
A.Y. 2024-2025

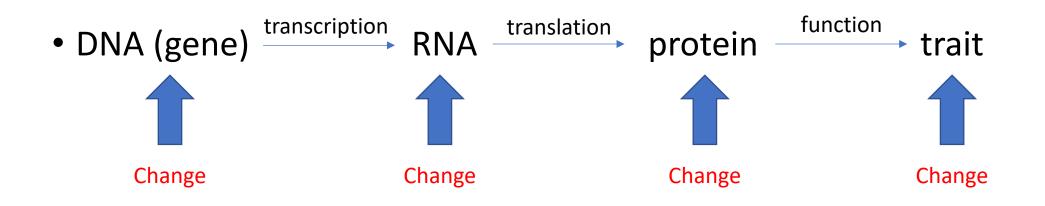
Lesson 13 DNA mutations and their outcome

Phenotype

- Changes in genes (DNA) govern the outcome for the organism
- How does a DNA sequence connect with a trait?
 - Trait = something that you can see, an observable characteristic
 - *E.g.*, your eye color, your hair color, your height,
- The composite observable characteristics or traits of an organism is called a **PHENOTYPE**

Gene $\leftarrow \rightarrow$ phenotype

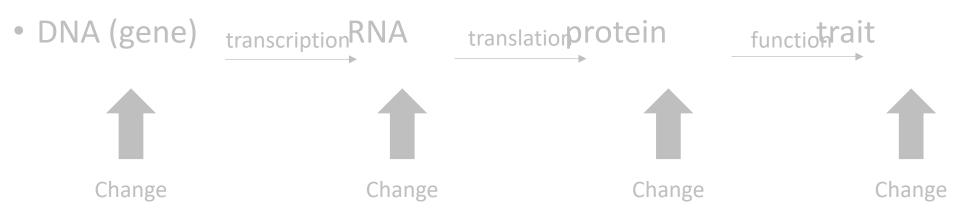
How does DNA sequence connect with a trait? (phenotype) May alter protein sequence (and therefore function) or amount of protein made.....



Mutations

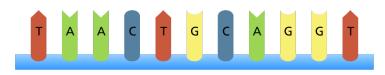
- DNA (gene) $\xrightarrow{\text{transcription}}$ RNA $\xrightarrow{\text{translation}}$ protein $\xrightarrow{\text{function}}$ trait
- Trait = observable characteristic = phenotype

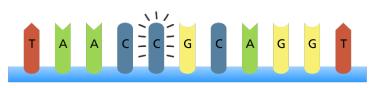
Mutations


- DNA (gene) $\xrightarrow{\text{transcription}}$ RNA $\xrightarrow{\text{translation}}$ protein $\xrightarrow{\text{function}}$ trait
- Trait = observable characteristic = phenotype

Mutations

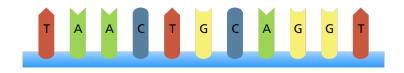
• DNA (gene) transcription RNA translation protein function functi functi function function function function function function f

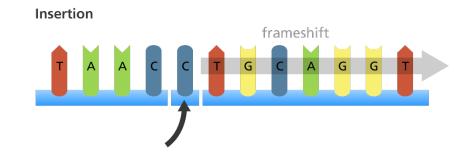

• Trait = observable characteristic = **phenotype**


- Changes in DNA nucleotide sequences = MUTATIONS
- Mutated DNA generally:
 - Mutated RNA \rightarrow Mutated protein \rightarrow mutated trait

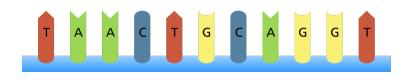
- Point mutations: change 1 nucleotide of one type with another nucleotide of another type in the original sequence
 - *e.g.,* TAAC**T**T... → TAAC**C**T...
- This may change, destroy, or have no effect on the resulting protein
- 🛠 Engineering Analogy:
- Point Mutation = A typo in a software code
 - Example: Print("Hello") → Print("Hollo")
 - X Some typos crash the program, while others have no effect

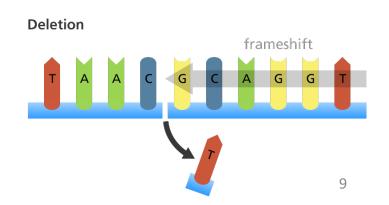
Original sequence



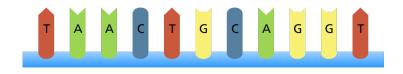

Point mutation

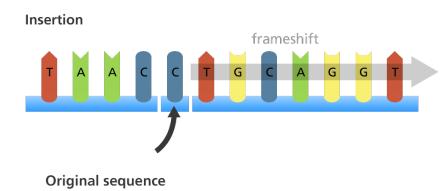
- Point mutations: change 1 nucleotide of one type with another nucleotide of another type in the original sequence
 - *e.g.*, TAAC**T**T... → TAAC**C**T...
- Insertion: one or more nucleotides are added to the original sequence
 - *e.g.*, TAACT... \rightarrow TAACCT...

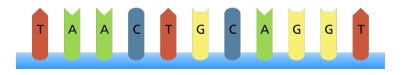

Original sequence

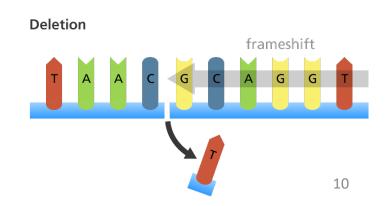


- Point mutations: change 1 nucleotide of one type with another nucleotide of another type in the original sequence
 - *e.g.,* TAAC**T**T... → TAAC**C**T...
- Insertion: one or more nucleotides are added to the original sequence
 - *e.g.*, TAACT... → TAAC**C**T...
- Deletion: one or more nucleotides are removed from the original sequence
 - *e.g.*, TAACTGC...→ TAACGC


Original sequence






- Both insertions and deletions shift the reading frame, affecting all codons after the mutation
- 🛠 Engineering Analogy
 - Insertion = Accidentally adding an extra command in a software script
 - Deletion = Removing an essential command, breaking the code
- Example:
 ✓ Correct code: "The cat rans fast"
- ✓ Correct reading : "The cat ran sfa st"
- X Insertion: "The xca tra nsf ast" (reading frame is shifted to the right)
- X Deletion: "The catr ans fas t" (reading frame is shifted to the left
- When the code shifts, the entire program (protein) may break (being something completely different structure and function)

Original sequence

- Coding strand→5' ATGTGGCTCCTGGATTAA 3'DNATemplate strand→3'TACACCGAGGACCTAATT5'DNA
 - mRNA \rightarrow 5' AUGUGGCUCCUGGAUUAA 3' protein \rightarrow N-Met-Trp-Leu-Leu-Asp-C (stop)

Coding strand \rightarrow 5' ATGTGGCTCCTGGATTAA 3'DNATemplate strand \rightarrow 3'TACACCGAGGACCTAATT5'DNAmRNA \rightarrow 5' AUGUGGCUCCUGGAUUAA 3'proteinprotein \rightarrow N-Met-Trp-Leu-Leu-Asp-C (stop)

Point mutation (MISSENSE)

Coding strand \rightarrow 5' ATGTGGCTCCTGGTTTAA 3'Template strand \rightarrow 3' TACACCGAGGACCAAATT5'mRNA \rightarrow 5' AUGUGGCUCCUGGUUUAA 3'protein \rightarrow N-Met-Trp-Leu-Leu-Val-C (stop)

Coding strand \rightarrow 5' ATGTGGCTCCTGGATTAA 3'DNATemplate strand \rightarrow 3' TACACCGAGGACCTAATT5'DNAmRNA \rightarrow 5' AUGUGGCUCCUGGAUUAA 3'Proteinprotein \rightarrow N-Met-Trp-Leu-Leu-Asp-C (stop)

Point mutation (NONSENSE)

Coding strand \rightarrow 5' ATG TAG CTCCTGGATTAA 3'Template strand \rightarrow 3' TAC ATC GAG GACCTAATT5'mRNA \rightarrow 5' AUG UAG CUCCUG GAUUAA 3'protein \rightarrow N-Met-Stop

Coding strand \rightarrow 5' ATGTGGCTCCTGGATTAA 3'DNATemplate strand \rightarrow 3' TACACCGAGGACCTAATT5'DNAmRNA \rightarrow 5' AUGUGGCUCCUGGAUUAA 3' \rightarrow protein \rightarrow N-Met-Trp-Leu-Leu-Asp-C (stop)

Point mutation (SILENT)

Coding strand \rightarrow 5' ATGTGGCTCCTGGACTAA 3'Template strand \rightarrow 3' TACACCGAGGACCTGATT5'mRNA \rightarrow 5' AUGUGGCUCCUGGACUAA 3'protein \rightarrow N-Met-Trp-Leu-Leu-Asp-C (stop)

Insertions

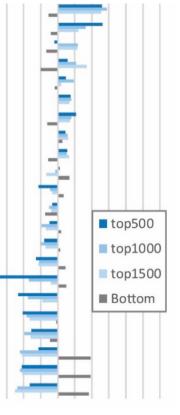
Coding strand \rightarrow 5' ATGTGGCTCCTGGATTAA 3'DNATemplate strand \rightarrow 3' TACACCGAGGACCTAATT5'DNAmRNA \rightarrow 5' AUGUGGCUCCUGGAUUAA 3'protein \rightarrow N-Met-Trp-Leu-Leu-Asp-C (stop)

Insertion (reading frame shift)

Coding strand \rightarrow 5' ATGTGG ACTCCTGGATTAA 3'Template strand \rightarrow 3' TACACC TGAGGACCTAATT5'Reading frame shiftmRNA \rightarrow 5' AUGUGG ACUCCUGGAUUAA 3'protein \rightarrow N-Met-Trp-Thr-Pro-Gly-Leu-C

Deletions

5' ATGTGGCTCCTGGATTAA 3' **Coding** strand \rightarrow DNA **Template** strand \rightarrow 3' TACACCGAGGACCTAATT5' $mRNA \rightarrow$ 3' AUGUGGCUCCUGGAUUAA 5' protein \rightarrow N-Met-Trp-Leu-Leu-Asp-C (stop) **Deletion (reading frame shift)** → 5' ATGTGCTCCTGGATTAA 3' **Coding** strand \rightarrow 3' TACACGAGGACCTAATT5' Template strand Reading frame shift $mRNA \rightarrow$ 5' AUGUGCUGGUGGAUUAA 3' N-Met-Cys-Trp-Trp-Ile-C protein \rightarrow


Mutations - recap

- Missense mutation \rightarrow Changes one protein into another
- Nonsense mutation \rightarrow Prematurely stops mRNA translation resulting in a truncated protein
- Silent mutation
- \rightarrow The results of the translation is again the wildtype protein
 - This is because of the "redundancy" of the genetic code (more codons codify for the same amino acid – see The codon chart)
- Insertion/deletion \rightarrow Change the reading frame and the protein that is encoded in the mutated gene

Mutations - recap

- Proteins resulting from any of these gene mutations (except from silent mutations) may:
 - Be non-functional (loss of function)
 - Protein does not work or is missing
 - Be over-functional (gain of function)
 - Protein works too well or at the wrong time
 - Have a **new function**
 - Protein does something completely different
- All these aspects may result in **important** human pathologies

behavior & behavior mechanisms stomatognathic diseases hemic & lymphatic diseases immune system diseases musculoskeletal diseases nervous system diseases neoplasms pathological conditions, signs & symptoms mental disorders congenital, hereditary, & neonatal diseases... cardiovascular diseases endocrine system diseases skin & connective tissue diseases female genital diseases & pregnancy... urologic & male genital diseases wounds & injuries respiratory tract diseases digestive system diseases chemically-induced disorders otorhinolaryngologic diseases nutritional & metabolic diseases eve diseases

Other mutations

- Some mutations do not change the protein itself but affect how much of it is made
- These mutations occur in the so-called **DNA regulatory (control) regions**
- X Engineering Analogy: Regulatory DNA = The volume knob controlling how loud the sound is made by a radio
- Mutation in this region = Making the music too loud (too much protein) or too quiet (too little protein)
- Example: Overproduction of a protein \rightarrow Cancer (cells grow uncontrollably)
- Reduced protein production \rightarrow Anemia (low red blood cell count)