s) = 0

provides a simplified description of the time-dependence of a dynamic correlation function ϕ(t) in a glass system.
The coupling constant λ2 plays the role of a control parameter, similar to temperature or density in a liquid,
while Ω is a constant. This equation can be obtained from the full mode-coupling equations for the (normalized)
intermediate scattering functionF (k, t)/S(k) by ignoring the coupling between density components and retaining
only the contribution to the memory kernel around the main peak of S(k).

Our goal is to determine the asymptotic behavior of ϕ(t) for t → ∞ and discover the existence of an "ideal" glass
transition at a finite value of the coupling parameter λc. The standard way to tackle this problem is using Laplace
transforms [see E. Leutheusser Phys. Rev. A, 29 2765 (1984)]. Here we will try to work in the time domain.

1. Let us write ϕ(t) = f + ϵ(t), where ϵ → 0 for t → ∞. By taking the infinite time limit of the schematic
mode-coupling equation, show that that f = ϕ(∞) obeys

(Ω2 − Ω2
0)f + λ2f(f − 1) = 0

http://dx.doi.org/10.1038/35051524
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and provide the expression ofΩ2
0. In the following, we will assume thatΩ2

0 can be neglected (Is this reasonable?
Later on, think about which of the results below would be affected if this were not the case.)

2. Let us determine the solutions of the equation Ω2f + λ2f(f − 1) = 0 as a function of the reduced coupling
constant λ = λ2/(4Ω

2). It is clear that f = 0 is always a solution and corresponds to an ergodic liquid.
Show that for λ > λc the equation admits two additional solutions f+, f−. Determine the critical coupling
parameter λc.

3. Only the solution f+ is physically acceptable. Why? Hint: analyze how f− depends on λ. It can also be
shown that the solution f = 0 becomes unstable for λ > λc.

4. Make a first-order Taylor expansion of f(λ) close to the transition point λc and sketch the behavior of f(λ)
as a function across the transition. Provide a physical interpretation to the following statement: the system
undergoes a transition to an "ideal" glass at λc.
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5 Spin glasses

5.1 Replica-symmetric solution of the Sherrington-Kirkpatrick model

[Sources: H. Nishimori "Statistical Physics of Spin Glasses and Information Processing: An Introduction"]

We consider the Sherrington-Kirkpatrick spin glass model in the absence of magnetic field

H = −
N∑
i=1

N∑
j>i

Jijσiσj

where σi = ±1 and Jij are quenched random variables with Gaussian distribution an zero mean

p(Jij) =
1√

2πJ2/N
exp

(
− Jij
2J2/N

)
Using the replica method, one obtains the free energy density

−βf = lim
N→∞

lim
n→0

{
β2J2

4
−

n∑
a=1

n∑
b>a

q2ab +
1

n
logTrσa [expL]

}

where

L = β2J2
n∑

a=1

n∑
b>a

qabσaσb

and the extremum condition in the saddle point approximation yields the parameters qab

qab =
Trσa [σaσb expL]

Trσa [expL]

1. Assuming a replica symmetric (RS) form for the parameters qab = q show that

−βf =
β2J2

4
(1− q)2 +

∫ ∞

−∞
dz

exp(−z2/2)

2π
log [2 cosh (βJ

√
qz)]

with the extremum condition

β2J2

2
(q − 1) +

∫ ∞

−∞
dz

exp(−z2/2)

2π
tanh (βJ

√
qz)

βJ

2
√
q
z = 0

2. By partial integration, show that

q =

∫ ∞

−∞
dz

exp(−z2/2)

2π
tanh2 (βJ

√
qz)

3. We will assume that q acts as an order parameter for the spin glass transition. By a Taylor expansion to
second order in q around q = 0, study the free energy density f = f(q) in the proximity of the transition and
determine the critical temperature Tc.

4. Optional: solve the RS equations numerically.
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