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Abstract 

A binary game is introduced and analysed. N players have to choose one of the two sides 
independently and those on the minority side win. Players use a finite set of ad hoc strategies 
to make their decision, based on the past record. The analysing power is limited and can adapt 
when necessary. Interesting cooperation and competition patterns of the society seem to arise 
and to be responsive to the payoff function. 
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Most current economics theories are deductive in origin. One assumes that each 

participant knows what is best for him given that all other participants are equally 

intelligent in choosing their best actions. However, it is recently realised that in the 

real world the actual players do not have the perfect foresight and hindsight, most 

often their actions are based on trial-and-error inductive thinking, rather than the de- 

ductive rationale assuming that there are underlying first principles. Whether deductive 

or inductive thinking is more relevant is still under debate [1]. 

Evolutionary games have also been studied within the standard framework of  game 

theory [2]. However, it has been recently pointed out that the approach traditionally 

used in economics is not convenient to generalise to include irrationality, and an alter- 

native Langevin-type equation is proposed [3]. As physicists, we would like to view a 

game with a large number o f  players, i.e. a statistical system, we need to explore new 
approaches in which the emerging collective phenomena can be better appreciated. One 

recent approach using bounded rationality is particularly inspiring, put forward by B. 

Arthur in his El  Farol  bar problem [4]. Following a similar philosophy, in this work 

we propose and study a simple evolutionary game. 
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Table 1 

Signal Prediction 

000 1 
001 0 
010 0 
011 1 
100 1 
101 0 
110 1 
111 0 

Let us consider a population of N (odd) players, each has some finite number of 
strategies S. At each time step, everybody has to choose to be in side A or side B. The 
payoff of the game is to declare that after everybody has chosen side independently, 
those who are in the minority side win. In the simpliest version, all winners collect a 
point. The players make decisions based on the common knowledge of the past record. 
We further limit the record to contain only yes and no, e.g. side A is the winning 
side or not, without the actual attendance number. Thus, the system's signal can be 
represented by a binary sequence, meaning A is the winning side (1) or not (0). 

Let us assume that our players are quite limited in their analysing power, they can 
only retain last M bits of the system's signal and make their next decision basing only 
on these M bits. Each player has a finite set of strategies. A strategy is defined to be 
the next action (to be in A or B) given a specific signal's M bits. An example of a 
strategy is illustrated in Table 1 for M -- 3. 

There are 8 (=  2 M) bits we can assign to the right side, each configuration corre- 
sponds to a distinct strategy, this makes the total number of strategies to be 22~' = 
256. This is indeed a fast increasing number, for M = 2,3,4,5 it is 16, 156, 65536, 
65 5362. We randomly draw S strategies for each player, and some strategies maybe by 
chance-shared. However, for moderately large M, the chance of repetition of a single 
strategy is exceedingly small. Another special case is to have all l ' s  (or O's) on the 
RHS of the table, corresponding to the fixed strategy of stay at one side no matter 
what happens. 

Let us analyse the structure of this minority game to see what to expect. Consider 
the extreme case where only one player takes a side, all the others take the other 
side. The lucky player gets a reward point, nothing for the others. Equally extreme 
example is that when ( N -  1 )/2 players at one side, (N + 1)/2 at the other. From 
the society point of view, the second situation is preferable since the whole population 
gets ( N -  1)/2 points, whereas in the first example, only one point - a huge waste. 
Perfect coordination and timing would approach the second, disaster would be the 
first example. In general, we expect the population to behave between the above two 
extremes. 

This binary game can be easily simulated for a large population of players. Initially, 
each player draws randomly one out of his S strategies and uses it to predict the next 
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step; an artificial signal of M bits is also given. All the S strategies in a players's bag 

collect points depending if they would win or not given the M past bits, and the actual 
outcome of the next play. However, these points are only virtual points as they record 
the merit of a strategy as if it were used each time. The player uses the strategy having 
the highest accumulated points (capital) for his action; he gets a real point only if the 
strategy used happens to win in the next play. 

In Fig. 1 we plot the actual number of attendance at side A, for a population of 1001 
players, having various brain size (i.e. M bits). As one may expect, the temporal signal 
indeed fluctuates around the 50%. Whoever takes side A wins a point at a given time 
step when the signal is below 501. The precise number is not known to the players, 
they only know if a side is winning or not, after their bet is made. Note that large 
fluctuations imply large waste since still more players could have taken the winning side 
without harm done to the others. On the other hand, smaller fluctuations imply more 
efficient usage of available resources, in general this would require coordination and 

cooperation - which are not built-in explicitly. We see that the population having larger 
brains (i.e. M larger) cope with each other better: the fluctuation is indeed in decreasing 
order for ever increasingly "intelligent" players (i.e. M = 6, 8, 10). Remarkable is that 
each player is by definition selfish, not considerate to fellow players, yet somehow they 
manage to somewhat share the limited available resources. 

Let us remark that the very simplest strategy by playing randomly is not included 
here, for generating random numbers more bits are needed. In a perfect timing, the aver- 
age gain in the population would be 1/2 per play. Waste is proportional to fluctuation's 
amplitude, hence the average gain is always below 1/2 in reality. Since the game is 
symmetrical in A and B, one may be tempted to use the simple strategy to stay at A 
or B, hoping to get exactly 1/2 gain. Let us mention if this strategy indeed rewards 
1/2 gain on average, many would imitate. Suppose that there is a group sitting at A 
no matter what signal is shown (this is included in the strategy space). The active 
players will soon recognise that they win less often choosing A than B. In fact, for 
them the game is no longer symmetrical and they will adopt accordingly so that the 
apparent advantage disappears for those sitting at one side fixed. This is similar to the 
arbitrage opportunities in finance: any obvious advantage will be arbitraged a w a y -  no 
easy "risk-free way" to make a living both for our players and those in the real world. 

The advantage of the larger brain sizes over the smaller ones can be better appreci- 
ated inspecting Fig. 2 . Identical parameters (N = 1001, S ---- 5) for a mixed population 
having M = I . . . . .  10. We thus force unequally equiped players to play together. One 
may fear that the "poorly" brained players may get exploited by the more powerfully 
brained ones; indeed this is the case. We plot the average gain per time step after a 
long time. We see that within a sub-population (same M) there are better and worse 
performers. We have noticed that better players do not necessarily stay that way for a 
long time, but exceptions exist. For M = 1, there appears fewer points, since there are 
more degeneracies. As a group the more intelligent players gain more and the spread 
between the rich and the poor is smaller, even though the in-fighting among them is 
more intensified. Note that above a certain size (M ~ 6) the average performance 
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Fig. 1. Actual number of  attendance at the side A against time, for a population of 1001 players, having 
brain size of  (a) 6, (b) 8 and (c) 10 bits. 
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Fig. 2. Success rate of a mixed population players against their memory (N = 1001, S = 5). 

of  a population appears to saturate, further increasing the brain size does not seem 
to improve further. This is due to the simple structure of  this version of  the game, 

there is nothing more to gain. Recall that only most crude information is transmitted 
to the players, i.e. only yes and no, not the exact attendance number. More precise in- 

formation would necessitate more analysing power, more complicated payoff functions 

and games also provides incentives to develop more sophisticated brains. However,  in 
the present work, we stick to the binary functions and will report more complicated 

applications using neural networks elsewhere. 

Of  course, the game is symmetrical for A and B. This can be observed in Fig. 3 , 

where the histograph shows the attendance of  A (hence B is the mirror image at the 

point N = 501). B. Arthur 's  El Farol problem uses 60% rule and does not give rise 
to new questions, and results appear to be similar. 

One may argue that our payoff function is too simple, i.e. a step function without 
differentiating a "good" minority from a "bad" one. Let us consider the payoff function 

N / x - 2 ,  i.e. these many (nearest integer values) points awarded to every player choosing 
the minority side, the number of  winning players being x < N/2. Clearly, this structure 

favours smaller minority. This is like in lottery you would like to be on the winning 
side, but even better you are alone there. The players thus face an extra type of  
competition, a winner would prefer less fellow winners in company. If, for instance, 
a player wins on a mediocre play, his winning strategies are hardly enhanced with 
respect to not winning at all. Globally, the population (N = 1001, M = 4) responds to 
having a histograph (Fig. 4 ) with two peaks. Although the jackpot (winning alone) 

is very appealing, this is very unlikely to happen since the fellow players are just as 
intelligent. The players need a sizeable gain to get motivation to win. There appears to 
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Fig. 3. Histograph of the attendance of A (N = 1001, M = 8, S = 5). 
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Fig. 4. Histograph of the attendance of A for a N/x - 2 payoff (N = 1001, M = 4, S = 5). 

be a compromise  that they effectively (not  through any enforceable agreement)  agree 

to show up on the minor i ty  side a smaller  n u m b e r  o f  players. What  is remarkable  here 

is that entropy, i.e. the most  l ikely configuration,  does not  favour  the distr ibution in 

Fig. 4. The players manage  to defy entropy; in other words, to get themselves organised 

to occupy less unl ike ly  configurations.  
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Fig. 5. Success rate against the number of  strategies (N = 1001, M = 5). 

One may enquire what happens if the players are provided with a bigger "idea bag" 

with more alternative strategies. In Fig. 5 we show the results for various populations 
(N -- 1001, M - 5) with S = 2,3 . . . . .  9. We see that, in general, with increas- 

ing number of alternatives the players tend to perform worse. What happens is that 

the players tend to switch strategies often and are more likely to get "confused", i.e. 
some outperforming strategy may distract the player's attention, after being chosen 

turns out to be underperforming. We recognise this has also to do with the observa- 
tion time, currently a player switches immediately if  another strategy has one virtual 

point more than that in use. If  a higher threshold is set, then the hinderance by in- 

creasing the number of  alternatives can be in part avoided. In the neural network 

version of our game, just one network (with adjustable weights) is given to a player. 

Let us recall that in a recent study, Borkar et al. [5] have proven that in an evolu- 
tionary game players tend to specialise in a single strategy, even though alternatives 
exist. 

In Fig. 6 we plot the switching rate against the success rate tbr various populations. 

The general tendency that the oftener one switches, less successfull one would end up. 
The phase space seems to be highly fragmented and many substructures appear, this 
having to do with the binary nature of our game. 

It is also instructive to follow the performance record. In Fig. 7, we select 3 top 
players, 3 bottom players and 3 randomly chosen players. They are chosen at the last 
time step and we trace back their past record. Their capital gains are scaled such that 

the average gain (over the population) appears in an almost horizontal line. We see 
that the general tendency for best and worst players are rather consistent even though 
setbacks for the best and bursts for the worst do occur. Notice that the gap between the 
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Fig. 6. Switching rate against the success rate for various populations. 
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Fig. 7. Performance record of the 3 best, the 3 worst and 3 randomly chosen players (N = 1001, M = 10, 
S =  5). 

rich and the poor appears to increase linearly with time, though reversion is possible 

but the poor players in general are doomed to stay poor. 

Another  result enhances this conclusion: one may blame bad players for their bad 

strategies. In order to check whether there are really good and bad strategies, we plot 

the virtual gains o f  all the strategies in the population. In Fig. 8 we see three different 
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Fig. 8. Different distributions of the average value of all the strategies with increasing iterations numbers 
(1000, 5000 and 10000), showing that all strategies are equivalent in the t ~ :xD limit. 

distributions of the average (time) gains. The longer the time the more concentrate is 
the distribution, indicating that the relative values of the strategies are about the same. 
Indeed, it can be analytically shown that all the strategies are equivalent to each other, 
since our game is symmetrical in A and B. So the bad players are bad because they 
have used the strategies inopportunely and are unlucky, also their specific composition 
is to blame. Note that a player is only distinguished from others by this composition, 
if two players have the same composition, they are clone sisters. In that case, initial 
conditions can still set them apart and they may know different fortunes only in the 
beginning. 

The above discussion calls for a genetic approach in which the poor players are 
regulary weeded out from the game and new players are introduced to replace the 
eliminated ones. Let us consider our minority game generalised to include the Darwin- 
ist selection: the worst player is replaced by a new one after a finite time steps, the 
new player is a clone of the best player, i.e. it inherits all the strategies but with cor- 
responding virtual capitals reset to zero. This is analogous to a new born baby, though 
having all the predispositions from the parents, it does not inherit their knowledge. 

To keep a certain diversity, we introduce mutation possibility in cloning. We allow 
one of the strategies of the best player to be replaced by a new one. Since strategies 
are not just recycled among the players any more, the whole strategy phase space 
is available for selection. We expect this population is capable of "learning" since 
self-destructive, obviously bad players are weeded out with time, fighting is among 
so-to-speak the best players. Indeed, in Fig. 9 we observe that the learning has emerged 
in time. Fluctuations are reduced and saturated, this implies the average gain for every- 
body is improved but never reaches the ideal limit. What would happen if no mutation 



416 D. Challet, Y.-C. Zhan,qlPhysica A 246 (1997) 407-418 

1000.0 

900.0 

800.0 

700.0 

800.0 

< 500.0 

400.0 

300,0 

200.0 

100,0 

0.0 20000.0 40000,0 60000,0 80000.0 
1 

I00000.0 

Fig. 9. Temporal attendance of A for the genetic approach showing a learning process, 
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Fig, 10, Temporal attendance of A of an "pure" population. 

is allowed and cloning is perfect? Eventually, population is full of  the clone copies 
of  the best player, each may still differ in their decision since the virtual capitals in 

their idea-bag can be different. In Fig. 10 we plot the performance of such a "pure" 
population; there appears tremendous waste and all strange things go loose. Indeed, the 

results from inbreeding look rather incestous. 
As a last experiment we start the population very "simple-minded", say M = 2. We 

allow in the cloning process mentioned above an additional feature that a bit of memory 
can be added or subtracted for the cloned new player, with a small probability. We 
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want to be sure that the rules are such that this structural mutation is strictly neutral, 
i.e. does not favour bigger brains over the smaller ones; we leave this to the invisible 
hand of  evolution to decide. Indeed, something remarkable takes place: in Fig. 11 we 
plot the average brain size in the population started with M = 2, for population of  
N = 101 and N = 1001. The temporal record shows that there is an "arm race" among 
the players. We know by now that the more brain power leads to advantage, so in 
the evolution of  survival-of-the-fittest the players develop bigger brains to cope with 
ever-aggressive fellow players. However, such an evolution appears to saturate and the 
"arm race" to settle at a given level. The saturation values are not universal, having 
to do with the time intervals of  reproduction. In general, the larger brains need longer 
time to learn. Larger population (N = 1001) needs more powerful brains to sustain 
the apparent equilibrium than the smaller population (N = lO01), also the learning 
rate (the slope in Fig. 11) is smaller. We mention en passant  that population's brain 
sizes do not concentrate on one value, only the average value is plotted. Some players 
manage to make do quite happily with a relatively small brain. 

To conclude, what can we learn from these simple numerical experiments? First of  
all, the economical behaviour in the real-world seems to call for a general approach 
to systematically study the evolutionary nature of  games. There are few most relevant 
questions to address: (1) Given each agent's selfishness what is his cooperative and 
cognitive skills in the course of  competition? (2) What is the emerging collective 
behaviour that is the society's performance without an enforceable authority? (3) How 
can our visible hand modify the rules of  the game (payoff functions) such that the global 
response may appear more cooperative? (4) How does evolution puts its invisible hand 
to work? Clearly, our study is far from answering all these. What we have presented 
in this work is not just an oversimplied model, but a general approach to ask the right 
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questions. This approach, as the reader can readily convince himself, is very open to all 
sorts of  variations. It is easy to include other situation-motivated payoff functions and 
game structures, there are qualitatively new questions to be asked when more realistic 
games are studied. It is a theoretical physicist's dream to have an Ising-type model, 
though oversimplified, and yet to capture some essential points of the real world. Our 
minority game may be indeed the simplest of the kind. 

Our model is by design without fundamentals and insider information. Players are 
forced to fight each other. With the Darwinism included, everyone has to keep im- 
proving in order to survive - the red-queen effect. Unlike some examples in standard 
game theory, there is no commonly accepted optimal strategy (analogous to physical 
systems without obvious ground states). A rational approach is helpless here. Yet the 
emerging society appears to have a certain organisation. Even though the players care 
only their own gain, cooperation and timing does seem to spontaneously arise. Note 
that our learning mechanism is different from the traditional neural network studies, 
where a pre-assigned task like a pattern is given and performance is measured on 
how precisely the original is restored. Here the task is self-appointed and no ending is 
defined. 

We may even speak of the emergence of intelligence. If the analysing power of the 

players can adapt to the increasingly challenging task (survival amongst ever-aggressive 
fellow players and larger number of players), the population seems to evolve to more 
equipped, larger brains appear to dominate and available resources are better explored, 
i.e. less fluctuation and waste in the attendance number. This is not unsimilar to the 
study of the prebiotic evolution: in the promodial soup only very simple organisms 
exist. Evolution allows these organisms to add one new feature (and reduce an existing 
one) from time to time. More complex organisms cope with the survival task better, 
on average, and more and more refined organisms spontaneously appear out of the 
monotonous soup [6]. 

We thank Matteo Marsili for helpful conversations. This work has been supported 
in part by the Swiss National Foundation through the Grant No. 20-46918.96. 
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