Esame di Analisi Matematica 1 del 4/7/2023

Corso di studi: Fisica \square Matematica \square	${\bf Nome\ e\ Cognome}$			
	Corso di studi:	Fisica □	$ Matematica \ \Box $	

Esercizio 1. (4+4 pt) Si calcolino i seguenti limiti

$$\lim_{x \to 0} \frac{\cos(\sinh x) - \cosh(\sin x)}{3\tanh(x^2)} = \boxed{}$$

$$\lim_{x \to +\infty} \frac{\sin x - \left(x - \frac{x^3}{6}\right)}{x^5} (1 - x^2) = \boxed{ }$$

Esercizio 2. (8 pt) Si studi la funzione

$$f(x) = \left| \frac{x-1}{x-2} \right| (x-3),$$

determinando:

- i) Dominio:
- ii) Eventuali simmetrie:
- iii) Limiti importanti:

iv)	Eventuali asintoti:
v)	Derivata prima $f'(x) =$ e suo segno, dove definita.
vi)	Intervalli di crescenza e decrescenza. Eventuali punti di massimo e di minimo locali o globali.
vii)	Derivata seconda $f''(x) =$ e suo segno, dove definita.
viii)	Intervalli di convessità e concavità. Eventuali punti di flesso.
ix)	Grafico di f .

Esercizio 3. (2+2+2+2 pt) Sia $f:\mathbb{R}\to\mathbb{R}$ una funzione derivabile quattro volte tale che

$$f(0) = 0$$
, $f(1) = 0$, $f(2) = 0$,

$$f'(0) = 1$$
, $f'(1) = 1$, $f'(2) = 1$,

Dimostrare che:

i) esiste almeno un punto in cui la derivata si annulla;

ii) esiste almeno un punto in cui la derivata seconda si annulla;

iii) esiste almeno un punto in cui la derivata terza si annulla;

iv) esiste almeno un punto in cui la derivata quarta si annulla.

Esercizio 4. (4+4 pt) Si calcolino:

$$\int_0^\pi e^{\cos x} \sin x \, dx = \boxed{},$$

$$\int_{-2}^{2} (|x-1|-1) x^2 dx = \boxed{}$$