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One way to introduce computation into the physics curriculum is to include it in a standard
upper-level physics course. A course in intermediate classical mechanics is well-suited for this
purpose. We discuss our approach and examples of student projects on solving differential equations
and Liouville’s theorem, projectile motion on a rotating Earth, motion of a charged particle in
electric and magnetic fields, and approximate analytical and numerical solutions for a classical
model of a molecule. The projects introduce students to these physics topics and develop the
students’ computational skills. © 2008 American Association of Physics Teachers.
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I. INTRODUCTION

The purpose of this article is to suggest an approach for
incorporating computation into upper-level classical mechan-
ics courses. Many of the topics in such a course are well-
suited to a computational approach, and some important
topicsl’2 are inaccessible without computation. Classical me-
chanics provides a wealth of opportunities to use computa-
tional tools such as numerical integration, root-finding, nu-
merical solutions of ordinary differential equations, and
visualizations of motion in two and three dimensions.

If computation is to be introduced into a standard physics
course, it is critical that the computational work support the
physics content rather than replace it. One way to get stu-
dents computing quickly without having to invest much in-
struction time is to use a standard software package (we use
MATHEMATICA and MATLAB). Students can take advantage of
the built-in functionality of these programs for numerical
computation and for graphics, but we prefer to have students
begin by implementing algorithms on their own. This ap-
proach minimizes the amount of time spent discussing com-
putation, leaving most of the class time for physics. (We
typically spend two to three class meetings discussing soft-
ware and various algorithms.)

Using even a small amount of class time to discuss com-
putation inevitably means that some physics content must be
cut. We focus our computational instruction on a few simple
algorithms, rather than covering the most sophisticated algo-
rithms available. The algorithms are presented in a way that
allows us to introduce various physics topics, so that we
teach about computation as our students are learning new
physics. In the same spirit we infuse our physics lectures
with computation by presenting computational illustrations
of physics concepts. The code for these computational dem-
onstrations is made available to students so they can experi-
ment with it on their own. We assign computational projects
that extend the examples we have discussed in the lecture or
introduce new topics. We usually require students to submit
their code along with any relevant plots and a brief written
description of their results. In some cases students are ex-
pected to write a formal report (typeset in LATEX with figures
and tables) describing their work.
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These projects form the heart of our approach to incorpo-
rating computation into classical mechanics. The remainder
of this article describes four examples of projects that we
use.

II. ALGORITHMS AND PHYSICS

To teach students about computation it is essential to in-
troduce them to a few algorithms for carrying out basic com-
putational tasks. Students need to be aware that the choice of
algorithm can critically affect the success of the computa-
tion. Here we present a way to introduce students to the
Euler and the Euler—Cromer algorithmss’4 for numerically
solving ordinary differential equations, while simultaneously
introducing them to various physics topics.

For a point particle moving in one dimension and subject
to a net force F the Euler—Cromer algorithm is*

Upi1 =V, + F,At/m, (1a)

Xpal =X, + Uy AL, (1b)

where x,, v,, and F, represent the position, velocity, and net
force at time #,=fy+nAt. The Euler—Cromer algorithm is a
seemingly minor modification of the Euler algorithm:

Xpe1 =X, + U,AL, (2a)

Upe1 = U, + FAt/m. (2b)

Students are shown how to implement each algorithm and
produce a sequence of positions, velocities, and energies.
The most effective way to view the results is to construct
plots of the trajectories in phase space, as shown in Fig. 1 for
the simple harmonic oscillator. These results illustrate one of
the important deficiencies of the Euler algorithm, namely,
that it is unstable and does not conserve energy. The Euler—
Cromer algorithm, in contrast, produces steady oscillations
and conserves the total energy averaged over each cycle of
the oscillation. These results™ illustrate the importance of
choosing the proper algorithm.

Why does the Euler algorithm fail while the Euler—Cromer
algorithm succeeds? The answer to this question leads us to
Liouville’s theorem, a topic usually discussed in the context
of Hamiltonian mechanics.® Liouville’s theorem states that
the dynamics in a conservative system will preserve phase
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Fig. 1. (Color online) Comparison of (a) Euler and (b) Euler—Cromer algo-
rithms for a simple harmonic oscillator with k=1 N/m, m=1 kg, Ar=0.2 s,
x(0)=1 m, and v(0)=0. The dashed line shows the exact orbit. The solid
line shows the solution generated by each algorithm. Also shown is a set of
trajectories initially distributed at random in a square centered on x=1 m,
v=0. The locations of these trajectories resulting from each algorithm are
shown at =0, 1.8, 3.6, and 5.4 s. The period of the oscillator is 7=21 s.

space volume (or area for a system with one degree of free-
dom). A standard result from multivariable calculus shows
that the infinitesimal phase space area element dx,dv,, will be
transformed under the application of either algorithm to

dxn+1dvn+1 = |J|dxndvn’ (3)
where
ﬁxn+1 0xn+1
ox, dv
J= ! ! 4)
(9Un+1 §Un+l
ox,, v,

is the Jacobian of the algorithm and |J| is the determinant.
According to Liouville’s theorem a conservative system
should have |J|=1 so that phase space area will be pre-
served. Students can easily show that |/|=1 for the Euler—
Cromer algorithm and |J|=1+kAs*/m for the Euler algo-
rithm. Hence, the Euler algorithm does not preserve phase
space area, but causes the area occupied by any group of
trajectories to grow because |J|> 1.7 The change of phase
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space area can be illustrated by creating a collection of initial
conditions randomly distributed in some small region of
phase space. The Euler algorithm will cause the area occu-
pied by this collection of points to grow as shown in Fig.
1(a), while the Euler-Cromer algorithm keeps the area con-
stant, as shown in Fig. 1(b).

The trajectories produced by the Euler algorithm can be
obtained from the Euler—Cromer algorithm if we add a force
of the form F=(kAr)v,. That is, the Euler algorithm has the
effect of introducing an artificial velocity-dependent driving
force. Students can convince themselves of this result by
deriving the equations for the Euler—Cromer algorithm with
the additional force term and comparing these to the equa-
tions generated by the Euler algorithm for the simple har-
monic oscillator.

We present the foregoing material as a lecture, supple-
mented with computer demonstrations. At the end of this
lecture students are given the code and explore the compu-
tations themselves. In particular, students are asked to inves-
tigate the effect of reducing the time step At. If time permits,
they can also compare the results of these algorithms with
the results obtained using the built-in ordinary differential
equation solver supplied with the software package. In addi-
tion, students are assigned a homework problem in which
they determine |J| for the Euler-Cromer algorithm when the
force is a general function of position and velocity. The re-
sult (|J|=1+(dF/dv,)At/m) shows that the presence of
velocity-dependent forces disrupts the preservation of phase
space area. Hence the condition for energy conservation,
(which for systems with one degree of freedom is that the
force depends only on position), is equivalent to the condi-
tion for the preservation of phase space area.

Students are then asked to complete a project in which
they modify the algorithms for the harmonic oscillator by
adding a linear drag force of the form Fy,,=—bv with b
>0. They use both algorithms to generate phase space tra-
jectories for a variety of parameter values. They also gener-
ate plots showing how the phase space area of a collection of
trajectories evolves under the action of each algorithm. Ad-
ditionally, students are asked to compute |J| for each algo-
rithm and each set of parameters. The Euler—Cromer algo-
rithm gives |J|=1-bAt/m, and the Euler algorithm gives
|7|=1-bAt/m+kAf?>/m. The parameter sets are chosen so
that students will see underdamped, overdamped, and criti-
cally damped motion when they use the Euler—Cromer algo-
rithm. Depending on the parameter values the Euler algo-
rithm can produce trajectories in which the energy decreases,
increases, or remains constant on average. In all cases stu-
dents are expected to comment on whether or not the results
are physically realistic. This exercise provides students with
experience in interpreting phase space plots and highlights
the importance of critically examining the results of any
computation to ensure that they are physically reasonable. It
also illustrates Liouville’s theorem by showing that dissipa-
tive motion is associated with the decrease of phase space
area.

Students then repeat the same analysis for the quadratic
drag force Fy,,=—cv|v| with ¢>0. They can show that for
this case |J|=1-2c|v,|At/m for the Euler—Cromer algo-
rithm and |J|=1-2c|v,|At/m+kA#?/m for the Euler algo-
rithm. Trajectories generated by the Euler algorithm will spi-
ral inward if |v,| >kAt/(2c), and spiral outward if |v,|
<kAt/(2c). The result is that the trajectories converge to a
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Fig. 2. Plots of (a) the phase space trajectory and (b) the determinant of the
Jacobian as a function of time generated by the Euler algorithm for the
harmonic oscillator with quadratic drag. The initial conditions are x(0)
=1 m and v(0)=0. The values of the parameters (as defined in the text) are
k=1 N/m, m=1 kg, c=0.4 kg/m, and Ar=0.1 s.

limit cycle, a phenomenon that is often observed in nonlinear
oscillators [see Fig. 2(a)]. Figure 2(b) shows the value of |J|
for this trajectory over the same time interval. As the particle
oscillates, the value of |J| also oscillates about unity, showing
that the limit cycle is stabilized by the balance of the dissi-
pative motion (due to the drag force) and the artificial driv-
ing force introduced by the Euler algorithm. The Euler—
Cromer algorithm produces the proper physical behavior, but
the motion becomes less dissipative as the oscillator’s speed
decreases. One consequence of this effect is that the har-
monic oscillator with quadratic drag does not display critical
damping. As part of the project we ask students to explore
different parameter values to see if they can produce any-
thing that looks like critical damping in this case. This exer-
cise introduces students to the concept of a limit cycle and
the subtle differences between linear and quadratic damping.

Presenting algorithms in this way allows the instructor to
introduce physics topics that might not otherwise be dis-
cussed in the course, such as Liouville’s theorem and limit
cycles. This integration of computational methods and phys-
ics content can be applied to algorithms for other important
numerical problems. For example, some algorithms for nu-
merical root-finding (such as the Newton-Raphson method®)
can be used to introduce the concept of iterated functions
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with stable attractors. This concept is important for under-
standging the dynamics of dissipative systems like the logistic
map.

III. REAL WORLD PHYSICS

Classical mechanics courses are often confined to studying
only idealized situations that lead to analytical solutions.
Computational assignments can allow students to move be-
yond these artificial problems to solving “real world” prob-
lems. An example is the motion of a projectile on a rotating
Earth. The equation of motion in a reference frame fixed to
Earth is

mi =mg+2mr X Q+m(Q Xr) X Q, (5)

where m is the mass of the projectile, r is the projectile’s
position, g is the gravitational field, and €2 is Earth’s angular
velocity. In Cartesian coordinates with the origin at Earth’s
center and the z-axis through the North (rotational) pole, we
can write

F=—gxlr+ Q% +2Qy, (6a)
j=—gylr+ Q% - 204, (6b)
7=-gzlr, (6¢)

where r=Vx*+y?+z> and Q=|Q/|. The terms proportional to
02 are due to the centrifugal force, and the terms linear in ()
are due to the Coriolis force. Equation (6) cannot be solved
analytically, but a computational approach allows us to solve
the equations and visualize the results. We assign a project in
which students are asked to compute the trajectory of a pro-
jectile fired due east from Rome, Georgia with an initial
speed of 1600 m/s and a launch angle of 40° above the
horizontal.'® The latitude of Rome is 35.256°N so in spheri-
cal polar coordinates (with the origin at Earth’s center) the
initial polar angle is 6,=55.744°; for convenience we take
the initial azimuthal angle to be ¢,=0°. These initial condi-
tions can be converted into Cartesian coordinates for the nu-
merical computations, and the results can be converted back
to spherical polar coordinates. Students are shown an ex-
ample of how to numerically compute the trajectory (using
MATHEMATICA’s built-in ODE solver) on a nonrotating Earth
and plot the results. To study the relative size of the effects
due to each of the two inertial forces students compute a
trajectory in which they include the Coriolis force, a trajec-
tory in which they include the centrifugal force, and a trajec-
tory in which both inertial forces are included. Air resistance
is neglected, so it is not quite real world physics.

Many students are surprised at the results for the nonro-
tating Earth because the value of € changes, indicating that
the projectile did not really travel due east. Students can be
led to understand that a projectile in this case will follow the
path of a great circle that is tangent to the line of constant
latitude that passes through the launch point. Only at the
equator will a projectile fired due east actually travel due
east, even in the absence of effects from Earth’s rotation.
Projectiles fired due east from a northern latitude will land at
a slightly more southern latitude. The deflection due to the
centrifugal force results in a slightly increased time of flight
(and a slightly increased range) as well as a small southward
deflection. The Coriolis force causes a similar but larger de-
flection. Students should determine the direction of each in-
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Fig. 3. (Color online) The path of a projectile fired due east from Rome,
Georgia. The solid curve shows the path under the influence of gravity only.
The dotted curve includes the effects of the centrifugal force. The dashed
curve includes the effects of the Coriolis force, and the dot-dashed curve
includes the effects of both inertial forces. In each case the curve shows the
path of a point on the Earth’s surface directly beneath the projectile, plotted
in terms of the polar (#) and azimuthal (¢) angles. The scaling of the axes
greatly exaggerates the curvature of the projectile’s path.

ertial force (using a globe is helpful) and match this direction
to the computed deflection. The numerical results will show
that the deflection due to the combined inertial effects is
almost equal to the sum of the deflections from each effect
individually. This simple additive behavior might seem coun-
terintuitive because the inertial forces are coupled, but stu-
dents can be led to understand that the centrifugal force is
effectively constant (it depends on the distance from Earth’s

center, which does not change appreciably during the projec-
tile’s flight) and very small (so it doesn’t significantly alter
the velocity components which determine the Coriolis force).
Figure 3 shows the motion of a point on Earth’s surface
directly below the projectile for each of the cases studied.
This project can be extended in several ways. Students can
be asked to predict what would happen if the projectile had
been fired due west rather than due east. Most students will
correctly predict that the overall deflection due to Earth’s
rotation will be northward, but they may not realize that the
projectile will still land at a latitude south of its launch point
because of the southward deflection that occurs even in the
absence of Earth’s rotation. Students also might not realize
that the westward-fired projectile will have its time of flight
and range shortened by the effects of Earth’s rotation. The
project can be extended by accounting for air resistance or
the fact that Earth is an oblate spheroid rather than a sphere.
Computation allows for the solution of more realistic
problems in less familiar contexts as well. Consider the mo-
tion of a charged particle in constant electric and magnetic
fields. Computation allows students to explore the motion of
a charged particle in electromagnetic fields of any geometry.
Figure 4 shows a JAVA application11 based on an earlier MAT-
LAB script, which simulates the motion of a charged particle
in uniform electric and magnetic fields. Students input pa-
rameters such as the field components, initial velocity com-
ponents, and the charge and mass of the particle. The pro-
gram then numerically solves the equations of motion and
generates a plot of the three-dimensional trajectory as well as
graphs of each coordinate as a function of time. Students can
investigate the dynamics by reproducing the simple circular
and helical motions described in most texts, and then can
move on to more interesting motions by changing the com-
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Fig. 4. (Color online) Output of an Open Source Physics program for the motion of a charged particle in the presence of constant electric and magnetic fields.
The values of the electric and magnetic field components are E=[5X107°,10™,-3 X 10™°], and B=[10"%,-10",5.13 X 10~®] in units of V/m, and Tesla,
respectively. The particle is a proton with the initial conditions x,=0, v,y=5 m/s, y,=0, v,,=0, zp=0, and v,,=0.5 m/s.
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ponents of the fields. They can also explore the effects of
changing the particle’s mass and charge, thereby gaining an
understanding of how a particle can be identified by its track
in a cloud chamber. These investigations can be extended to
nonuniform fields by modifying the method that specifies the
derivatives.

IV. COMPUTATION AND APPROXIMATION

When faced with a problem that has no analytic solution,
there are two general approaches—solve the problem nu-
merically or find an approximate solution. Physics students
need to be familiar with both approaches and should also be
aware of how these two approaches can complement each
other. The approximate solution is applicable to a variety of
initial conditions and parameter values, and the numerical
solution must be reconstructed for each new set of values. An
approximate solution is useful only if it provides the desired
level of accuracy, which might be difficult to assess. One
approach is to construct an approximate solution and com-
pare it to a numerical solution for specific sets of initial con-
ditions and parameter values. Such a comparison can reveal
the limitations of the approximation and can also serve to
detect errors in the analysis that led to the approximate so-
lution. This approach assumes that an accurate numerical
solution can be found.

As an example of combining approximation and computa-
tion, consider a one-dimensional model of a diatomic mol-
ecule with the potential

Vo) =i - 5. )
X’ x

where 1 is a unit of energy, a, is a molecular distance, and
x represents the distance between the two atoms in the mol-
ecule. We can determine the bond length x; for this molecule
by letting V'(x,)=0 with the result x,=3a,/2. To obtain an
approximate solution for the vibrations of the molecule about
this equilibrium length we expand the force F(x)=-V'(x) to
second order in a Taylor series about x=x;:

321/!0 256”0 b
FO) == =295 _ ) 4 220 — x,)2. 8
(x) 81a(2)(x xp) 5 43a3(x Xp) (8)

If we neglect the second-order term, then the motion will be
simple harmonic with angular frequency wy=V32uy/81 ,u,a(z),
where w=m;m,/(m,;+m,) is the reduced mass of the two
atoms. If we take the molecule to be at rest at t=0 with the
atoms a distance x, apart, this linear approximation leads to

x(1) = x)(1) = x, + (xg — x;)cos(wpl) . 9)

To obtain a more accurate approximation we rewrite New-
ton’s second law using Eq. (8) to find
2
K+ 03(x—x,) = —2(x - x,)°. (10)
3(10

By using the method of successive approximations12
struct an approximate solution of Eq. (10):

we con-

4A3
x(t) = x(1) = x, + A, cos(awyt) + 9—‘[3 —cos(2mgt) |.
ap

(11)

From the requirement that x,,(0)=x, we find
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Fig. 5. (Color online) The solid curve in (a) shows the numerical solution
for the atomic separation as a function of time in a model of molecular
vibration. Also shown are the results of a linear approximation (dotted), a
nonlinear approximation (dashed), and the numerical solution of Eq. (10)
(dot-dashed). The initial atomic separation is x,=1.65 and the equilibrium
separation is x;,=1.5 (indicated by the horizontal line). The solid curve in (b)
shows the exact potential V(x) [see Eq. (7)]. Also shown are approximate
potentials derived from a Taylor series expansion of V(x) to second-order
(dashed), third-order (dotted), and fourth-order (dot-dashed).
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The approximate solutions given in Egs. (9) and (11) can
be compared to the numerical solution of

M:F(x):—V’(x):u()f(%—)%). (13)

It is convenient to define units so that length is measured in
terms of a,, energy in terms of u,, and time in terms of 7,
=27/ wy. In these units wuy=1, ay=1, wy=2m and u
=8/(817?). Figure 5(a) shows a comparison of the three so-
lutions for xy=1.65, and the numerical solution of Eq. (10).
The nonlinear approximation does a better job of capturing
the asymmetry in the oscillations than the linear approxima-
tion, which is not surprising because the second-order Taylor
series expansion of V(x) is symmetric about x=x; and the
third-order expansion of V(x) mimics the asymmetry of the
full potential [see Fig. 5(b)]. Both the nonlinear and linear
approximations overestimate the frequency of the oscilla-
tions. This overestimate is surprising for the nonlinear ap-
proximation, because the third-order expansion of the poten-
tial is less steep than the full potential in the vicinity of the
equilibrium point, meaning that the restoring force for the
third-order potential is weaker than for the full potential. We
would expect an approximate solution that makes use of the
third-order expansion of V(x) to produce a frequency that is
lower than the true frequency. A numerical solution of Eq.
(10) produces oscillations with a frequency less than that of
the numerical solution for the full potential [see Fig. 5(a)].
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So the overestimation of the frequency in Eq. (11) is a result
of the method of successive approximations. If we include
the fourth-order correction, we find a curve that matches the
complete potential over a wider range, as shown in Fig. 5(b);
a numerical solution using this fourth-order potential more
closely matches the exact solution. By examining the effects
of higher-order terms in the Taylor series expansion of V(x)
students can see how each additional term produces an im-
proved approximation to the potential, and also see how in-
cluding each additional term leads to an improved solution
for x(¢). This problem shows how computation can be used
to analyze the validity of approximations and solutions de-
rived from them.

V. DISCUSSION

Instructors looking for additional projects and other com-
putational materials can obtain a variety of materials for use
with MATLAB'"® or MATHEMATICA.'* One of us (JH) has au-
thored a textbook on classical mechanics that explicitly in-
corporates computation and suggestions for computational
projects.15 Recent editions of more traditional classical me-
chanics texts"'>'® also contain suggestions for computational
projects. There are also a variety of computational physics
texts™!” that are sources for project ideas.
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