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Motion in a uniform E field
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zone boundary

without collisions or for 1 << 7

t electron velocity oscillates — electron motion is oscillatory

zone boundary_ N T

Bloch oscillations

But: if the band i1s filled an applied electric field cannot change &

— no current 1s induced by an applied electric field



Motion in a uniform H field (i)

. . 1 0E
velocity V, == _——
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equation of motion 7k =-e| E+—v xH
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» k evolves | to Tk and H :

electrons in a static magnetic field move on a curve

of constant energy on a plane normal to H

( an electron on the Fermi surface will move 1in a curve on the Fermi surface )



Motion in a uniform H field (ii
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(a)

hole-like orbit

clockwise motion,

as expected for a

positively charged
particle
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H

perpendicular
to the plane,
pointing up
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(D)

electron-like orbit

anticlockwise
motion, as expected
for a negatively
charged particle
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Motion in a uniform H field (iii)

real space orbit vs k-sgace orbit
From the eqgs. of motions it follows:

dk e dr | eHdr, -
Jt he dt he dt

(where r | is the projection of r on a plane LH, and H = H/H)

i.e. r and k evolve following orbits | one to the other:
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Motion in a uniform H field (iv)

3D: the projection of the real space orbit in a plane
perpendicular to the field is the k-space orbit
rotated through 90° about the field direction

hc

eH | . H

and scaled by the factor [, =

2
Z1~ Projection
ar

r




metals and insulators
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Energy

Energy
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insulator or metal or metal
semiconductor semimetal

a certain number of bands are completely tilled, all other rerthains empty

a configuration with a band gap
can arise only if number of
electrons per primitive cell is even

-some bands are partly filled

(this is case for an odd number of el.;
could be also with an even number
of electrons but in presence
of a band crossing)



An example of semi-metal

Bl Z=83, group VA ;structure: RHL

two atoms per unit cell => 10 valence electrons per unit cell 5
=> insulator OR metal ? 9st ator&j

Bi has:

- the highest Hall coefficient, RH = -1/(nec), is several
orders of magnitude higher than expected with that n.

- the second lowest thermal conductivity (after Hg)

- a high electrical resistance (or low electrical
conductivity)
(look for instance at Tab 1.2 and 1.6 of A&M)

Why?

Is the “effective” electron concentration n for some
reason much lower than the calculated one?




Bi  z=83, group VA ; rhombohedral structure (RHL)

a nearly perfect “compensated semi-metal”

with small electron and hole pockets;

low carrier density;

(@)

small Fermi surface X

o
I
Ik

f

(Dl

)

E

binding energy (eV)
Ol

Adapted from:

Online note to accompany
the book “Solid State Physics
- An Introduction”, Wiley, by
Philip Hofmann
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Figure 1: Electronic structure of Bismuth. (a) Bulk band dispersion in different directions of the
Brillouin zone (b) Schematic band structure of the bands crossing the Fermi energy. (c) Density

of states.
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The 2D empty square lattice model

weak potential
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The 2D empty square lattice model
weak potential w w

written test of January 16, 2012 - problem n. 3
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The 2D empty square lattice model
weak potential




Bl Z=83, group VA ;structure: RHL

The effect of the presence of both holes and electrons on the Hall constant can be
understood qualitatively from the expression for Rh:

if n, p (here: n=p) are very small
p,u% —n ug => small denominator => high Ry

Ry =
e(p,uh -+ n,ue)Z No longer true if pu’=nu.?
since also the numerator vanishes

(see: Ashcroft-Mermin: problem 12.4
or
written test of 11/04/2007)



3D Fermi Surface

1 valence e- 2 valence e 3 valence e

Na Ca Al
BCC FCC FCC

web page: http:// www.phys.ufl.edu/fermisurface/



Silicon bands and anisotropic effective masses

(a) Band diagram of silicon. (b) First conduction band valleys.



