Prof. Sabrina Pricl A.Y. 2023-2024

Lesson 13
DNA mutations
and their
outcome

Phenotype

- Changes in genes (DNA) govern the outcome for the organism
- How does a DNA sequence connect with a trait?
 - Trait = something that you can see, an observable characteristic
 - E.g., your eye color, your hair color, your height,
- The composite observable characteristics or traits of an organism is called a PHENOTYPE

Gene ←→ phenotype

How does DNA sequence connect with a trait? (phenotype) May alter protein sequence (and therefore function) or amount of protein made.....

Mutations

- DNA (gene) transcription RNA translation protein function trait
- Trait = observable characteristic = phenotype

Mutations

- DNA (gene) $\xrightarrow{\text{transcription}}$ RNA $\xrightarrow{\text{translation}}$ protein $\xrightarrow{\text{function}}$ trait
- Trait = observable characteristic = phenotype

Mutations

- DNA (gene) transcription RNA translation protein function functi
- Trait = observable characteristic = phenotype

- Changes in DNA nucleotide sequences = MUTATIONS
- Mutated DNA generally:
 - Mutated RNA → Mutated protein → mutated trait

Mutation main types

- Point mutations: change 1 nucleotide of one type with another nucleotide of another type in the original sequence
 - e.g., TAACTT... \rightarrow TAACCT...

Point mutation

Mutation main types

- Point mutations: change 1 nucleotide of one type with another nucleotide of another type in the original sequence
 - e.g., TAACTT... \rightarrow TAACCT...
- Insertion: one or more nucleotides are added to the original sequence
 - e.g., TAACT... \rightarrow TAACCT...

Mutation main types

- Point mutations: change 1 nucleotide of one type with another nucleotide of another type in the original sequence
 - e.g., TAACTT... \rightarrow TAACCT...
- Insertion: one or more nucleotides are added to the original sequence
 - e.g., TAACT... \rightarrow TAACCT...
- Deletion: one or more nucleotides are removed from the original sequence
 - e.g., TAACTGC... \rightarrow TAACGC

Original sequence

Deletion

Coding strand → 5' ATGTGGCTCCTGGATTAA 3'
Template strand → 3'TACACCGAGGACCTAATT5'

DNA

mRNA → 5' AUGUGGCUCCUGGAUUAA 3'

protein → N-Met-Trp-Leu-Leu-Asp-C (stop)

```
Coding strand → 5' ATGTGGCTCCTGGATTAA 3'
Template strand → 3'TACACCGAGGACCTAATT5'

mRNA → 5' AUGUGGCUCCUGGAUUAA 3'

protein → N-Met-Trp-Leu-Leu-Asp-C (stop)
```

Point mutation (MISSENSE)

```
Coding strand → 5' ATGTGGCTCCTGGTTTAA 3'
Template strand → 3' TACACCGAGGACCAAATT5'

mRNA → 5' AUGUGGCUCCUGGUUUAA 3'

protein → N-Met-Trp-Leu-Leu-Val-C (stop)
```

```
Coding strand → 5' ATGTGGCTCCTGGATTAA 3'
Template strand → 3' TACACCGAGGACCTAATT5'

mRNA → 5' AUGUGGCUCCUGGAUUAA 3'

protein → N-Met-Trp-Leu-Leu-Asp-C (stop)
```

Point mutation (NONSENSE)

```
Coding strand → 5' ATG TAG CTCCTGGATTAA 3'
Template strand → 3' TACATCGAGGACCTAATT5'

mRNA → 5' AUGUAG CUCCUGGAUUAA 3'
protein → N-Met-Stop
```

```
Coding strand → 5' ATGTGGCTCCTGGATTAA 3'
Template strand → 3' TACACCGAGGACCTAATT5'

mRNA → 5' AUGUGGCUCCUGGAUUAA 3'
protein → N-Met-Trp-Leu-Leu-Asp-C (stop)
```

Point mutation (SILENT)

```
Coding strand → 5' ATGTGGCTCCTGGACTAA 3'
Template strand → 3' TACACCGAGGACCTGATT5'

mRNA → 5' AUGUGGCUCCUGGACUAA 3'

protein → N-Met-Trp-Leu-Leu-Asp-C (stop)
```

Insertions

Coding strand → 5' ATGTGGCTCCTGGATTAA 3'

Template strand → 3' TACACCGAGGACCTAATT5'

mRNA → 5' AUGUGGCUCCUGGAUUAA 3'

protein → N-Met-Trp-Leu-Leu-Asp-C (stop)

Insertion (reading frame shift)

Coding strand → 5' ATGTGGACTCCTGGATTAA 3'
Template strand → 3' TACACCTGAGGACCTAATT5'

Reading frame shift

mRNA -> 5' AUGUGGACUCCUGGAUUAA 3'

protein → N-Met-Trp-Thr-Pro-Gly-Leu-C

Deletions

```
Coding strand → 5' ATGTGGCTCCTGGATTAA 3'
Template strand → 3' TACACCGAGGACCTAATT5'

mRNA → 3' AUGUGGCUCCUGGAUUAA 5'

protein → N-Met-Trp-Leu-Leu-Asp-C (stop)
```

Deletion (reading frame shift)

Coding strand → 5' ATGTGCTCCTGGATTAA 3'
Template strand → 3' TACACGAGGACCTAATT5'

Reading frame shift

mRNA → 5' AUGUGCUGGUGGAUUAA 3'

protein → N-Met-Cys-Trp-Ile-C

Mutations - recap

- Missense mutation \rightarrow Changes one protein into another
- Nonsense mutation

 Prematurely stops mRNA translation resulting in a truncated protein
- Silent mutation
- The results of the translation is again the wildtype protein
 - This is because of the "redundancy" of the genetic code (more codons codify for the same amino acid – see The codon chart)

- Insertion/deletion \rightarrow Change the reading frame and the protein that is encoded in the mutated gene

Mutations - recap

- Proteins resulting from any of these gene mutations (except from silent mutations) may:
 - Be non-functional (loss of function)
 - Be over-functional (gain of function)
 - Have a new function
- All these aspects may result in important human pathologies

■ top500

top1000

top1500

■ Bottom

Other mutations

- There are a plethora of other mutations that take place in other DNA regions
 - e.g., the so-called "DNA control region"
 - That DNA region (sequence) that controls RNA synthesis and transcription
 - This can change e.g., the amount of mRNA and, hence, of protein produced