

ALMA MATER STUDIORUM Università di Bologna

Misure con sensori in fibra ottica

Francesco Falcetelli

Dipartimento di Ingegneria Industriale

Alma Mater Studiorum - Università di Bologna

Un breve riassunto della mia storia

Sommario

- 1. Introduzione sulle fibre ottiche
- 2. Strain transfer
- 3. Monitoraggio strutturale nei materiali compositi
- 4. Rilevamento di forma

Che cosa sono le fibre ottiche

Indice di rifrazione

$$n = \frac{c}{v}$$

<u>Materiale principale</u> Diossido di silicio (SiO₂)

Diossido di germanio (GeO₂) Allumina (Al_2O_3) Anidride fosforica (P_2O_5)

<u>Agenti dopanti</u>

ſ

n

n

Fibre ottiche: struttura e dimensioni

Fibre ottiche: perdite

$$P_T = P_0 e^{-\alpha L}$$
$$\alpha_{dB} = -\frac{10}{L} \log_{10} \left(\frac{P_T}{P_0}\right) = 4.343\alpha$$

Fibre ottiche: parametri di progetto

G. P. Agrawal, Nonlinear fiber optics, Fifth edition. Amsterdam: Elsevier/Academic Press, 2013.

<u>Relative core-cladding index difference</u>

$$\Delta = \frac{n_1 - n_c}{n_1}$$

<u>V parameter</u>

 $V < 2.405 \implies$ single-mode fiber

Tipologie fibre ottiche

Polarization-maintaining fibers

Single-core fibers

Single-mode fibers

Step index fibers

Multi-core fibers

Graded index fibers

Hollow-core fibers

Photonic Crystal Fibers

Multi-mode fibers

Classificazione fibre ottiche nell'ambito delle misure

Single Point Sensors

P Interrogator Light Input Coating P. Light Transmitted Cladding Core-...... P+ Interferometric Grating-based FBG Fabry-Perot Fibre Bragg Grating (FBG) Light Reflected Mach-Zender Tilted FBG Chirped FBG Michelson $\lambda_{\rm B}$ Falcetelli, F.; Martini, A.; Di Sante, R.; Troncossi, M. Strain Modal Testing with Fiber Bragg Gratings for Long-Period Gratings Sagnac Automotive Applications. Sensors 2022, 22, 946. https://doi.org/10.3390/s22030946 $\lambda_B = 2n_e\Lambda$

$$\frac{\Delta\lambda_B}{\lambda_B} = (1 - \rho_e)\varepsilon \qquad \qquad \frac{\Delta\lambda_B}{\lambda_B} = \left(\alpha + \frac{1}{n_{eff}}\frac{\partial n_{eff}}{\partial T}\right)\Delta T$$

9

Classificazione fibre ottiche nell'ambito delle misure

Single Point Sensors

Interrogator Interrogator Grating-based Interferometric Multiplexing Fabry-Perot Fibre Bragg Grating (FBG) Tilted FBG Mach-Zender Michelson Chirped FBG Long-Period Gratings Sagnac

Quasi-Distributed Sensors

10

Classificazione fibre ottiche nell'ambito delle misure

Wavelength

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

Strain Transfer: Introduzione

Che cosa stiamo misurando?

Strain transfer: modello matematico

$$\frac{d^2\varepsilon_f}{dx^2} - k^2\varepsilon_f = -k^2\varepsilon_s$$

$$k = \sqrt{\frac{\pi - 2\alpha}{\pi r_f^2 E_f \left[\frac{1}{G_a} \ln \frac{t_a}{r_j} + \frac{1}{G_j} \ln \frac{r_j}{r_t} + \frac{1}{G_t} \ln \frac{r_t}{r_c} + \frac{1}{G_{oc}} \ln \frac{r_{oc}}{r_{ic}} + \frac{1}{G_{ic}} \ln \frac{r_{ic}}{r_f}\right]}$$

$$\varepsilon_f(x) = C_1 e^{-kx} + C_2 e^{kx} + \varepsilon_s$$

$$\varepsilon_f(\pm L) = p\varepsilon_s$$

$$\varepsilon_f(x) = \varepsilon_s \left[1 + (p-1) \frac{\cosh(kx)}{\cosh(kL)} \right]$$

Strain transfer: case study

Strain transfer: modello numerico

Strain transfer: setup sperimentale

Strain transfer: risultati

Falcetelli, F.; Rossi, L.; Di Sante, R.; Bolognini, G. Strain Transfer in Surface-Bonded Optical Fiber Sensors. Sensors 2020, 20, 3100. https://doi.org/10.3390/s20113100

¹¹Li et al. Strain transferring analysis of fiber Bragg grating sensors. Opt.
Eng., 2006.
¹⁹Her et al. Effect of coating on the strain transfer of optical fiber sensors. Sensors, 2011

Structural Health Monitoring

Hamza Boukabache, Christophe Escriba and Jean-Yves Fourniols, "Toward Smart Aerospace Structures: Design of a Piezoelectric Sensor and Its Analog Interface for Flaw Detection," Sensors, vol. 14, p. 20543-20561, 2014

Probability of Detection

MIL-HDBK-1823A, Department of Defense: Non-Destructive Evaluation (NDE) System, Reliability Assessment

22

23

	Static Testing	Static Testing	Fatigue Testing
Optical Fiber	Step Index Single Mode	Graded Index Multi-Mode	Step Index Single-Mode
Coating	ORMOCER [®]	Dual acrylate	ORMOCER®
Number of samples (n)	13	6	9
a ₉₀	4.93 mm	13.03 mm	5.88 mm
a _{90/95}	5.56 mm	18.56 mm	7.82 mm
$\Delta = a_{90/95} - a_{90}$	0.63 mm	5.53 mm	1.94 mm

Falcetelli et al. Qualification of distributed optical fiber sensors using probability of detection curves for delamination in composite laminates. Structural Health Monitoring, 2022.

Rilevamento di forma con sensori in fibra ottica

Single-core fiber bundles

Multicore OFSs

Ma, X.; Sun, Z.; Luo, H.; Li, X. A Novel Fiber Optic Sensor for Microparticle Velocity Measurement Using Multicore Fiber. Appl. Sci. 2020, 10, 4829. https://doi.org/10.3390/app10144829

Applicazioni per single-core fiber bundles

Single-core fiber bundles

Applicazioni per fibre multicore

Ignazio Floris, Jose M. Adam, Pedro A. Calderón, Salvador Sales, Fiber Optic Shape Sensors: A comprehensive review, Optics and Lasers in Engineering, Volume 139, 2021, 106508, https://doi.org/10.1016/j.optlaseng.2020.106508

Kim, Sangbae et al., Soft robotics: a bioinspired evolution in robotics Trends in Biotechnology, Volume 31, Issue 5, 287 - 294

Multicore OFSs

Ma, X.; Sun, Z.; Luo, H.; Li, X. A Novel Fiber Optic Sensor for Microparticle Velocity Measurement Using Multicore Fiber. Appl. Sci. 2020, 10, 4829. https://doi.org/10.3390/app10144829

Teoria del rilevamento di forma: calcolo di curvatura e angolo di flessione

$$\varepsilon(x, y) = \varepsilon_{long} + \kappa_x x + \kappa_y y$$

$$SSE = \sum_{i=1}^{n} (\varepsilon_i - \varepsilon_{long} - \kappa_x x - \kappa_y y)^2$$

$$\nabla SEE(\varepsilon_{long},\kappa_x,\kappa_y)=0$$

$$\kappa = \sqrt{\kappa_x^2 + \kappa_y^2}$$

 $\alpha = angle(\boldsymbol{\kappa})$

Teoria del rilevamento di forma: equazioni di Frenet-Serret

$$\mathbf{r}(s) = \mathbf{x}(s)\mathbf{i} + \mathbf{y}(s)\mathbf{j} + \mathbf{z}(s)\mathbf{k}$$

$$\tau(s) = \frac{d\alpha}{ds}$$

Equazioni di Frenet-Serret

$$\begin{bmatrix} \mathbf{T}'(s) \\ \mathbf{N}'(s) \\ \mathbf{B}'(s) \end{bmatrix} = \begin{bmatrix} 0 & \kappa(s) & 0 \\ -\kappa(s) & 0 & \tau(s) \\ 0 & -\tau(s) & 0 \end{bmatrix} \begin{bmatrix} \mathbf{T}(s) \\ \mathbf{N}(s) \\ \mathbf{B}(s) \end{bmatrix}$$

$$\boldsymbol{r}(s) = \int \boldsymbol{T}(s) \, ds + \boldsymbol{r_0}$$

Teoria del rilevamento di forma: flowchart

Test sperimentali preliminari: schema cavo

Ricostruzione di un cerchio in un piano

Tuning della distanza delle fibre dal centro del cavo

Sorgenti di incertezza

 $x_{i} \sim \mathcal{N}\left(0, \sigma_{xy}\right)$ $y_{i} \sim \mathcal{N}\left(0, \sigma_{xy}\right)$

Simulazione Monte Carlo

Effetto dell'errore di misura

Effetto della posizione dei cores

 $(\sigma_{\kappa}, \sigma_{\alpha}) \sim \frac{1}{\sqrt{n}}$

Propagazione incertezza nella curva 3D

Core failure: effetto sulla curvatura (4 cores)

Core failure: effetto su angolo di flessione (4 cores)

Core failure: effetto sulla curvatura (5 cores)

Core failure: effetto su angolo di flessione (5 cores)

Core failure: effetto sulla curva 3D

Sviluppi futuri

1. Studio intrusività fibre ottiche in materiali compositi

2. Monitoraggio strutturale per lo storage di idrogeno in pressione

3. Sviluppo nuovi algoritmi per shape sensing con Al

N. Chandarana, D. Sanchez, C. Soutis, and M. Gresil, "Early Damage Detection in Composites during Fabrication and Mechanical Testing," Materials, vol. 10, no. 7, p. 685, Jun. 2017, doi: 10.3390/ma10070685.

Rivard, E.; Trudeau, M.; Zaghib, K. Hydrogen Storage for Mobility: A Review. Materials 2019, 12, 1973. https://doi.org/10.3390/ma12121 973

ALMA MATER STUDIORUM Università di Bologna

Grazie per l'attenzione!

Francesco Falcetelli

Dipartimento di Ingegneria Industriale Alma Mater Studiorum - Università di Bologna

francesco.falcetelli@unibo.it

www.unibo.it