Esercizio 1

Un tubo di Pitot permette di calcolare la velocità di un fluido secondo la seguente formula (dove p_0 è la pressione di ristagno, p la pressione statica e ρ la densità del fluido)

$$v = \sqrt{2\frac{p_0 - p}{\rho}}$$

Per stimare la velocità del fluido vengono misurate le seguenti quantità:

- $p_0 = 115 \, kPa$ con un trasduttore di pressione avente risoluzione pari a 0.25 kPa
- $p = 101 \, kPa$ con un barometro avente risoluzione pari a $0.5 \, kPa$
- ρ con un densimetro effettuando 10 misurazioni e ottenendo un valore medio campionario di $1.22~kg/m^3$ e scarto quadratico medio campionario di $0.19~kg/m^3$.

Si richiede di esprimere la misura della velocità del fluido v, utilizzando i dati a disposizione.

Esercizio 2

La divisione Ricerca e Sviluppo di una azienda del settore idraulico vuole mettere a punto un nuovo pistone in grado di garantire la minima rumorosità possibile. Sono stati messi a punto tre nuovi prototipi etichettati A, B e C, per i quali, nelle stesse condizioni sperimentali, sono stati misurati per sei volte i livelli di rumorosità (dB).

Α	В	С
28.1	19.4	22.8
31.2	22.4	21.7
28.5	23.6	22.8
27.7	28.1	30.8
36.9	24.3	20.9
33.1	29.6	26.6

- (a) utilizzare un metodo statistico appropriato per stabilire se i tre prototipi hanno le stesse prestazioni in termini di rumorosità media e nel caso venisse rifiutata l'ipotesi nulla individuare il prototipo che ha prestazioni diverse con l'opportuno test d'ipotesi (confrontare i risultati ottenuti dalla formulazione analitica con quelli ottenuti dalla funzione matlab corrispondente);
- (b) disegnare un grafico per evidenziare quale dei tre prototipi potrebbe essere preferibile.

Esercizio 3

Si riportano i valori misurati per il coefficiente di portanza del profilo NACA 2415 al variare dell'angolo di attacco per diversi valori del numero di Reynolds:

α	Re = 100000	Re = 500000	Re = 1000000
-5°	-0.62	-0.31	-0.25
0°	0.25	0.27	0.26
5°	0.83	0.81	0.82
10°	1.21	1.21	1.30
15°	1.38	1.27	1.60
20°	0.62	1.11	1.53

(a) Rappresentare i dati su un grafico di dispersione.

Per ciascun valore del numero di Reynolds:

- (b) Calcolare il coefficiente di correlazione lineare tra α e C_L .
- (c) Individuare una opportuna curva di regressione e indicare una misura di buon adattamento del modello.
- (d) Costruire il relativo intervallo di confidenza al livello del 95%.
- (e) Discutere i grafici dei residui della regressione.