Tutorato di Analisi 1 - Esercitazione 3

Riccardo Berforini D'Aquino

23 Ottobre 2023

Esercizio 1. Sia $f: \mathbb{R} \to \mathbb{R}$ una funzione.

- 1) Dimostrare che f è continua se e solo se $\forall A\subseteq\mathbb{R}$ aperto, $f^{-1}(A)$ è un sottoinsieme aperto di \mathbb{R} .
- 2) Dimostrare che, $\forall A \subseteq \mathbb{R}$ aperto, non è detto che f(A) sia un sottoinsieme aperto di \mathbb{R} .

Esercizio 2. Dimostrare che le seguenti funzioni sono continue su tutto il loro dominio:

- 1) f(x) = x
- 2) $f(x) = x^5$
- 3) f(x) = 7 3|x|
- 4) f(x) = sen(x)
- 5) $f(x) = \sqrt{x}$

Esercizio 3. Dimostrare che la norma euclidea

$$||\cdot||:\mathbb{R}^N\to[0,+\infty[$$

è una funzione continua.

Esercizio 4. Sia E uno spazio metrico e siano $f,g:E\to\mathbb{R}$ due funzioni continue.

- 1) Dimostrare che f + g è una funzione continua.
- 2) Dimostrare che, se $g(x) \neq 0 \ \forall x \in E$, allora $\frac{f}{g}$ è una funzione continua.

Esercizio 5. Siano $f, g : [0, 1] \to \mathbb{R}$ le funzioni così definite:

$$f(x) = x^2 - x$$

$$g(x) = 1$$
 se $x \in \mathbb{Q}$ e $g(x) = 0$ altrimenti.

Dimostrare che $f \circ g$ è una funzione continua.

Esercizio 6. Sia $f:[0,1] \to \mathbb{R}$ tale che

$$\exists L > 0 : |f(x) - f(y)| \le L|x - y|.$$

Dimostrare che f è continua.

Esercizio 7. Sia $f:[-1,1] \to [-1,1]$ una funzione continua. Dimostrare che esiste $x \in [-1,1]$ tale che f(x)=x. Suggerimento: si consideri g(x)=f(x)-x e si applichi il teorema degli zeri.