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a. Write subroutines to generate sequences of random numbers based on the linear congruential
algorithm

xn = 16807 xn−1 mod (231 − 1) (17.62)

and the generalized feedback shift register (GFSR) algorithm

xn = xn−103 ⊕ xn−250. (17.63)

In both cases xn is the nth random number. Both algorithms require that xn be divided by
the largest possible value of xn to obtain numbers in the range 0 ≤ xn < 1. The GFSR
algorithm requires bit manipulation and should be written in C or Fortran (see Appendices ??
or ??). Which random number generator does a better job of passing the various statistical
tests discussed in Problem 12.18?

b. Use the Metropolis algorithm and the linear congruential random number generator to determine
the mean energy per spin E/N and the specific heat (per spin) C for the L = 16 Ising model at
T = Tc = 2/ln(1+

√
2). Make ten independent runs (that is, ten runs that use different random

number seeds), and compute the standard deviation of the means σm from the ten values of
E/N and C, respectively. Published results by Ferrenberg, Landau, and Wong are for 106 Monte
Carlo steps per spin for each run. Calculate the differences δe and δc between the average of
E/N and C over the ten runs and the exact values (to five decimal places) E/N = −1.45306
and C = 1.49871. If the ratio δ/σm for the two quantities is order unity, then the random
number generator does not appear to be biased. Repeat your runs using the GFSR algorithm
to generate the random number sequences. Do you find any evidence of statistical bias?

c. Repeat part (b) using Wolff dynamics. Do you find any evidence of statistical bias?

d. Repeat the computations in parts (b) and (c) using the random number generator supplied with
your programming language.

Project 17.25. Kosterlitz-Thouless transition in the planar model
The planar model (also called the x-y model) consists of spins of unit magnitude that can point
in any direction in the x-y plane. The energy or Hamiltonian function of the planar model in zero
magnetic field can be written as

E = −J
∑

i,j=nn(i)

[si,xsj,x + si,ysj,y] , (17.64)

where si,x represents the x-component of the spin at the ith site, J measures the strength of the
interaction, and the sum is over all nearest neighbors. We can rewrite (17.64) in a simpler form
by substituting si,x = cos θi and si,y = sin θi. The result is

E = −J
∑

i,j=nn(i)

cos(θi − θj), (17.65)

where θi is the angle that the ith spin makes with the x axis. The most studied case is the
two-dimensional model on a square lattice. In this case the mean magnetization ⟨M⟩ = 0 for all
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Figure 17.7: A typical configuration of the planar model on a 24× 24 square lattice that has been
quenched from T = ∞ to T = 0 and equilibrated for 200 Monte Carlo steps per spin after the
quench. Note that there are six vortices. The circle around each vortex is a guide to the eye and
is not meant to indicate the size of the vortex.

temperatures T > 0, but nevertheless, there is a phase transition at a nonzero temperature, TKT ,
the Kosterlitz-Thouless (KT) transition. For T ≤ TKT , the spin-spin correlation function C(r)
decreases as a power law for increasing r; for T > TKT , C(r) decreases exponentially. The power
law decay of C(r) for all T ≤TKT implies that every temperature below TKT acts as if it were
a critical point. We say that the planar model has a line of critical points. In the following, we
explore some of the properties of the planar model and the mechanism that causes the transition.

a. Write a Monte Carlo program to simulate the planar model on a square lattice using periodic
boundary conditions. Because θ and hence the energy of the system is a continuous variable, it
is not possible to store the previously computed values of the Boltzmann factor for each possible
value of ∆E. Instead, of computing e−β∆E for each trial change, it is faster to set up an array
w such that the array element w(j) = e−β∆E , where j is the integer part of 1000∆E. This
procedure leads to an energy resolution of 0.001, which should be sufficient for most purposes.
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b. One way to show that the magnetization ⟨M⟩ vanishes for all T is to compute ⟨θ2⟩, where θ
is the angle that a spin makes with the magnetization M at any given instant. (Although the
mean magnetization vanishes, M ̸= 0 at any given instant.) Compute ⟨θ2⟩ as a function of the
number of spins N at T = 0.1, and show that ⟨θ2⟩ diverges as ln N . Begin with a 4 × 4 lattice
and choose the maximum change in θi to be ∆θmax = 1.0. If necessary, change θmax so that
the acceptance probability is about 40%. If ⟨θ2⟩ diverges, then the spins are not pointing along
any preferred direction, and hence there is no mean magnetization.

c. Modify your program so that an arrow is drawn at each site to show the orientation of each
spin. We will look at a typical configuration and analyze it visually. Begin with a 32 × 32
lattice with spins pointing in random directions and do a temperature quench from T = ∞ to
T = 0.5. (Simply change the value of β in the Boltzmann probability.) Such a quench should
lock in some long lived, but metastable vortices. A vortex is a region of the lattice where the
spins rotate by at least 2π as your eye moves around a closed path (see Fig. 17.7). To determine
the center of a vortex, choose a group of four spins that are at the corners of a unit square,
and determine whether the spins turn by ±2π as your eye goes from one spin to the next in a
counterclockwise direction around the square. Assume that the difference between the direction
of two neighboring spins, δθ, is in the range −π < δθ < π. A total rotation of +2π indicates
the existence of a positive vortex, and a change of −2π indicates a negative vortex. Count the
number of positive and negative vortices. Repeat these observations on several configurations.
What can you say about the number of vortices of each sign?

d. Write a subroutine to determine the existence of a vortex for each 1 × 1 square of the lattice.
Represent the center of the vortices using a different symbol to distinguish between a positive
and a negative vortex. Do a Monte Carlo simulation to compute the mean energy, specific heat,
and number of vortices in the range from T = 0.5 to T = 1.5 in steps of 0.1. Use the last
configuration at the previous temperature as the first configuration for the next temperature.
Begin at T = 0.5 with all θi = 0. Draw the vortex locations for the last configuration at each
temperature. Use at least 1000 Monte Carlo steps per spin at each temperature to equilibrate
and at least 5000 Monte Carlo steps per spin for computing the averages. Use an 8 × 8 or
16 × 16 lattice if your computer resources are limited, and larger lattices if you have sufficient
resources. Describe the T dependence of the energy, specific heat, and vorticity (equal to the
number of vortices per area). Plot the logarithm of the vorticity versus T for T < 1.1. What
can you conclude about the T -dependence of the vorticity? Explain why this form is reasonable.
Describe the vortex configurations. At what temperature can you find a vortex that appears to
be free, that is, a vortex that is not obviously paired up with another vortex of opposite sign?

e. The Kosterlitz-Thouless theory predicts that the susceptibility χ diverges above the transition
as

χ ∼A eb/ϵν

, (17.66)

where ϵ is the reduced temperature ϵ = (T −TKT )/TKT , ν = 0.5, and A and b are nonuniversal
constants. Compute χ from the relation (17.14) with M = 0 because the mean magnetization
vanishes. Assume the exponential form (17.66) for χ in the range T = 1 and T = 1.2 with
ν = 0.7, and find the best values of TKT , A, and b. (Although the analytical theory predicts
ν = 0.5, simulations for small systems indicate that ν = 0.7 gives a better fit.) One way to
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determine TKT , A, and b is to assume a value of TKT and then do a least squares fit of lnχ to
determine A and b. Choose the set of parameters that minimizes the variance of ln χ. How does
your estimated value of TKT compare with the temperature at which free vortices first appear?
At what temperature does the specific heat have a peak? The Kosterlitz-Thouless theory
predicts that the specific heat peak does not occur at TKT . This result has been confirmed by
simulations (see Tobochnik and Chester). To obtain quantitative results, you will need lattices
larger than 32 × 32.

Project 17.26. Classical Heisenberg model in two dimensions
The energy or Hamiltonian of the classical Heisenberg model is similar to the Ising model and the
planar model, except that the spins can point in any direction in three dimensions. The energy in
zero external magnetic field is

E = −J
N∑

i,j=nn(i)

si · sj , (17.67)

where s is a classical vector of unit length. The spins have three components, in contrast to the
spins in the Ising model which only have one component, and the spins in the planar model which
have two components. We will consider the two-dimensional Heisenberg model for which the spins
are located on a two-dimensional lattice.

Early simulations and approximate theories led researchers to believe that there was a con-
tinuous phase transition, similar to that found in the Ising model. The Heisenberg model received
more interest after it was related to the confinement for quarks. Lattice models of the interaction
between quarks, called lattice gauge theories, predict that the confinement of quarks can be ex-
plained if there are no phase transitions in these models. (The lack of a phase transition in these
models implies that the attraction between quarks grows with distance.) The Heisenberg model is
a two-dimensional analog of the four-dimensional models used to model quark-quark interactions.
Shenker and Tobochnik used a combination of Monte Carlo and renormalization group methods to
show that this model does not have a phase transition. Subsequent work on lattice gauge theories
showed similar behavior.

a. Modify your Ising model program to simulate the Heisenberg model in two dimensions. One way
to do so is to define three arrays, one for each of the three components of the unit spin vectors. A
trial Monte Carlo move consists of randomly changing the direction of a spin, si. First compute
a small vector ∆s = ∆smax(p1 , p2 , p3 ), where −1 ≤ pn ≤ 1 is a uniform random number, and
∆smax is the maximum change of any spin component. If |∆s| > ∆smax, than compute another
∆s. This latter step is necessary to insure that the change in a spin direction is symmetrically
distributed around the current spin direction. Next let the trial spin equal si + ∆s normalized
to a unit vector. The standard Metropolis algorithm can now be used to determine if the trial
spin is accepted. Compute the mean energy, specific heat, and susceptibility as a function of
T . Choose lattice sizes of L = 8, 16, 32 and larger if possible and average over at least 2000
Monte Carlo steps per spin at each temperature. Is there any evidence of a phase transition?
Does the susceptibility appear to diverge at a nonzero temperature? Plot the natural log of
the susceptibility versus the inverse temperature, and determine the temperature dependence
of the susceptibility in the limit of low temperatures.


