Def. Gli autovalori e gli autovettori di una matrice $A \in M_n(\mathbb{K})$ sono gli autovalori e autovettori di $L_A \in \text{End}(\mathbb{K}^n)$.

Oss.

 $\lambda \in \mathbb{K}$ autovalore di $A \Leftrightarrow p_A(\lambda) = 0$.

 $v \in \mathbb{K}^n - \{0_{\mathbb{K}^n}\}$ autovettore di A relativo a $\lambda \Leftrightarrow (A - \lambda I_n)v = 0_{\mathbb{K}^n} \Leftrightarrow$ v soluzione non nulla del sistema omogeneo

$$(A - \lambda I_n)X = 0_{\mathbb{K}^n}.$$

Def. Se $\lambda \in \mathbb{K}$ è un autovalore di $f \in \text{End}(V)$, l'autospazio di λ è

$$\operatorname{Aut}(\lambda) \stackrel{\text{def}}{=} \ker(f - \lambda \operatorname{id}_V) \subset V.$$

Oss. Aut(λ) sottospazio vettoriale di V in quanto ker e dim Aut(λ) $\geqslant 1$.

Oss. Aut(λ) = { $v \in V \mid f(v) = \lambda v$ }. $v \in Aut(\lambda) \Leftrightarrow f(v) - \lambda v = 0_V$. $Aut(\lambda)$ contiene tutti gli autovettori di f relativi a λ , più il vettore nullo.

Oss. Per diagonalizzare $f \in \text{End}(V)$ si determina in primo luogo una matrice $A = M_{\mathcal{B}}^{\mathcal{B}}(f)$, si calcola il polinomio caratteristico $p_f = p_A$ e si determinano gli zeri in \mathbb{K} di p_f (autovalori). Per ciascun autovalore si determina una base dell'autospazio e si mettono insieme tali basi. Se in questo modo si ottiene una base \mathcal{D} per V allora \mathcal{D} è una base diagonalizzante.

Esempio. Diagonalizziamo $L_B: \mathbb{R}^2 \to \mathbb{R}^2$ con

$$B = \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix} \ p_B(x) = \begin{vmatrix} 1 - x & 2 \\ 1 & -x \end{vmatrix} = x^2 - x - 2, \ \lambda_1 = -1, \ \lambda_2 = 2$$

$$B = \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix} \quad p_B(x) = \begin{vmatrix} 1 - x & 2 \\ 1 & -x \end{vmatrix} = x^2 - x - 2, \ \lambda_1 = -1, \ \lambda_2 = 2$$

$$-1) \quad \begin{pmatrix} 2 & 2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad x + y = 0 \quad \begin{cases} x = -t \\ y = t \end{cases} \qquad v_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

2)
$$\begin{pmatrix} -1 & 2 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 $x - 2y = 0$ $\begin{cases} x = 2t \\ y = t \end{cases}$ $v_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$

 v_1 base per Aut(-1); v_2 base per Aut(2).

 $\mathcal{D} = (v_1, v_2)$ base diagonalizzante per L_B (e per B).

$$D = M_{\mathcal{D}}^{\mathcal{D}}(L_B) = \begin{pmatrix} -1 & 0 \\ 0 & 2 \end{pmatrix} = P^{-1}BP, \quad P = \begin{pmatrix} -1 & 2 \\ 1 & 1 \end{pmatrix} = M_{\mathcal{D}}^{\mathcal{E}_2}(\mathsf{id}_{\mathbb{R}^2})$$