
CHAPTER 14. COMPLEX SYSTEMS 587

velocity vector direction symbol abbreviation decimal binary
v0 (1, 0) RIGHT RI 1 00000001

v1 (1,−
√
3)/2 RIGHT DOWN RD 1 00000010

v2 −(1,
√
3)/2 LEFT DOWN LD 4 00000100

v3 (−1, 0) LEFT LE 8 00001000

v4 (−1,
√
3)/2 LEFT UP LU 16 00010000

v5 (1,
√
3)/2 RIGHT UP RU 32 00100000

v6 (0, 0) STATIONARY S 64 01000000
BARRIER 128 10000000

Table 14.1: Summary of the possible velocities and their representations.

14.6 Lattice Gas Models of Fluid Flow

We now return to cellular automaton models and discuss one of their more interesting applications
– simulations of fluid flow. In general, fluid flow is very difficult to simulate because the partial
differential equation describing the flow of incompressible fluids, the Navier-Stokes equation, is
nonlinear, and this nonlinearity can lead to the failure of standard numerical algorithms. In
addition, there are typically many length scales that must be considered simultaneously. These
length scales include the microscopic motion of the fluid particles, the length scales associated
with fluid structures such as vortices, and the length scales of macroscopic objects such as pipes or
obstacles. Because of these considerations, simulations of fluid flow based on the direct numerical
solutions of the Navier-Stokes equation typically require very sophisticated numerical methods
(cf. Oran and Boris).

Cellular automaton models of fluids are known as lattice gas models. In a lattice gas model
the positions of the particles are restricted to the sites of a lattice, and the velocities are restricted
to a small number of vectors corresponding to neighbor sites. A time step is divided into two
substeps. In the first substep the particles move freely to their corresponding nearest neighbor
lattice sites. Then the velocities of the particles at each lattice site are changed according to a
collision rule that conserves mass (particle number), momentum, and kinetic energy. The purpose
of the collision rules is not to accurately model microscopic collisions, but rather to achieve the
correct macroscopic behavior. The idea is that if we satisfy the conservation laws associated with
microscopic collisions, then we can find the correct physics at the macroscopic level, including
translational and rotational invariance, by averaging over many particles.

We assume a triangular lattice, because it can be shown that this symmetry is sufficient to
yield the macroscopic Navier-Stokes equations for a continuum. In contrast, the more limited
symmetry of a square lattice is not sufficient. Three-dimensional models are much more difficult
to implement and justify theoretically.

All the moving particles are assumed to have the same speed and mass. The possible velocity
vectors lie only in the direction of the nearest neighbor sites, and hence there are six possible
velocities as summarized in Table 14.1. A rest particle also is allowed. The number of particles at
each site moving in a particular direction (channel) is restricted to be zero or one.

In the first substep all particles move in the direction of their velocity to a neighboring site. In
the second substep the velocity vectors at each lattice site are changed according to the appropriate

CHAPTER 14. COMPLEX SYSTEMS 588

LU RU

RILE

RDLD

Figure 14.4: Examples of collision rules for three particles, with one particle unchanged and no
stationary particles. Each direction or channel is represented by 32 bits, but we need only the first
8 bits. The various channels are summarized in Table 14.1.

(a) (b) (c)

Figure 14.5: (a) Example of collision rule for three particles with zero net momentum. (b) Example
of two particle collision rule. (c) Example of four particle collision rule. The rules for states that
are not shown is that the velocities do not change after a collision. An open circle represents a
lattice site and the absence of a stationary particle.

collision rule. Examples of the collision rules are illustrated in Figures 14.4–14.6. The rules
are deterministic with only one possible set of velocities after a collision for each possible set of
velocities before a collision. It is easy to check that momentum conservation for collisions between
the particles is enforced by these rules.

As in Section 14.1, we use bit manipulation to efficiently represent a lattice site and the
collision rules. Each lattice site is represented by one element of the integer array lattice. In
Java each int stores 32 bits, but we will use only the first 8 bits. We use the first six bits from 0 to
5 to represent particles moving in the six possible directions with bit 0 corresponding to a particle
moving with velocity v0 (see Table 14.1). If there are three particles with velocities v0, v2, and
v4 at a site and no barrier, then the value of the lattice array element at this site is 00010101 in
binary notation.

Bit 6 represents a possible rest (stationary) particle. If we want a site to act as a barrier
that blocks incoming particles, we set bit 7. For example, a barrier site containing a particle with
velocity v1 is represented by 10000010.

CHAPTER 14. COMPLEX SYSTEMS 589

The rules for the collisions are given in the declaration of the class variables in class LatticeGas.
Because rule is declared static final, we cannot normally overwrite its values. However, an
exception is made for static initializers that are run when the class is first loaded. To construct
the rules, we use the bitwise or operator, |, and use named constants for each of the possible
states. As an example, the state corresponding to one particle moving to the right, one moving to
the left and down, and one moving to the left and up is given by LU + LD + RI, which we write
as LU|LD|RI or 00010101. The collision rule in Figure 14.5(a) is that this state transforms to
one particle moving to the right and down, one moving left, and one moving to the right and up.
Hence, this collision rule is given by rule[LU|LD|RI] = RU|LE|RD. The other rules are given in
a similar way. Stationary particles also can be created or destroyed. For example, what are the
states before and after the collision for rule[LU|RI] = RU|S?

To every rule corresponds a dual rule that flips the bits corresponding to the presence and
absence of a particle. This duality means that we need to only specify half of the rules. The dual
rules can be constructed by flipping all bits of the input and output. Our convention is to list the
rules starting without a stationary particle. Then the corresponding dual rules are those that start
with a stationary particle. The dual rules are implemented by the statement

r u l e [i ˆ(RU|LU |LE |LD |RD|RI | S)] = ru l e [i] ˆ (RU|LU |LE |LD |RD|RI | S) ;

where ˆ is the bitwise exclusive or operator, which equals 1 if both bits are different, and is 0
otherwise. Two examples of dual rules are given in Figure 14.6.

The rules in Figures 14.5(b) and 14.5(c) cycle through the states in a particular direction.
Although these rules are straightforward, they are not invariant under reflection. To help eliminate
this bias, we cycle in the opposite direction when a stationary particle is present (see Figure 14.6).

We adopt the rule that when a particle moves onto a barrier site, we set the velocity v of
this particle equal to −v (see Figure 14.7). Because of our ordering of the velocities, the rule for
updating a barrier can be expressed compactly using bit manipulation. Reflection off a barrier is
accomplished by shifting the higher order bits to the right by three bits (>>>3) and shifting the
lower order bits to the left by three bits (<<3). Check the rules given in Listing 14.13. Other
possibilities are to set the angle of incidence equal to the angle of reflection or to set the velocity
to an arbitrary direction. The latter case would correspond to a collision off a rough surface.

The step method runs through the entire lattice and moves all the particles. The updated
values of the sites are placed in the array newLattice. We then go through the newLattice array,
implement the relevant collision rule at each site, and write the results into the array Lattice.

The movement of the particles is accomplished as follows. Because the even rows are horizon-
tally displaced one half a lattice spacing from the odd rows, we need to treat odd and even rows
separately. In the step method we loop through every other row and update site1 and site2 at
the same time. An example will show how this update works. The statement

rght [j −1] |= s i t e 1 & RIGHTDOWN;

means that if there is a particle moving to the right and down at site1, then the bit corresponding
to RIGHT DOWN is added to the site rght (see Figure 14.8). The statement

cent [j] |= s i t e 1 & (STATIONARY |BARRIER) | s i t e 2 & RIGHTDOWN;

CHAPTER 14. COMPLEX SYSTEMS 590

(a) (b)

(c) (d)

Figure 14.6: (a) and (c) and (b) and (d) are duals of each other. An open circle represents the
absence of a stationary particle, and a filled circle represents the presence of a stationary particle.
Note that the collision rule in (c) is similar to (b), and the collision rule in (d) is similar to (a),
but in the opposite direction.

means that a stationary particle at site1 remains there, and if site1 is a barrier, it remains so.
If site2 has a particle moving in the direction RD, then site1 will receive this particle.

To maintain a steady flow rate, we add the necessary horizonal momentum to the lattice
uniformly after each time step. The procedure is to chose a site at random and determine if it is
possible to change the sites’s horizontal momentum. If so, we then remove the left bit and add the
right bit or vice versa. This procedure is accomplished by the statements at the end of the step
method.

Listing 14.13: Listing of the LatticeGas class.

package org . opensourcephys i c s . s i p . ch14 . l a t t i c e g a s ;
import org . opensourcephys i c s . d i sp l ay . ;
import java . awt . ;
import java . awt . geom . Aff ineTransform ;
import java . awt . geom . Line2D ;

public class Latt iceGas implements Drawable {
// input parameters from user
public double f lowSpeed ; // con t r o l s p re s sure
public double arrowSize ; // s i z e o f v e l o c i t y arrows d i s p l a y ed
public int spat ia lAverag ingLength ; // s p a t i a l averag ing o f v e l o c i t y
public int Lx , Ly ; // l i n e a r dimensions o f l a t t i c e
public int [] [] l a t t i c e , newLatt ice ;

CHAPTER 14. COMPLEX SYSTEMS 591

move rule move

t = 0 t = 1 t = 2

Figure 14.7: Example of a collision from a barrier. The symbol ⊗ denotes a barrier site.

site1

j - 1

j

j + 1site2

rghtcent

j + 2

left

Figure 14.8: We update site1 and site2 at the same time. The rows are indexed by j. The
dotted line connects sites in the same column.

private double numPart ic les ;
stat ic f ina l double SQRT3 OVER2 = Math . s q r t (3) / 2 ;
stat ic f ina l double SQRT2 = Math . s q r t (2) ;
stat ic f ina l int

RIGHT = 1 , RIGHTDOWN = 2 , LEFTDOWN = 4 ;
stat ic f ina l int

LEFT = 8 , LEFT UP = 16 , RIGHT UP = 32 ;
stat ic f ina l int

STATIONARY = 64 , BARRIER = 128 ;
stat ic f ina l int NUMCHANNELS = 7 ; // maximum number o f p a r t i c l e s per s i t e
stat ic f ina l int NUM BITS = 8 ; // 7 channel b i t s p l u s 1 b a r r i e r b i t per s i t e
stat ic f ina l int NUMRULES = 1<<8; // t o t a l number o f p o s s i b l e s i t e c on f i g u r a t i on s = 2ˆ8
// 1 << 8 means move the z e ro th b i t over 8 p l a c e s to the l e f t to the e i g h t h b i t

stat ic f ina l double ux [] = {
1 . 0 , 0 . 5 , −0.5 , −1.0 , −0.5 , 0 . 5 , 0

} ;
stat ic f ina l double uy [] = {

0 . 0 , −SQRT3 OVER2, −SQRT3 OVER2, 0 . 0 , SQRT3 OVER2, SQRT3 OVER2, 0
} ;
stat ic f ina l double [] vx , vy ; // averaged v e l o c i t i e s f o r every s i t e c on f i g u r a t i on
stat ic f ina l int [] r u l e ;

stat ic { // s e t r u l e t a b l e

CHAPTER 14. COMPLEX SYSTEMS 592

// d e f a u l t r u l e i s the i d e n t i t y r u l e
r u l e = new int [NUMRULES] ;
for (int i = 0 ; i<BARRIER; i++) {

r u l e [i] = i ;
}
// a b b r e v i a t i o n s f o r channel b i t i n d i c e s
int RI = RIGHT, RD = RIGHTDOWN, LD = LEFTDOWN;
int LE = LEFT, LU = LEFT UP, RU = RIGHT UP;
int S = STATIONARY;
// th r ee p a r t i c l e zero momentum ru l e s
r u l e [LU |LD |RI] = RU|LE |RD;
ru l e [RU|LE |RD] = LU |LD |RI ;
// th r ee p a r t i c l e r u l e s wi th unperturbed p a r t i c l e
r u l e [RU|LU |LD] = LU |LE |RI ;
r u l e [LU |LE |RI] = RU|LU |LD;
ru l e [RU|LU |RD] = RU|LE |RI ;
r u l e [RU|LE |RI] = RU|LU |RD;
ru l e [RU|LD |RD] = LE |RD|RI ;
r u l e [LE |RD|RI] = RU|LD |RD;
ru l e [LU |LD |RD] = LE |LD |RI ;
r u l e [LE |LD |RI] = LU |LD |RD;
ru l e [RU|LD |RI] = LU |RD|RI ;
r u l e [LU |RD|RI] = RU|LD |RI ;
r u l e [LU |LE |RD] = RU|LE |LD;
ru l e [RU|LE |LD] = LU |LE |RD;
// two p a r t i c l e c y c l i c r u l e s
r u l e [LE |RI] = RU|LD;
ru l e [RU|LD] = LU |RD;
ru l e [LU |RD] = LE |RI ;
// four p a r t i c l e c y c l i c r u l e s
r u l e [RU|LU |LD |RD] = RU|LE |LD |RI ;
r u l e [RU|LE |LD |RI] = LU |LE |RD|RI ;
r u l e [LU |LE |RD|RI] = RU|LU |LD |RD;
// s t a t i ona r y p a r t i c l e c r ea t i on r u l e s
r u l e [LU |RI] = RU| S ;
r u l e [RU|LE] = LU | S ;
r u l e [LU |LD] = LE | S ;
r u l e [LE |RD] = LD | S ;
r u l e [LD |RI] = RD| S ;
r u l e [RD|RU] = RI | S ;
r u l e [LU |LE |LD |RD|RI] = RU|LE |LD |RD| S ;
r u l e [RU|LE |LD |RD|RI] = LU |LD |RD|RI | S ;
r u l e [RU|LU |LD |RD|RI] = RU|LE |RD|RI | S ;
r u l e [RU|LU |LE |RD|RI] = RU|LU |LD |RI | S ;
r u l e [RU|LU |LE |LD |RI] = RU|LU |LE |RD| S ;
r u l e [RU|LU |LE |LD |RD] = LU |LE |LD |RI | S ;
// add a l l r u l e s indexed wi th a s t a t i o na r y p a r t i c l e (dua l r u l e s)
for (int i = 0 ; i<S ; i++) {

r u l e [i ˆ(RU|LU |LE |LD |RD|RI | S)] = ru l e [i] ˆ (RU|LU |LE |LD |RD|RI | S) ; // ˆ i s the e x c l u s i v e or opera tor
}

CHAPTER 14. COMPLEX SYSTEMS 593

// add r u l e s to bounce back at b a r r i e r s
for (int i = BARRIER; i<NUMRULES; i++) {

int h ighBi t s = i&(LE |LU |RU) ; // & i s b i t w i s e and opera tor
int lowBits = i&(RI |RD|LD) ;
r u l e [i] = BARRIER | (h ighBits >>3)|(lowBits <<3);

}
}
stat ic { // s e t average s i t e v e l o c i t i e s

// f o r every p a r t i c l e s i t e c on f i g u r a t i on i , c a l c u l a t e t o t a l net v e l o c i t y
// and p l ace in vx [i] , vy [i]
vx = new double [NUMRULES] ;
vy = new double [NUMRULES] ;
for (int i = 0 ; i<NUMRULES; i++) {

for (int d i r = 0 ; d i r<NUMCHANNELS; d i r++) {
i f ((i&(1<<d i r)) !=0) {

vx [i] += ux [d i r] ;
vy [i] += uy [d i r] ;

}
}

}
}
public void i n i t i a l i z e (int Lx , int Ly , double dens i ty) {

this . Lx = Lx ;
this . Ly = Ly−Ly%2; // Ly must be even
numPart ic les = Lx Ly NUMCHANNELS dens i ty ; // approximate t o t a l number o f p a r t i c l e s
// den s i t y i s the number o f p a r t i c l e s d i v i d ed by the maximum number p o s s i b l e
l a t t i c e = new int [Lx] [Ly] ;
newLatt ice = new int [Lx] [Ly] ;
int s e v e nPa r t i c l e S i t e = ((1<<NUMCHANNELS)−1); // equa l s 127
for (int i = 0 ; i<Lx ; i++) {

l a t t i c e [i] [1] = l a t t i c e [i] [Ly−2] = BARRIER; // wa l l a t top and bottom
for (int j = 2 ; j<Ly−2; j++) {

// occupy s i t e by 0 or 7 p a r t i c l e s , average occupat ion w i l l be about the d en s i t y
int s i t eVa lue = Math . random()< dens i ty ? s e v e nPa r t i c l e S i t e : 0 ;
l a t t i c e [i] [j] = s i t eVa lue ; // random p a r t i c l e c on f i g u r a t i on

}
}
for (int j = 3 Ly/10 ; j<7 Ly/10 ; j++) {

l a t t i c e [2 Lx / 1 0] [j] = BARRIER; // o b s t r u c t i on toward the l e f t
}

}

public void s tep () {
// move a l l p a r t i c l e s forward
for (int i = 0 ; i<Lx ; i++) {

// de f i n e the columns o f a 2−dim array
int [] l e f t = newLatt ice [(i−1+Lx)%Lx] ;
int [] cent = newLatt ice [i] ; // use a b b r e v i a t i o n s to a l i g n e xp r e s s i on s
int [] rght = newLatt ice [(i+1)%Lx] ;
for (int j = 1 ; j<Ly−2; j += 2) {

CHAPTER 14. COMPLEX SYSTEMS 594

// loop j in increments o f 2 in order to decrease reads and wr i t e s o f ne i ghbor s
int s i t e 1 = l a t t i c e [i] [j] ;
int s i t e 2 = l a t t i c e [i] [j +1] ;
// move a l l p a r t i c l e s in s i t e 1 and s i t e 2 to t h e i r ne i ghbor s
rght [j −1] |= s i t e 1&RIGHTDOWN;
cent [j −1] |= s i t e 1&LEFTDOWN;
rght [j] |= s i t e 1&RIGHT;
cent [j] |= s i t e 1&(STATIONARY |BARRIER) | s i t e 2&RIGHTDOWN;
l e f t [j] |= s i t e 1&LEFT | s i t e 2&LEFTDOWN;
rght [j +1] |= s i t e 1&RIGHT UP | s i t e 2&RIGHT;
cent [j +1] |= s i t e 1&LEFT UP | s i t e 2&(STATIONARY|BARRIER) ;
l e f t [j +1] |= s i t e 2&LEFT;
cent [j +2] |= s i t e 2&RIGHT UP;
l e f t [j +2] |= s i t e 2&LEFT UP;

}
} // handle c o l l i s i o n s , f i n d average x v e l o c i t y
double vxTotal = 0 ;
for (int i = 0 ; i<Lx ; i++) {

for (int j = 0 ; j<Ly ; j++) {
int s i t e = ru l e [newLatt ice [i] [j]] ; // use c o l l i s i o n ru l e
l a t t i c e [i] [j] = s i t e ;
newLatt ice [i] [j] = 0 ; // r e s e t newLat t ice va l u e s to 0
vxTotal += vx [s i t e] ;

}
}
int s c a l e = 4 ;
int i n j e c t i o n s = (int) ((f lowSpeed numPartic les−vxTotal)/ s c a l e) ;
for (int k = 0 ; k<Math . abs (i n j e c t i o n s) ; k++) {

int i = (int) (Math . random () Lx) ; // choose s i t e a t random
int j = (int) (Math . random () Ly) ;
// f l i p d i r e c t i o n o f h o r i z o n t a l l y moving p a r t i c l e i f p o s s i b l e
i f ((l a t t i c e [i] [j]&(RIGHT |LEFT))==((i n j e c t i o n s >0) ? LEFT : RIGHT)) {

l a t t i c e [i] [j] ˆ= RIGHT |LEFT;
}

}
}

public void draw (DrawingPanel panel , Graphics g) {
i f (l a t t i c e==null) {

return ;
}
// i f s = 1 draw l a t t i c e and p a r t i c l e d e t a i l s e x p l i c i t l y
// o the rw i s e average v e l o c i t y over an s by s square
int s = spat ia lAverag ingLength ;
Graphics2D g2 = (Graphics2D) g ;
Aff ineTransform toP i x e l s = panel . getPixe lTrans form () ;
Line2D . Double l i n e = new Line2D . Double () ;
for (int i = 0 ; i<Lx ; i++) {

for (int j = 2 ; j<Ly−2; j++) {
double x = i+(j %2) 0.5 ;

CHAPTER 14. COMPLEX SYSTEMS 595

double y = j SQRT3 OVER2;
i f (s==1) {

g2 . s e tPa in t (Color .BLACK) ;
for (int d i r = 0 ; d ir<NUMCHANNELS; d i r++) {

i f ((l a t t i c e [i] [j]&(1<<d i r)) !=0) {
l i n e . s e tL ine (x , y , x+ux [d i r] 0 . 4 , y+uy [d i r] 0 . 4) ;
g2 . draw (t oP i x e l s . createTransformedShape (l i n e)) ;

}
}

}
i f ((l a t t i c e [i] [j]&BARRIER)==BARRIER | | s==1) { // draw po in t s a t l a t t i c e s i t e s

Ci r c l e c = new Ci r c l e (x , y) ;
c . pixRadius = ((l a t t i c e [i] [j]&BARRIER)==BARRIER) ? 2 : 1 ;
c . draw (panel , g) ;

}
}

}
i f (s==1) {

return ;
}
for (int i = 0 ; i<Lx ; i += s) {

for (int j = 0 ; j<Ly ; j += s) {
double x = i+s / 2 . 0 ;
double y = (j+s /2 . 0) SQRT3 OVER2;
double

wx = 0 , wy = 0 ; // compute coarse gra ined average v e l o c i t y
for (int m = i ;m!=(i+s)%Lx ;m = (m+1)%Lx) {

for (int n = j ; n !=(j+s)%Ly ; n = (n+1)%Ly) {
wx += vx [l a t t i c e [m] [n]] ;
wy += vy [l a t t i c e [m] [n]] ;

}
}
Arrow a = new Arrow(x , y , arrowSize wx/s , arrowSize wy/ s) ;
a . setHeadSize (2) ;
a . draw (panel , g) ;

}
}

}
}

Listing 14.14: Listing of the LatticeGasApp class.

package org . opensourcephys i c s . s i p . ch14 . l a t t i c e g a s ;
import org . opensourcephys i c s . c o n t r o l s . ;
import org . opensourcephys i c s . frames . ;

public class LatticeGasApp extends AbstractS imulat ion {
Latt iceGas model = new Latt iceGas () ;
DisplayFrame d i sp l ay = new DisplayFrame ("Lattice gas") ;

CHAPTER 14. COMPLEX SYSTEMS 596

public LatticeGasApp () {
d i sp l ay . addDrawable (model) ;
d i sp l ay . s e t S i z e (800 , (int) (400 Math . s q r t (3) / 2)) ;

}

public void i n i t i a l i z e () {
int l x = con t r o l . g e t In t ("lx") ;
int l y = con t r o l . g e t In t ("ly") ;
double dens i ty = con t r o l . getDouble ("Particle density") ;
model . i n i t i a l i z e (lx , ly , dens i ty) ;
model . f lowSpeed = con t r o l . getDouble ("Flow speed") ;
model . spat ia lAverag ingLength = con t r o l . g e t In t ("Spatial averaging length") ;
model . arrowSize = con t r o l . g e t In t ("Arrow size") ;
d i sp l ay . setPreferredMinMax (−1 , lx , −Math . s q r t (3)/2 , l y Math . s q r t (3) / 2) ;

}

public void doStep () {
model . f lowSpeed = con t r o l . getDouble ("Flow speed") ;
model . spat ia lAverag ingLength = con t r o l . g e t In t ("Spatial averaging length") ;
model . arrowSize = con t r o l . getDouble ("Arrow size") ;
model . s t ep () ;

}

public void r e s e t () {
c on t r o l . setValue ("lx" , 1 000) ;
c on t r o l . setValue ("ly" , 5 00) ;
c on t r o l . setValue ("Particle density" , 0 . 2) ;
c on t r o l . s e tAdjustab leValue ("Flow speed" , 0 . 2) ;
c on t r o l . s e tAdjustab leValue ("Spatial averaging length" , 2 0) ;
c on t r o l . s e tAdjustab leValue ("Arrow size" , 2) ;
enab leStepsPerDisp lay (true) ;
c on t r o l . s e tAdjustab leValue ("steps per display" , 1 00) ;

}

public stat ic void main (S t r ing [] a rgs) {
Simulat ionContro l . createApp (new LatticeGasApp ()) ;

}
}

An important application of lattice gas models is to simulate the flow in and around various
geometries. In Problem 14.20 we will see that the fluid velocity field develops vortices, wakes, and
other fluid structures near obstacles. Method initialize in class LatticeGas places an obstacle
in the middle of the lattice and provides initial values for each site. Large lattices are required to
obtain quantitative results, because it is necessary to average the velocity over many sites. The
parameter density is the average number of particles divided by the maximum possible. The
pressure can be varied by changing the flowSpeed parameter.

Problem 14.20. Flow past a barrier

a. Convince yourself that you understand the collision rules and their implementation in class

CHAPTER 14. COMPLEX SYSTEMS 597

LatticeGas. Then download the class FastLatticeGas from the ch14 directory. This latter
class uses all 32 bits of an int variable and runs about twice as fast. The tradeoff is that the
code is more difficult to debug and understand. Use the parameters in Listing 14.14. Describe
the flow once a steady state velocity field begins to appear. Do you see a wake appearing behind
the obstacle? Are there vortices?

b. Repeat part (a) with different size obstacles. Are there any systematic trends? (One limitation
of the present program is that it naively redraws a circle to represent each barrier site. This
redrawing requires a significant amount of computer resources and limits the size of the obstacles
that we can consider.)

c. Reduce the pressure by reducing the flow speed. Are there any noticeable changes in behavior
from parts (a) and (b)? Reduce the pressure still further and describe any changes in the fluid
flow.

Problem 14.21. Approach to equilibrium

a. Consider the approach of a lattice gas to equilibrium. Modify LatticeGas so that the initial
configuration has zero net momentum, the particles are localized in a b× b region, and there are
no barrier sites. Choose L = 30 and b = 4 and place six particles at every site in the localized
region. The other sites in the lattice are initially empty. Describe what happens to the particles
as a function of time. Approximately how many time steps does it take for the system to come
to equilibrium? Do the particles appear to be at random positions with random velocities?
What is your visual algorithm for determining when equilibrium has been reached?

b. Repeat part (a) for b = 2, 6, 8, and 10. Estimate the equilibration time in each case. What
is the qualitative dependence of the equilibration time on b? How does the equilibration time
depend on the number density ρ?

c. Repeat part (a) with b = 4, but with L = 10, 20, and 40. Estimate the equilibration time in
each case. How does the equilibration time depend on ρ?

Problem 14.22. Fluid flow in porous media

a. Modify class LatticeGas so that instead of a rectangular barrier, the barrier sites are placed
at random in the system. We define the porosity, φ, as the fraction of sites without a barrier.
The interesting quantity to measure is the permeability, k, which is a measure of the fluid
conductivity. We can compute the permeability using the relation

k ∝
φ
∑

i〈vi,x〉∑
j〈∆pj,x〉

, (14.8)

where the sum in the numerator is over the horizontal velocity of all particles in the pore space
(the sites at which there are no barriers), and the sum in the denominator is over the injected
momentum at all sites used to maintain the flow. The brackets refer to averages over time.
Compute the permeability as a function of the porosity φ and display your results on a log-log
plot. You should average over at least 10 configurations of random barrier sites for each value of

