Geometria

Foglio di esercizi 9

1) Verificare che i vettori

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 0 \\ -2 \\ 1 \end{pmatrix}, \quad v_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

formano una \mathcal{V} base di \mathbb{R}^3 e scrivere rispetto ad essa la matrice $H=M_{\mathcal{V}}(\langle , \rangle)$ del prodotto scalare canonico.

- 2) In \mathbb{R}^3 col prodotto scalare standard calcolare la norma dei vettori v_1, v_2, v_3 dell'esercizio precedente, e normalizzarli.
- 3) Trovare una base ortonormale di $U = \operatorname{span}(v_1, v_2) \subset \mathbb{R}^3$, dove v_1 e v_2 sono quelli dell'esercizio 1 (usare il prodotto scalare canonico di \mathbb{R}^3).
- 4) Trovare una base ortonormale di $W = \operatorname{span}(w_1, w_2, w_3) \subset \mathbb{R}^4$ con

$$w_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ -2 \end{pmatrix}, \quad w_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}, \quad w_3 = \begin{pmatrix} 1 \\ -1 \\ 0 \\ 1 \end{pmatrix}.$$

- 5) Determinare una base ortonormale di W^{\perp} dove W è il sottospazio dell'esercizio precedente.
- 6) Determinare una base ortonormale di span $(w_1, w_2)^{\perp}$ dove w_1, w_2 sono i vettori dell'esercizio 4.
- 7) Dire se le seguenti matrici sono ortogonali o ortogonali speciali.

$$A = \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad C = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}, \quad D = \frac{1}{3} \begin{pmatrix} 1 & -2 & 2 \\ 2 & -1 & -2 \\ 2 & 2 & 1 \end{pmatrix}.$$

8) Dimostrare che l'applicazione $f: \mathbb{R}^2 \to \mathbb{R}^2$

$$f(x,y) = (-x+y, x+y)$$

è lineare e autoaggiunta rispetto al prodotto scalare canonico. Scrivere la matrice A di f rispetto alla base canonica di \mathbb{R}^2 . Determinare una base ortonormale di \mathbb{R}^2 che diagonalizza f, e la matrice diagonale D di f in tale base. Determinare una matrice ortogonale speciale $P \in SO(2)$, e la sua inversa, tale che $A = PDP^{-1}$.

9) Consideriamo la matrice

$$B = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}.$$

Dimostrare che l'applicazione lineare $L_B: \mathbb{R}^3 \to \mathbb{R}^3$ è autoaggiunta rispetto al prodotto scalare canonico su \mathbb{R}^3 . Determinare una matrice diagonale $D \in M_3(\mathbb{R})$ e una matrice ortogonale $P \in O(3)$, e la sua inversa, tale che $B = PDP^{-1}$.

10) Diagonalizzare sui complessi la matrice

$$C = \begin{pmatrix} 2 & 3 \\ -3 & 2 \end{pmatrix}.$$

NB: "diagonalizzare" significa trovare una matrice diagonale D simile alla matrice data, una base diagonalizzante e la matrice del cambiamento di base P rispetto alla base canonica in modo che $C = PDP^{-1}$.

11) Diagonalizzare la seguente matrice mediante una base ortonormale per \mathbb{R}^3

$$\begin{pmatrix} 1 & -2 & 1 \\ -2 & 0 & 0 \\ 1 & 0 & -1 \end{pmatrix}.$$

12) Consideriamo la matrice

$$A = \begin{pmatrix} 2 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 2 \end{pmatrix} \in M_3(\mathbb{R}).$$

- (a) Determinare una base ortonormale di \mathbb{R}^3 , rispetto al prodotto scalare canonico, che diagonalizza A. Trovare una matrice diagonale D, una matrice ortogonale S e la sua inversa, tali che $S^{-1}AS = D$.
- (b) Sia b_A la forma bilineare su \mathbb{R}^3 definita da $b_A(X,Y) = {}^t\!XAY, \, \forall \, X,Y \in \mathbb{R}^3$. Dimostrare che b_A è un prodotto scalare e scrivere la funzione norma associata.
- (c) Determinare una base ortonormale di \mathbb{R}^3 , rispetto al prodotto scalare del punto precedente.
- 13) Dimostrare che per ogni $A \in GL_n(\mathbb{K})$ si ha $({}^t\!A)^{-1} = {}^t(A^{-1})$
- 14) Dimostrare che se $A, B \in M_n(\mathbb{R})$ sono congruenti allora hanno lo stesso rango. Dedurre che il rango è una proprietà delle forme bilineari.
- 15) Dimostrare che se $A, B \in M_n(\mathbb{R})$ sono congruenti allora det A e det B sono entrambi nulli oppure hanno lo stesso segno. Dedurre che il segno del determinante è una proprietà delle forme bilineari reali.
- 16) Siano $A \in M_n(\mathbb{R})$ e $P \in GL_n(\mathbb{R})$. Poniamo $B = PAP^{-1}$. Dimostrare che

$$B^k = PA^kP^{-1}$$

per ogni intero $k \ge 1$, dove A^k è il prodotto di A con sé stessa k volte. Usare questo fatto per calcolare B^5 con B dell'esercizio 9.

2