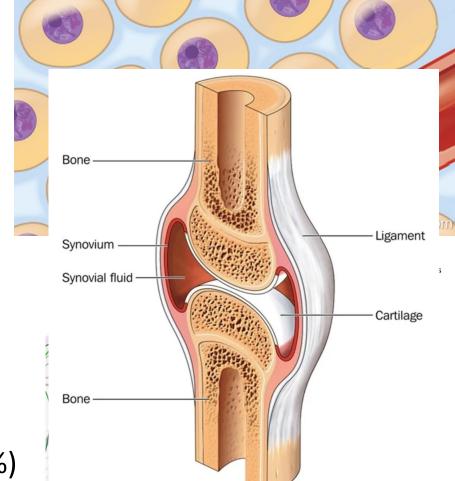
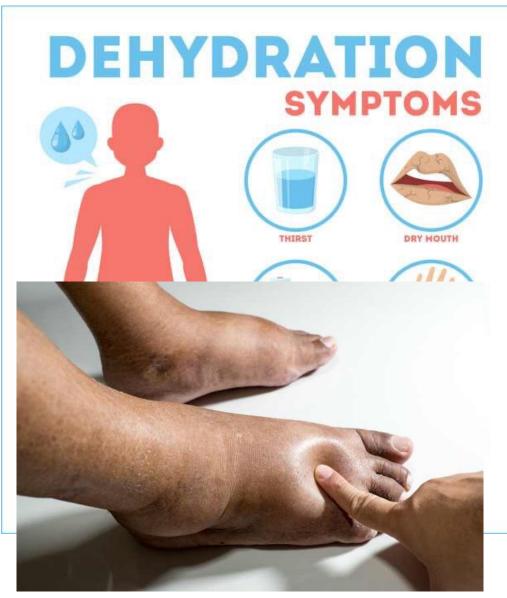
Prof. Sabrina Pricl


A.Y. 2023-2024

Lesson 1 Water, pH and buffers

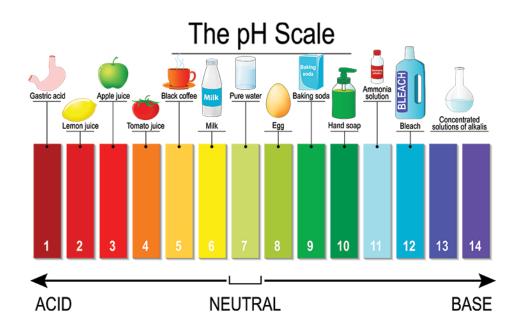
- The fundamental molecule of life
- 60-95% of living human cells is H_20
 - 55% in intracellular fluids
 - 45% divided between:
 - Plasma (8%)
 - Interstitial (between cells) and lymph (22%)
 - Connective tissue, cartilage and bones (15%)

Lymph (from Latin, lympha) is the fluid that flows through the lymphatic system, a system composed of lymph vessels (channels) and intervening lymph nodes whose function, like the venous system, is to return fluid from the tissues to the central circulation (tissuse and organs drainage)


- In biochemistry:
 - Transport medium across cell membranes
 - Body temperature maintenance
 - Solvent in the GI and excretion system

- In biochemistry:
 - Transport medium across cell membranes
 - Body temperature maintenance
 - Solvent in the GI and excretion system

• Healthy humans


- Daily water intake/loss = 2L
 - Intake --> 45% from liquids, 40% from food and 15% chemical reactions
 - Loss -> 50% urines, 5% feces and 55% evaporation from lung and skin

- In biochemistry:
 - Transport medium across cell membranes
 - Body temperature maintenance
 - Solvent in the GI and excretion system
- Healthy humans
 - Daily water intake/loss = 2L
 - Intake --> 45% from liquids, 40% from food and 15% chemical reactions
 - Loss –> 50% urines, 5% feces and 55% evaporation from lung and skin
- Water balance must be preserved:
 - Loss >> intake --> dehydration
 - Intake >> loss --> edema

Water dissociation and pH

- H₂0 <-> H₃0⁺ + OH⁻
 - $[H_3O^+] = [OH^-] --> neutral$
 - [H₃O⁺] > [OH⁻] --> acidic
 - [H₃O⁺] = [OH⁻] --> basic
- $K_w = [H_3O^+] \times [OH^-] = 10^{-14} (25^{\circ}C)$
 - In human body @ 37°C --> K_w = 2.4 x 10⁻¹⁴
- In pure water --> [H₃O⁺] = [OH⁻] = 10⁻⁷ (25°C)
 - pH = -log[H₃O⁺] --> in pure water pH = 7
 - In human blood @ 37°C --> pH =7.4 --> [H₃O⁺] = 3.98 x 10⁻⁸
- pK_w = -logK_w = 14

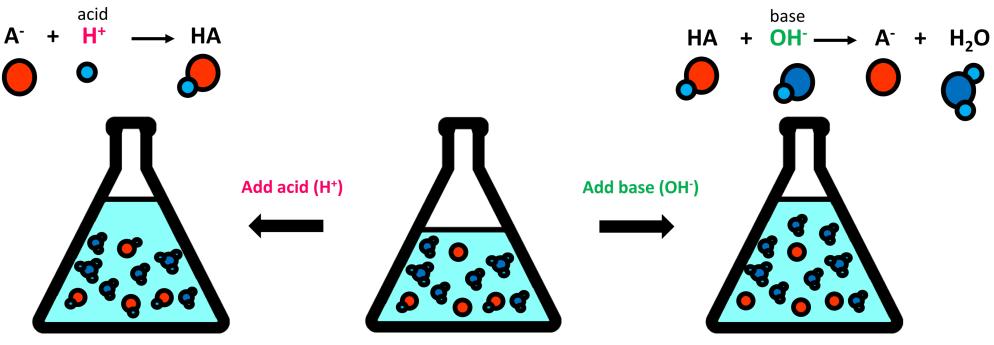
Weak acids and bases

• In biology we have only weak acids and bases (incomplete dissociation)

 $CH_3COOH + H_2O <--> H_3O^+ + CH_3COO^ CH_3COO^-$ conjugate base

 $K_a = [H_3O^+][CH_3COO^-]/[CH_3COOH]$

NH₄⁺ conjugate acid K_b = [NH₄⁺][OH⁻]/[NH₃]

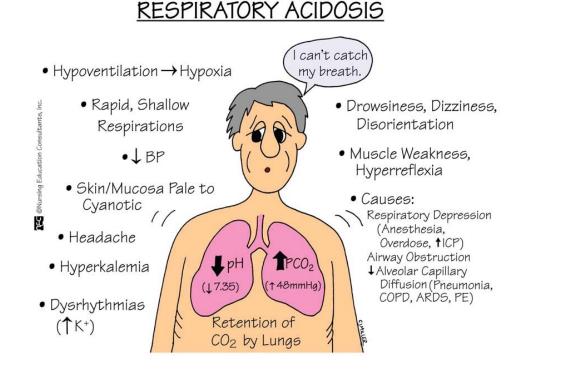

 $NH_3 + H_2O <--> NH_4^+ + OH^-$

 $pK_a = -logK_a$ $pK_b = -logK_b$

$$K_a \times K_b = K_w = 10^{-14} - pK_a + pK_b = 14$$

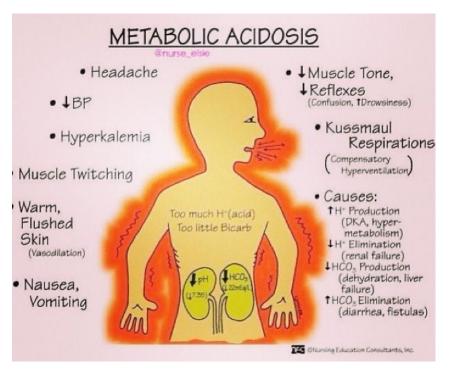
Buffers and pH control

 A solution that contains a conjugate acid-base pair of any weak acid or base in relative proportions to resist pH change when small amounts of either a (strong) acid or base are added is a buffer solution

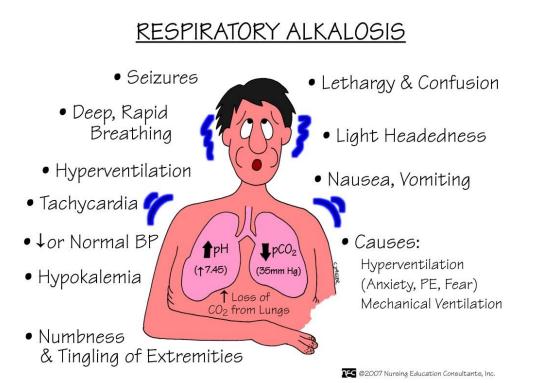


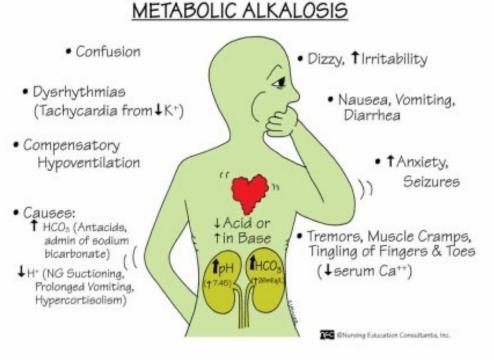
Buffer

- Stomach pH = 1-2
- GI tract pH = 8-9
- Blood pH = 7.4
 - Blood pH < 7.2 --> pathological condition = acidosis
 - Blood PH < 6.8 --> death
 - Blood pH > 7.6 --> pathological condition = alkalosis
 - Blood pH > 8.6 --> death


• Respiratory acidosis

 Inefficient expulsion of CO₂, increased concentration of H₂CO₃, impaired-respiration pathologies (pneumonia, emphysema, asthma)




Metabolic acidosis

 Decreased concentration of HCO₃⁻, results from various kidney diseases, uncontrolled diabetes, or vomiting of non-acid fluids

- Respiratory alkalosis
 - Excessive CO₂ removal, decreased concentration of H₂CO₃, hyperventilation
- Metabolic alkalosis
 - Increased concentration of HCO₃⁻, results excessive vomiting of stomach acid

Molecular Biology for Engineering – Lesson 1

- PROTEIN BUFFER SYSTEM
 - Protein buffer system helps to maintain acidity in and around cells
- PHOSPHATE BUFFER SYSTEM
 - Phosphate buffer helps to maintain intracellular and urine pH
- BICARBONATE BUFFER
 - main extracellular buffer, main blood buffer
 - Helps in controlling CO₂ levels --> CO₂ + H₂O <--> H₂CO₃ <--> H⁺ + HCO₃⁻
 - Coupled with CO₂ (blood) <--> CO₂ (lungs)

Buffer action and the pH of blood

- Normal blood pH = 7.4
 - Kept at this value by the buffering action of HCO₃⁻, resulting from these two parallel physiological equilibria:
 - CO₂ + H₂O <--> H₂CO₃
 H₂CO₃ <--> H⁺ + HCO₃⁻
- $K_{eq} = [H^+][HCO_3^-]/[CO_2]^* = 7.95 \times 10^{-7} --> pK_{eq} = -logK_{eq} = 6.1$
- Rearranging:

 $[H^+] = K_{eq} \times [CO_2] / [HCO_3^-] -> \log[H^+] = \log K_{eq} + \log ([CO_2] / [HCO_3^-] ->$

 $-\log[H^+] = -\log[K_{eq} - \log[CO_2]/[HCO_3^-] -> pH = pK_{eq} + \log[HCO_3^-]/[CO_2]$

*[H_2O] = 55.6 M = const = included in the K_{eq} value

Quiz time

- A patient suffering from acidosis had a blood pH of 7.15 and a CO₂ concentration of 1.15 mM.
- If the reference range for pH = 7.4 are:

 $[HCO_3^{-}] = 22.0 - 26.0 \text{ mM} \text{ (average} = 24 \text{ mM})$

 $[CO_2] = 1.20 \text{ mM}$

and pK_{eq} for the bicarbonate buffer = 6.1

- Q1. What was the patient's bicarbonate (HCO3⁻) concentration?
- Q2. What are the implications of this value to the buffer capacity of the blood?

Quiz time

R1.

 $pH = pK_{eq} + \log[HCO_3^{-}]/[CO_2] --> 7.15 = 6.1 + \log[HCO_3^{-}]/(1.15 \times 10^{-3})$

 $10^{1.05} = [HCO_3^{--}]/(1.15 \times 10^{-3}) \longrightarrow [HCO_3^{--}] = 12.9 \times 10^{-3} \longrightarrow [HCO_3^{--}] = 12.9 \text{ mM}$

R2.

Normal $[HCO_3^-]$ average value = 24 mM --> $[HCO_3^-]$ in patient lowered by 11.1 mM --> severely impaired buffer capacity --> any further, small acid production will have serious consequences for the patient