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We introduce cellular automata, neural networks, genetic algorithms, and growing networks to
explore the concepts of self-organization and complexity. Applications to sandpiles, fluids, earth-
quakes, and other areas are discussed.

14.1 Cellular Automata

Part of the fascination of physics is that it allows us to reduce natural phenomena to a few simple
laws. It also is fascinating to think about how a few simple laws can produce the enormously rich
behavior that we see in nature. In this chapter we will discuss several models that illustrate some
of the new ideas that are emerging from the study of complex systems.

The first class of models that we will discuss are known as cellular automata. Cellular au-
tomata were introduced by von Neumann and Ulam in 1948 and are mathematical idealizations
of dynamical systems in which space and time are discrete and the quantities of interest have a
finite set of discrete values that are updated according to a local rule. A cellular automaton can be
thought of as a lattice of sites or a checkerboard with colored squares (the cells). Each cell changes
its state at the tick of an external clock according to a rule based on the present configuration of
the cells in its neighborhood. Cellular automata are examples of discrete dynamical systems that
can be simulated exactly on a digital computer.

Because the original motivation for studying cellular automata was their biological aspects,
the discrete locations in space are frequently referred to as cells. More recently, cellular automata
have been applied to a wide variety of physical systems ranging from fluids to galaxies. We will
usually refer to sites rather then cells, except when we are explicitly discussing biological systems.
The important characteristics of cellular automata include the following:

1. Space is discrete and consists of a regular array of sites. Each site has a finite set of values.
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Figure 14.1: Example of a local rule for the evolution of a one-dimensional cellular automaton. The
variable at each site can have values 0 or 1. The top row shows the 23 = 8 possible combinations of
three sites. The bottom row gives the value of the central site at the next iteration. For example,
if the value of a site is 0 and its left neighbor is 1 and its right neighbor is 0, the central site will
have the value 1 in the next time step. This rule is termed 01011010 in binary notation (see the
second row), the modulo-two rule, or rule 90. Note that 90 is the base ten (decimal) equivalent of
the binary number 01011010, that is, 90 = 21 + 23 + 24 + 26.

2. The rule for the new value of a site depends only on the values of a local neighborhood of
sites near it.

3. Time is discrete. The variables at each site are updated simultaneously based on the values
of the variables at the previous time step. Hence, the state of the entire lattice advances in
discrete time steps.

We first consider one-dimensional cellular automata and assume that the neighborhood of a
given site is the site itself and the sites immediately to the left and right of it. Each site is assumed
to have two states (a Boolean automaton). An example of such a rule is illustrated in Figure 14.1,
where we see that a rule can be labeled by the binary representation of the update rule for each
of the eight possible neighborhoods and by the base ten equivalent of the binary representation.
Because any eight digit binary number specifies a one-dimensional cellular automaton, there are
28 = 256 possible rules.

Class OneDimensionalAutomatonApp takes the decimal representation of the rule as input
and produces the rule array update, which is used to update each lattice site using periodic
boundary conditions. The OneDimensionalAutomatonApp class manipulates numbers using their
binary representation. Note the use of the bit manipulation operators >>> and & (AND) in method
setRule. To understand how the right shift operator >>> works, consider the expression 13 >>>

1. In this case the result of the shift operator is to shift the bits of the binary representation of
the integer 13 to the right by one. Because the binary representation of 13 is 1101, the result of
the shift operator is 0110. (The left-hand bits are filled with 0s as needed.) To understand the
nature of the & operator, consider the expression 0110 & 1, which we can write as 0110 & 0001.
In this case the result is 0000 because the & operator sets each of the the resulting bits to 1 if the
corresponding bit in both operands is 1; otherwise the bit is zero.

We use the LatticeFrame class to represent the sites and their evolution. At a given time
the sites are drawn in the horizontal direction; time increases in the vertical direction. In method
iterate the % operator is used to determine the left and right neighbors of a site using periodic
boundary conditions. Also note the use of the left shift operator << in method iterate. A more
complete discussion of bit manipulation is given in Section 14.6.

Listing 14.1: One-dimensional cellular automaton class.

package org . opensourcephys i c s . s i p . ch14 . ca ;
import org . opensourcephys i c s . c on t r o l s . * ;
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import org . opensourcephys i c s . frames . * ;

public class OneDimensionalAutomatonApp extends Abst rac tCa l cu la t i on {
LatticeFrame automaton = new LatticeFrame ("" ) ;
int [ ] update = new int [ 8 ] ; // update [ ] maps neighborhood con f i g u r a t i on s to 0 or 1

public void c a l c u l a t e ( ) {
c on t r o l . c l ea rMessages ( ) ;
int L = con t r o l . g e t In t ("Linear dimension" ) ;
int tmax = con t r o l . g e t In t ("Maximum time" ) ;
automaton . r e s i z e L a t t i c e (L , tmax ) ; // d e f a u l t i s l a t t i c e s i t e s a l l zero
// seed l a t t i c e by pu t t i n g 1 in middle o f f i r s t row
automaton . setValue (L/2 , 0 , 1 ) ;
// choose co l o r o f empty and occupied s i t e s
automaton . set IndexedColor (0 , java . awt . Color .YELLOW) ; // empty
automaton . set IndexedColor (1 , java . awt . Color .BLUE) ; // occupied
setRule ( c on t r o l . g e t In t ("Rule number" ) ) ;
for ( int t = 1 ; t<tmax ; t++) {

i t e r a t e ( t , L ) ;
}

}

public void i t e r a t e ( int t , int L) {
for ( int i = 0 ; i<L ; i++) {

// read the neighborhood b i t s around index i , us ing p e r i o d i c b . c ' s
int l e f t = automaton . getValue ( ( i−1+L)%L , t −1);
int cente r = automaton . getValue ( i , t−1);
int r i g h t = automaton . getValue ( ( i+1)%L , t −1);
// encode l e f t , center , and r i g h t b i t s i n t o one i n t e g e r va lue
// between 0 and 7
int neighborhood = ( l e f t <<2)+(center<<1)+(r ight <<0);
// update [ neighborhood ] g i v e s the new s i t e va lue f o r t h i s neighborhood
automaton . setValue ( i , t , update [ neighborhood ] ) ;

}
}

public void setRule ( int ruleNumber ) {
c on t r o l . p r i n t l n ("Rule = "+ruleNumber+"\n" ) ;
c on t r o l . p r i n t l n ("111 110 101 100 011 010 001 000" ) ;
for ( int i = 7 ; i>=0; i−−) {

// ( ruleNumber >>> i ) s h i f t s the con ten t s o f ruleNumber to the r i g h t by i
// b i t s . In pa r t i c u l a r , the i t h b i t o f ruleNumber r e s i d e s in the r i gh tmos t
// po s i t i o n o f t h i s e xp re s s i on . Af ter ”and” ing wi th the number 1 , we are
// l e f t wi th e i t h e r the number 0 or 1 , depending on whether the i t h
// b i t o f ruleNumber was c l e a r ed or s e t .
update [ i ] = ( ( ruleNumber>>>i )&1) ;
c on t r o l . p r i n t (" "+update [ i ]+" " ) ;

}
c on t r o l . p r i n t l n ( ) ;

}
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public void r e s e t ( ) {
c on t r o l . setValue ("Rule number" , 9 0 ) ;
c on t r o l . setValue ("Maximum time" , 1 00 ) ;
c on t r o l . setValue ("Linear dimension" , 5 00 ) ;

}

public stat ic void main ( St r ing args [ ] ) {
Calcu la t i onContro l . createApp (new OneDimensionalAutomatonApp ( ) ) ;

}
}

The properties of all 256 one-dimensional cellular automata have been cataloged (see Wolfram,
1984). We explore some of the properties of one-dimensional cellular automata in Problems 14.1
and 14.3.

Problem 14.1. One-dimensional cellular automata

a. What is the result of 13 & 12, 33 >> 1 (decimal representation), and 1101 & 0111 (binary
representation)? Consider rule 90 and work out by hand the values of update[] according to
method setRule.

b. Use OneDimensionalAutomatonApp and consider rule 90 shown in Figure 14.1. This rule also
is known as the modulo-two rule, because the value of a site at step t+ 1 is the sum modulo 2
of its two neighbors at step t. Choose the initial configuration to be a single nonzero site (the
seed) at the midpoint of the lattice. It is sufficient to consider the evolution for approximately
twenty iterations. Is the resulting pattern of nonzero sites self-similar? If so, characterize the
pattern by a fractal dimension.

c. Determine the properties of a rule for which the value of a site at step t+ 1 is the sum modulo
2 of the values of its neighbors plus its own value at step t. This rule is equivalent to 10010110
or rule 150 = 21 + 22 + 24 + 27. Start with a single seed site.

d. Choose a random initial configuration for which the independent probability for each site to
have the value 1 is p = 1/2; otherwise, the value of the site is 0. Determine the evolution of
rule 90, rule 150, rule 18 = 21 + 24 (00010010), rule 73 = 20 + 23 + 26 (01001001), and rule 136
(10001000). How sensitive are the patterns that are formed to the initial conditions? Does the
nature of the patterns depend on the use or nonuse of periodic boundary conditions?

Listing 14.2: A more efficient implementation of method iterate in OneDimensionalAutomatonApp.

public void i t e r a t e ( int t , int L) {
// encodes s t a t e (L−1) and s t a t e (0) in second and f i r s t b i t s o f neighborhood v a r i a b l e
int neighborhood = ( automaton . getValue (L−1, t−1)<<1) + automaton . getValue (0 , t−1);
for ( int i = 0 ; i < L ; i++) {

// c l e a r t h i r d b i t o f neighborhood , but keep second and f i r s t b i t s
neighborhood = neighborhood & 3 ;
// s h i f t second and f i r s t b i t s o f neighborhood to t h i r d and second b i t s
neighborhood = neighborhood << 1 ;
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// encode s t a t e ( i +1) in t o f i r s t b i t o f neighborhood , us ing p e r i o d i c b . c ' s
neighborhood += automaton . getValue ( ( i+1)%L , t −1);
// neighborhood now encodes the t h r e e b i t s o f s t a t e surrounding
// index i a t time t−1. wi th neighborhood as an index , the
// update [ ] t a b l e g i v e s us the s t a t e at index i and time t .
automaton . setValue ( i , t , update [ neighborhood ] ) ;

}
}

Method iterate in class OneDimensionalAutomatonApp is not as efficient as possible because
it does not use information about the neighborhood at site i to determine the neighborhood at site
i + 1. A more efficient implementation is given in Listing 14.2. To understand how this version
of method iterate works, suppose that the lattice at t = 0 is 1011, and we want to determine
the neighborhood of the site at i = 0. The answer is 6 in decimal, corresponding to 110 in binary.
Because of periodic boundary conditions, the index to the left of i = 0, is L − 1. The expression
(automaton.getValue(L-1,t-1)<<1) yields 001 << 1 = 010 because << shifts all bits to the left.
(Only 3 bits are needed to describe the neighborhood.) The statement

int neighborhood = ( automaton . getValue (L−1, t−1)<<1) + automaton . getValue (0 , t−1);

yields 010 + 001 = 011. The effect of the statement

neighborhood = neighborhood & 3 ;

is to clear the third bit of the neighborhood, but to keep the second and first bits: 011 & 011 =
011. In this case, nothing is changed. We then shift the second and first bits of the neighborhood
to the third and second bits:

neighborhood = neighborhood << 1 ;

and obtain neighborhood = 110. Finally the statement

neighborhood += automaton . getValue ( ( i+1)%L , t −1);

gives neighborhood = 011 + 000 = 011, which is 2 in decimal.

∗Problem 14.2. Whose time is more important?

a. Work out another example to make sure that you understand the nature of the bit manipulations
that are used in Listing 14.2 and in the more efficient version of method iterate.

b. Which version of method iterate would you use, the more efficient but more difficult to un-
derstand (and debug) version, or the less efficient but easier to understand version? What is
more important, computer time or programmer time? In general, the answer depends on the
context.

The dynamical behavior of many of the 256 one-dimensional Boolean cellular automata is
uninteresting, and hence we also consider one-dimensional Boolean cellular automata with larger
neighborhoods (including the site itself). Because a larger neighborhood implies that there are
many more possible update rules, we place some reasonable restrictions on the rules. First, we
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assume that the rules are symmetrical, for example, the neighborhood 100 produces the same value
for the central site as 001. We also require that the zero neighborhood 000 yields 0 for the central
site, and that the value of the central site depends only on the sum of the values of the sites in the
neighborhood, for example, 011 produces the same value for the central site as 101 (see Wolfram,
1984).

A simple way of coding the rules that is consistent with these requirements is as follows. Each
rule is labeled by a sequence of 0s and 1s such that the sequence indicates which sums set the
central site equal to 1. If the lowest order digit is 1, then the central site is set to 1 if the sum is
0. If the next digit is 1, then the central site is set to 1 if the sum is 1, etc. For example, the rule
10110 indicates that the central site will be set to 1 if the number of neighbors equal to 1 is 1, 2,
or 4.

Problem 14.3. More one-dimensional cellular automata

a. Modify class OneDimensionalAutomatonApp so that it incorporates the possible rules discussed
in the text based on the number of sites equal to 1 in a neighborhood of 2z + 1 sites. How
many possible rules are there for z = 1? Choose z = 1 and a random initial configuration, and
determine if the long time behavior for each rule belongs to one of the following categories:

i. A homogeneous state where every site has the same value. An example is rule 1000.

ii. A pattern consisting of separate stable or periodic regions. An example is rule 0100.

iii. A chaotic, aperiodic pattern. An example is rule 1010.

iv. A set of complex, localized structures that may not live forever. There are no examples for
z = 1.

b. Modify your program so that z = 2. Wolfram (1984) claims that rules 010100 and 110100 are
the only examples of complex behavior (category 4). Describe how the behavior of these two
rules differs from the behavior of the other rules. Find at least one rule for each of the four
categories.

The results of Problem 14.3 suggests that an important feature of cellular automata is their
capability for self-organization. In particular, the class of complex localized structures is distinct
from regular as well as aperiodic structures.

An important idea of complexity theory is that simple rules can lead to complex behavior.
This complex behavior is not random, but has structure. Are there “coarse grained” descriptions
that can predict the dynamical behavior of these systems, or do we have to implement the model
on a computer using the dynamical rules at the lowest level of description? For example, our
understanding of the flow of a fluid through a pipe would be very limited if the only way we
could obtain information about the behavior of fluids was to solve the equations of motion for
all the individual particles. In this case, there is a coarse grained description of fluids where the
fundamental fluid variables are not the individual positions and velocities of the molecules, but
rather a velocity field, which can be interpreted as a spatial average over the velocities of many
particles. The resultant partial differential equation of fluid mechanics, known as the Navier-Stokes
equation, provides the coarse grained description, which can be solved, in principle, to predict the
motion of the fluid.
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Is there an analogous coarse grained description of a cellular automaton? Israeli and Golden-
feld have found some examples for which a coarse grained description exists. We first simulate a
cellular automaton that produces complex structures. Then we start with the same initial state
and create a coarse grained lattice such that each of its cells is a coarse grained description of a
group of cells on the original lattice. The idea is to determine a different update rule to evolve
the coarse grained lattice such that the configurations of the coarse grained lattice are identical
to the coarse grained configurations of the original lattice that were obtained using the original
update rule. If it is possible to implement this procedure in general, we would be better able
to develop theories of complex macroscopic systems without needing to know the details of the
dynamics of the microscopic constituents that make up these systems. We explore two examples
in Problem 14.4.

∗Problem 14.4. Coarse graining one-dimensional cellular automata

a. Add methods to OneDimensionalAutomatonApp that create a coarse grained lattice such that
groups of three cells are coarse grained to 1 if all three cells are 1, and coarse grained to 0
otherwise. Allow the coarse grained lattice to evolve separately using a different update rule
than the original lattice. The coarse grained lattice should be updated after every three updates
of the original lattice. Draw the coarse grained lattice as a space-time diagram similar to what
we have done for the original lattice, such that each cell in the coarse grained lattice is three
times the size of a cell on the original lattice in both the space and time directions. Use rule
146 (10010010) for the original lattice and rule 128 (10000000) for the coarse grained lattice.
Choose a lattice size L that is a multiple of 3 and run for a time that is a multiple of 3. You
should see similar patterns in the two lattices, although the original lattice contains some details
that are washed out by the coarse grained lattice. If you coarse grain the original lattice cells
at each time step, you will obtain the same pattern as the coarse grained lattice.

b. Modify your program such that each pair of cells is coarse grained to 1 if two original cells are
both 0 or both 1 and coarse grained to 0 otherwise. Use rule 105 (01101001) on the original cells
with L = 120 for 60 iterations, and run the coarse grained system using rule 150 (10100110).
You should obtain results similar to those found in part (a).

Traffic models. Physicists have been at the forefront of the development of a more systematic
approach to the characterization and control of traffic. Much of this work was initiated at General
Motors by Robert Herman in the late 1950s. The car-following theory of traffic flow that he and
Elliott Montroll and others developed during this time is still used today. What has changed is the
way we can implement these theories. The continuum approach used by Herman and Montroll is
based on partial differential equations. An alternative that is more flexible and easier to understand
is based on cellular automata.

We first consider a simple one lane highway where cars enter at one end and exit at the other
end. To implement the Nagel-Schreckenberg cellular automaton model, we use integer arrays for
the position, xi and velocity vi, where i indexes a car and not a lattice site. The important
input parameters of the simulation are the maximum velocity, vmax, the density of cars ρ, and the
probability, p, of a car slowing down. This probability adds some randomization to the drivers.
The algorithm implemented in class Freeway for the motion of each car at each iteration is as
follows:
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1. If vi < vmax, increase the velocity vi of car i by one unit, that is, vi → vi + 1. This change
models the process of acceleration to the maximum velocity.

2. Compute the distance to the next car, d. If vi ≥ d, then reduce the velocity to vi = d− 1 to
prevent crashes.

3. With probability p, reduce the velocity of a moving car by one unit. Thus, vi → vi − 1.

4. Update the position xi of car i so that xi(t+ 1) = xi(t) + vi.

This ordering of the steps ensures that cars do not overlap.

Listing 14.3: One lane freeway class.

package org . opensourcephys i c s . s i p . ch14 . t r a f f i c ;
import java . awt . Graphics ;
import org . opensourcephys i c s . d i sp l ay . * ;
import org . opensourcephys i c s . frames . * ;
import org . opensourcephys i c s . d i sp lay2d . * ;
import org . opensourcephys i c s . c on t r o l s . * ;

public class Freeway implements Drawable {
public int [ ] v , x , xtemp ;
public LatticeFrame spaceTime ;
public double [ ] d i s t r i b u t i o n ;
public int roadLength ;
public int numberOfCars ;
public int maximumVelocity ;
public double p ; // p r o b a b i l i t y o f reduc ing v e l o c i t y
private Ce l l L a t t i c e road ;
public double f low ;
public int steps , t ;
public int s c ro l lT ime = 100 ; // number o f time s t e p s b e f o r e s c r o l l i n g space−t ime diagram

public void i n i t i a l i z e ( LatticeFrame spaceTime ) {
this . spaceTime = spaceTime ;
x = new int [ numberOfCars ] ;
xtemp = new int [ numberOfCars ] ; // used to a l l ow p a r a l l e l updat ing
v = new int [ numberOfCars ] ;
spaceTime . r e s i z e L a t t i c e ( roadLength , 100 ) ;
road = new Ce l l L a t t i c e ( roadLength , 1 ) ;
road . set IndexedColor (0 , java . awt . Color .RED) ;
road . set IndexedColor (1 , java . awt . Color .GREEN) ;
spaceTime . set IndexedColor (0 , java . awt . Color .RED) ;
spaceTime . set IndexedColor (1 , java . awt . Color .GREEN) ;
int d = roadLength/numberOfCars ;
x [ 0 ] = 0 ;
v [ 0 ] = maximumVelocity ;
for ( int i = 1 ; i<numberOfCars ; i++) {

x [ i ] = x [ i−1]+d ;
i f (Math . random()<0.5) {
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v [ i ] = 0 ;
} else {

v [ i ] = 1 ;
}

}
f low = 0 ;
s t ep s = 0 ;
t = 0 ;

}

public void s tep ( ) {
for ( int i = 0 ; i<numberOfCars ; i++) {

xtemp [ i ] = x [ i ] ;
}
for ( int i = 0 ; i<numberOfCars ; i++) {

i f ( v [ i ]<maximumVelocity ) {
v [ i ]++; // a c c e l e r a t i o n

}
int d = xtemp [ ( i+1)%numberOfCars]−xtemp [ i ] ; // d i s t ance between cars
i f (d<=0) { // p e r i o d i c boundary cond i t ions , d = 0 c o r r e c t l y t r e a t s one car on road

d += roadLength ;
}
i f ( v [ i ]>=d) {

v [ i ] = d−1; // s low down due to cars in f r on t
}
i f ( ( v [ i ]>0)&&(Math . random()<p ) ) {

v [ i ]−−; // randomizat ion
}
x [ i ] = (xtemp [ i ]+v [ i ])% roadLength ;
f low += v [ i ] ;

}
s t ep s++;
computeSpaceTimeDiagram ( ) ;

}

public void computeSpaceTimeDiagram ( ) {
t++;
i f ( t<s c ro l lT ime ) {

for ( int i = 0 ; i<numberOfCars ; i++) {
spaceTime . setValue (x [ i ] , t , 1 ) ;

}
} else { // s c r o l l diagram

for ( int y = 0 ; y<scro l lTime −1;y++) {
for ( int i = 0 ; i<roadLength ; i++) {

spaceTime . setValue ( i , y , spaceTime . getValue ( i , y+1)) ;
}

}
for ( int i = 0 ; i<roadLength ; i++) {

spaceTime . setValue ( i , sc ro l lTime −1, 0 ) ; // zero l a s t row
}
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for ( int i = 0 ; i<numberOfCars ; i++) {
spaceTime . setValue (x [ i ] , s c ro l lTime −1, 1 ) ; // add new row

}
}

}

public void draw (DrawingPanel panel , Graphics g ) {
i f ( x==null ) {

return ;
}
road . se tBlock (0 , 0 , new byte [ roadLength ] [ 1 ] ) ;
for ( int i = 0 ; i<numberOfCars ; i++) {

road . setValue (x [ i ] , 0 , (byte ) 1 ) ;
}
road . draw ( panel , g ) ;
g . drawString ("Number of Steps = "+steps , 10 , 2 0 ) ;
g . drawString ("Flow = "+Cont ro lUt i l s . f 3 ( (double ) f low /( roadLength* s t ep s ) ) , 10 , 4 0 ) ;
g . drawString ("Density = "+Cont ro lUt i l s . f 3 ( (double ) numberOfCars /( roadLength ) ) , 10 , 6 0 ) ;

}
}

The target class, FreewayApp, shows the movement of the cars and a space-time diagram,
with time on the vertical axis and space on the horizontal axis. When the number of iterations
equals scrollTime, the diagram scrolls down. The flow rate is the average of the car velocities
divided by the length of the highway. Thus, two cars moving at constant velocity will have twice
the flow rate of one car moving at the same velocity.

Listing 14.4: FreewayApp Class.

package org . opensourcephys i c s . s i p . ch14 . t r a f f i c ;
import org . opensourcephys i c s . c on t r o l s . * ;
import org . opensourcephys i c s . frames . * ;

public class FreewayApp extends AbstractS imulat ion {
Freeway freeway = new Freeway ( ) ;
DisplayFrame d i sp l ay = new DisplayFrame ("Freeway" ) ;
LatticeFrame spaceTime = new LatticeFrame ("space" , "time" , "Space Time Diagram" ) ;

public FreewayApp ( ) {
d i sp l ay . addDrawable ( freeway ) ;

}

public void i n i t i a l i z e ( ) {
f reeway . numberOfCars = con t r o l . g e t In t ( "Number of cars" ) ;
f reeway . roadLength = con t r o l . g e t In t ("Road length" ) ;
f reeway . p = con t r o l . getDouble ("Slow down probability" ) ;
f reeway . maximumVelocity = con t r o l . g e t In t ( "Maximum velocity" ) ;
d i sp l ay . setPreferredMinMax (0 , freeway . roadLength , −3, 4 ) ;
freeway . i n i t i a l i z e ( spaceTime ) ;

}
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public void doStep ( ) {
f reeway . s tep ( ) ;

}

public void r e s e t ( ) {
c on t r o l . setValue ("Number of cars" , 1 0 ) ;
c on t r o l . setValue ("Road length" , 5 0 ) ;
c on t r o l . setValue ("Slow down probability" , 0 . 5 ) ;
c on t r o l . setValue ("Maximum velocity" , 2 ) ;
c on t r o l . setValue ("Steps between plots" , 1 ) ;
enab leStepsPerDisp lay ( true ) ;

}

public void r e se tAverages ( ) {
f reeway . f low = 0 ;
freeway . s t ep s = 0 ;

}

public stat ic void main ( St r ing [ ] a rgs ) {
Simulat ionContro l c on t r o l = Simulat ionContro l . createApp (new FreewayApp ( ) ) ;
c on t r o l . addButton ("resetAverages" , "resetAverages" ) ;

}
}

Problem 14.5. Cellular automata traffic models

a. Run FreewayApp for 10 cars on a road of length 50, with vmax = 2 and p = 0.5. Allow the
system to evolve before recording the flow rate. Repeat the simulation with a different initial
configuration at least several more times to estimate the uncertainty in the data. Repeat for
1, 2, 5, 20, 30, and 40 cars. Plot the flow rate versus the density. This plot is called the
fundamental diagram. Explain its qualitative shape. At what density do traffic jams begin to
occur?

b. Repeat part (a) with a road of length 500 and the same car densities. Use other road lengths
to determine the minimum road length needed to obtain results that are independent of the
length of the road.

c. Add methods to your classes to compute the velocity and gap distributions, where the gap is
defined as the distance between two cars.

d. For a fixed road length compare your results for vmax = 1 with your results for vmax = 2. Also
consider vmax = 5. Are there any qualitative differences in the behavior of the cars?

e. Explore the effect the speed reduction probability by considering p = 0.2 and p = 0.8.

f. Add on- and off-ramps separated by a fixed distance. One way to do so is to choose a car at
random and have it slow down as it approaches the off-ramp and exits. To maintain a constant
density, allow a car to enter the on-ramp whenever a car leaves the highway. What is the effect
of adding the on- and off-ramps?
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(a) (b)

Figure 14.2: (a) The local neighborhood of a site in the Game of Life is given by the sum of its
eight neighbors. (b) Examples of initial configurations for the Game of Life, some of which lead to
interesting patterns. Live cells are shaded.

g. Modify your program to simulate a two lane highway. You will need to choose rules for moving
from one lane to the other. Some possibilities to explore include the following. One reason for
a car to move to the left lane is that the car is moving at less than the maximum speed and
cannot increase its speed due to the car in front of it. Such a car could move to the left lane if
there were a free space to the left. One reason for a car to move to the right lane is that there
is a car immediately behind it. How does the behavior of the two lane highway differ from that
of the one lane highway?

h. Modify your two lane simulation so that there are two kinds of vehicles (for example, cars
and trucks) with different values of vmax. How do the gap and velocity distributions change?
Compute separate values for the truck and car flows as well as the total flow. Compute the
average speed of the trucks and compare it with that of cars.

Because one-dimensional cellular automata models are limited, we consider several two-dimensional
models. The philosophy is the same except that the neighborhood contains more sites. For the
eight neighbor sites shown in Figure 14.2a, there are 29 = 512 possible configurations for the eight
neighbors and the center site, and 2512 possible rules. Clearly, we cannot go through all these rules
in any systematic fashion as we did for one-dimensional cellular automata. For this reason, we will
choose our rules based on other considerations.

The Game of Life. The rules used in LifeApp implement a popular two-dimensional cellular
automaton known as the Game of Life. This model, invented in 1970 by the mathematician John
Conway, produces many fascinating patterns. The rules of the game are simple. For each cell de-
termine the sum of the values of its four nearest and four next-nearest neighbors (see Figure 14.2a).
A “live” cell (value 1) remains alive only if this sum equals 2 or 3. If the sum is greater than 3,
the cell will “die” (become 0) at the next iteration due to overcrowding. If the sum is less than 2,
the cell will die due to isolation. A dead cell will come to life only if the sum equals 3.

Listing 14.5: Implementation of the Game of Life.

package org . opensourcephys i c s . s i p . ch14 . ca ;
import org . opensourcephys i c s . frames . * ;
import org . opensourcephys i c s . c on t r o l s . * ;
import java . awt . Color ;

public class LifeApp extends AbstractS imulat ion {
LatticeFrame la t t i c eFrame = new LatticeFrame ("Game of Life" ) ;
byte [ ] [ ] newCel ls ;
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int s i z e = 16 ;

public LifeApp ( ) {
l a t t i c eFrame . setToggleOnClick ( true , 0 , 1 ) ;
l a t t i c eFrame . set IndexedColor (0 , Color .RED) ;
l a t t i c eFrame . set IndexedColor (1 , Color .BLUE) ;

}

public void i n i t C e l l s ( int s i z e ) {
this . s i z e = s i z e ;
newCel ls = new byte [ s i z e ] [ s i z e ] ;
l a t t i c eFrame . s e tA l l ( newCells , 0 , s i z e , 0 , s i z e ) ;
l a t t i c eFrame . setValue ( s i z e /2 , s i z e /2 , 1 ) ;
l a t t i c eFrame . setValue ( s i z e /2−1, s i z e /2 , 1 ) ;
l a t t i c eFrame . setValue ( s i z e /2+1 , s i z e /2 , 1 ) ;
l a t t i c eFrame . setValue ( s i z e /2 , s i z e /2−1, 1 ) ;
l a t t i c eFrame . setValue ( s i z e /2 , s i z e /2+1 , 1 ) ;

}

public void c l e a r ( ) {
l a t t i c eFrame . s e tA l l (new byte [ s i z e ] [ s i z e ] ) ;
l a t t i c eFrame . r epa in t ( ) ;

}

public void r e s e t ( ) {
c on t r o l . p r i n t l n ("Click in drawingPanel to toggle life." ) ;
c on t r o l . setValue ("grid size" , 1 6 ) ;
i n i t C e l l s ( 1 6 ) ;

}

public void i n i t i a l i z e ( ) {
i n i t C e l l s ( c on t r o l . g e t In t ("grid size" ) ) ;

}

private int ca l cNe i ghbo r sPe r i od i c ( int row , int c o l ) {
int ne ighbors = −l a t t i c eFrame . getValue ( row , c o l ) ; // do not count s e l f
row += s i z e ; // add the s i z e so t ha t the mod opera tor works f o r row=0 and co l=0
c o l += s i z e ;
for ( int i = −1; i<=1; i++) {

for ( int j = −1; j<=1; j++) {
ne ighbors += lat t i c eFrame . getValue ( ( row+i )%s i z e , ( c o l+j )% s i z e ) ;

}
}
return ne ighbors ;

}

public void doStep ( ) {
for ( int i = 0 ; i<s i z e ; i++) {

for ( int j = 0 ; j<s i z e ; j++) {
newCel ls [ i ] [ j ] = 0 ;
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}
}
for ( int i = 0 ; i<s i z e ; i++) {

for ( int j = 0 ; j<s i z e ; j++) {
switch ( ca l cNe i ghbo r sPe r i od i c ( i , j ) ) {
case 0 :
case 1 :

newCel ls [ i ] [ j ] = 0 ; // d i e s
break ;

case 2 :
newCel ls [ i ] [ j ] = (byte ) l a t t i c eFrame . getValue ( i , j ) ; // l i f e goes on
break ;

case 3 :
newCel ls [ i ] [ j ] = 1 ; // cond i t i on f o r b i r t h
break ;

default :
newCel ls [ i ] [ j ] = 0 ; // d i e s o f overcrowding i f >3

}
}

}
l a t t i c eFrame . s e tA l l ( newCel ls ) ;

}

/* −−−−−−−−−−−−−−− app l i c a t i o n t a r g e t −−−−−−−−−−−−−−− */
public stat ic void main ( St r ing [ ] a rgs ) {

OSPControl c on t r o l = Simulat ionContro l . createApp (new LifeApp ( ) ) ;
c on t r o l . addButton ("clear" , "Clear" ) ; // op t i ona l custom ac t ion

}
}

Problem 14.6. The Game of Life

a. LifeApp allows the user to determine the initial configuration interactively by clicking on a cell
to change its value before hitting the Start button. Choose several initial configurations with
a small number of live cells and determine the different types of patterns that emerge. Some
suggested initial configurations are shown in Figure 14.2b. Does it matter whether you use fixed
or periodic boundary conditions? Use a 16× 16 lattice.

b. Modify LifeApp so that each cell is initially alive with a 50% probability. Use a 32× 32 lattice.
What types of patterns typically result after a long time? What happens for 20% live cells?
What happens for 70% live cells?

c. Assume that each cell is initially alive with probability p. Given that the density of live cells at
time t is ρ(t), what is ρ(t+ 1), the expected density at time t+ 1? Do the simulation and plot
ρ(t+ 1) versus ρ(t). If p = 0.5, what is the steady-state density of live cells?

d.∗ LifeApp has not been optimized for the Game of Life and is written so that other rules can
be implemented easily. Rewrite LifeApp so that it uses bit manipulation (see Section 14.6).



CHAPTER 14. COMPLEX SYSTEMS 561

The Game of Life is an example of a universal computing machine. That is, we can choose
an initial configuration of live cells to represent any possible program and any set of input data,
run the Game of Life, and the output data will appear in some region of the lattice. The proof of
this result (see Berlekamp et al.) involves showing how various configurations of cells represent the
components of a computer, including wires, storage, and the fundamental components of a CPU
– the digital logic gates that perform and, or, and other logical and arithmetic operations. Other
cellular automata also can be shown to be universal computing machines.

14.2 Self-Organized Critical Phenomenon

Very large events such as a magnitude eight earthquake, an avalanche on a snow covered mountain,
the sudden collapse of an empire (for example, the Soviet Union), or the crash of the stock market
are rare. When such events occur, are they due to some special set of circumstances or are they part
of a more general pattern of events that would occur without any specific external intervention?
The idea of self-organized criticality is that in many cases the occurrence of very large events does
not depend on special conditions or external forces and is due to the intrinsic dynamics of the
system.

If s represents the magnitude of an event, such as the energy released in an earthquake or the
amount of snow in an avalanche, then a system is said to be critical if the number of events, N(s),
follows a power law:

N(s) ∼ s−α. (no characteristic scale) (14.1)

If α ≈ 1, the form (14.1) implies that there would be one large event of size 1000 for every 1000
events of size one. One implication of the power law form (14.1) is that there is no characteristic
scale, and the system is said to be scale invariant. This terminology reflects the fact that power
laws look the same on all scales. For example, the replacement s → bs in the function N(s) = As−α

yields a function Ñ(s) that is indistinguishable from N(s), except for a change in the amplitude
A by the factor b−α.

Contrast the nature of the power law dependence of N(s) in (14.1) to the result of combining
a large number of independently acting random events. In this case we know that the distribution
of the sum is a Gaussian (see Problem 7.15), and N(s) has the form

N(s) ∼ e−(s/s0)
2

. (characteristic scale) (14.2)

Scale invariance does not hold for functions that decay as in (14.2), because the replacement s → bs

in the function e−(s/s0)
2

changes s0 (the characteristic scale or size of s) by the factor b. Note that
for a power law distribution, there are events of all sizes, but for a Gaussian distribution, there
are practically speaking no events much larger than the characteristic scale s0. For example, if we
take s0 = 100, there would be one large event of size 1000 for every 2.7× 1043 events of size one!

A simple example of self-organized critical phenomena is an idealized sandpile. Suppose that
we construct a sandpile by randomly adding one grain at a time onto a flat surface with open
edges. Initially, the grains will remain where they land, but after we add more grains there will be
small avalanches during which the grains move so that the local slope of the pile is not too big.
Eventually, the pile will reach a statistically stationary (time-independent) state, and the amount
of sand added will balance the sand that falls off the edge (on the average). When a single grain of
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sand is added to such a configuration, a rearrangement might occur that triggers an avalanche of
any size (up to the size of the system), so that the mean slope again equals the critical value. We
say that the statistically stationary state is critical because there are avalanches of all sizes. The
stationary state is self-organized because no external parameter (such as the temperature) needs
to be tuned to force the system to this state. In contrast, the concentration of fissionable material
in a nuclear chain reaction has to be carefully controlled for the nuclear chain reaction to become
critical.

We consider a two-dimensional model of a sandpile, and represent the height at site i by the
array element height[i]. One grain of sand is added to a random site, j, height[j]++, at each
iteration. If height[j] = 4, then we remove the four grains from site j and distribute them
equally to its nearest neighbors. A site whose height is equal to four is said to topple. If any of the
neighbors now have four grains of sand, they topple as well. This process continues until all sites
have less than four grains of sand. Grains that fall outside the lattice are lost forever.

Class Sandpile implements this idealized model. The lattice is stored in a LatticeFrame and
the arrays toppleSiteX and toppleSiteY store the coordinates of the sites with four grains of
sand. The array distribution accumulates the data for the number of sites that topple at each
addition of a grain of sand to the pile. It is possible, though rare, that a site will topple more than
once in one step. Hence, the number of toppled sites may be greater than the number of sites in
the lattice.

Physically, it is not the actual height that determines toppling, but the mean local slope
between a site and its nearest neighbors. Thus, what we call the “height” really should be called
the “slope.” However, in the literature many authors use the term “height.”

Listing 14.6: Implementation of the two-dimensional sandpile model.

package org . opensourcephys i c s . s i p . ch14 . s andp i l e ;
import java . awt . Graphics ;
import org . opensourcephys i c s . frames . * ;

public class Sandpi l e {
int [ ] d i s t r i b u t i o n ; // d i s t r i b u t i o n o f number o f s i t e s t o p p l i n g
int [ ] toppleSiteX , topp leS i teY ;
LatticeFrame he ight ;
int L , numberToppledMax ;
int numberToppled , numberOfSitesToTopple , numberOfGrains ;

public void i n i t i a l i z e ( LatticeFrame he ight ) {
this . he ight = he ight ;
he ight . r e s i z e L a t t i c e (L , L ) ; // c r ea t e new l a t t i c e
numberToppledMax = 2*L*L+1; // s i z e o f d i s t r i b u t i o n array
d i s t r i b u t i o n = new int [ numberToppledMax ] ; // shou ld use histogramframe
topp leS i teX = new int [ L*L ] ;
topp leS i teY = new int [ L*L ] ;
numberOfGrains = 0 ;
re se tAverages ( ) ;

}

public void s tep ( ) {
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numberOfGrains++;
numberToppled = 0 ;
int x = ( int ) (Math . random ()*L ) ;
int y = ( int ) (Math . random ()*L ) ;
int h = he ight . getValue (x , y )+1;
he ight . setValue (x , y , h ) ; // add gra in to random s i t e
he ight . render ( ) ;
i f (h==4) { // t opp l e gra in

numberOfSitesToTopple = 1 ;
boolean unstab le = true ;
int [ ] s i teToTopple = {x , y } ;
while ( unstab le ) {

unstab le = topp l eS i t e ( s iteToTopple ) ;
}

}
d i s t r i b u t i o n [ numberToppled ]++;

}

public boolean t opp l e S i t e ( int s i teToTopple [ ] ) { // t opp l e s i t e
numberToppled++;
int x = siteToTopple [ 0 ] ;
int y = siteToTopple [ 1 ] ;
numberOfSitesToTopple−−;
he ight . setValue (x , y , he ight . getValue (x , y )−4); // remove gra in s from s i t e
he ight . render ( ) ;
// add gra in s to ne i ghbors
// i f ( x , y ) i s on the border o f the l a t t i c e , then some gra in s w i l l be l o s t .
i f ( x+1<L) {

addGrain (x+1, y ) ;
}
i f (x>0) {

addGrain (x−1, y ) ;
}
i f ( y+1<L) {

addGrain (x , y+1);
}
i f (y>0) {

addGrain (x , y−1);
}
i f ( numberOfSitesToTopple>0) {

s i teToTopple [ 0 ] = toppleS i teX [ numberOfSitesToTopple −1] ; // next s i t e to t o pp l e
s i teToTopple [ 1 ] = toppleS i teY [ numberOfSitesToTopple −1] ;
return true ;

} else {
return fa l se ;

}
}

public void addGrain ( int x , int y ) {
int h = he ight . getValue (x , y )+1;
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he ight . setValue (x , y , h ) ; // add gra in to s i t e
he ight . render ( ) ;
i f (h==4) { // new s i t e to t o pp l e

topp leS i teX [ numberOfSitesToTopple ] = x ;
topp leS i teY [ numberOfSitesToTopple ] = y ;
numberOfSitesToTopple++;

}
}

public void r e se tAverages ( ) {
d i s t r i b u t i o n = new int [ numberToppledMax ] ;
numberOfGrains = 0 ;

}
}

Listing 14.7: The target class for the two-dimensional sandpile model.

package org . opensourcephys i c s . s i p . ch14 . s andp i l e ;
import org . opensourcephys i c s . c on t r o l s . * ;
import org . opensourcephys i c s . frames . * ;

public class SandpileApp extends AbstractS imulat ion {
Sandpi l e s andp i l e = new Sandpi l e ( ) ; ;
LatticeFrame he ight = new LatticeFrame ("x" , "y" , "Sandpile" ) ;
PlotFrame plotFrame = new PlotFrame ("ln s" , "ln N" , "Distribution of toppled sites" ) ;

public SandpileApp ( ) {
he ight . se t IndexedColor (0 , java . awt . Color .WHITE) ;
he ight . se t IndexedColor (1 , java . awt . Color .BLUE) ;
he ight . se t IndexedColor (2 , java . awt . Color .GREEN) ;
he ight . se t IndexedColor (3 , java . awt . Color .RED) ;
he ight . se t IndexedColor (4 , java . awt . Color .BLACK) ;

}

public void i n i t i a l i z e ( ) {
s andp i l e . L = con t r o l . g e t In t ("L" ) ;
he ight . setPreferredMinMax (0 , s andp i l e . L , 0 , s andp i l e . L ) ;
s andp i l e . i n i t i a l i z e ( he ight ) ;

}

public void doStep ( ) {
s andp i l e . s tep ( ) ;

}

public void stop ( ) {
super . s top ( ) ;
plotFrame . c learData ( ) ;
for ( int s = 1 ; s<s andp i l e . d i s t r i b u t i o n . l ength ; s++) {

i f ( s andp i l e . d i s t r i b u t i o n [ s ]>0) {
plotFrame . append (0 , Math . l og ( s ) ,
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Math . l og ( s andp i l e . d i s t r i b u t i o n [ s ] *1 . 0 / sandp i l e . numberOfGrains ) ) ;
}

}
plotFrame . render ( ) ;

}

public void r e s e t ( ) {
c on t r o l . setValue ("L" , 1 0 ) ;
enab leStepsPerDisp lay ( true ) ;

}

public void r e se tAverages ( ) {
s andp i l e . r e s e tAverages ( ) ;

}

public stat ic void main ( St r ing [ ] a rgs ) {
Simulat ionContro l c on t r o l = Simulat ionContro l . createApp (new SandpileApp ( ) ) ;
c on t r o l . addButton ("resetAverages" , "resetAverages" ) ;

}
}

Problem 14.7. A two-dimensional sandpile model

a. Use the classes Sandpile and SandpileApp to simulate a two-dimensional sandpile with linear
dimension L. Run the simulation with L = 10, and stop it once toppling starts to occur.
When this behavior occurs, black cells (with four grains) will momentarily appear. Use the
Step button to watch individual toppling events, and obtain a qualitative sense of the dynamics
of the sandpile model.

b. Comment out the height.render() statements in Sandpile, and add a statement to Sand-

PileApp so that the number of grains added to the system is displayed. (The number of grains
added is a measure of the number of configurations that are included in the various averages.)
Now you will not be able to see individual toppling events, but you can more quickly collect
data on the toppling distribution, the frequency of the number of sites that topple when a grain
is added. The program outputs a log-log plot of the distribution. Estimate the slope of the
log-log distribution from the part of the plot that is linear and thus determine the power law
exponent α. Reset the averages and repeat your calculation to obtain another estimate of α.
If your two estimates of α are within a few percent, you have added enough grains of sand.
Compute α for L = 10, 20, 40, and 80. As you make the lattice size larger, the range over which
the log-log plot is linear should increase. Explain why the plot is not linear for large values of
the number of toppled sites.

Of course, the model of a sandpile in Problem 14.7 is over simplified. Laboratory experiments
indicate that real sandpiles show power law behavior if the piles are small, but that larger sandpiles
do not (see Jaeger et al.).

Earthquakes. The empirical Gutenberg-Richter law for N(E), the number of earthquakes with
energy release E, is consistent with power law behavior:

N(E) ∼ E−b, (14.3)
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with b ≈ 1. The magnitude of earthquakes on the Richter scale is approximately the logarithm
of the energy release. This power law behavior does not necessarily hold for individual fault
systems, but holds reasonably accurately when all fault systems are considered. One implication
of the power law dependence in (14.3) is that there is nothing special about large earthquakes. In
Problems 14.8 and 14.9 and Project 14.26 we explore some models of earthquake models.

Given the long time scales between earthquakes, there is considerable interest in simulating
models of earthquakes. The Burridge-Knopoff model considered in Project 14.26 consists of a
system of coupled masses in contact with a rough surface. The masses are subjected to static and
dynamic friction forces due to the surface, and also are pulled by an external force corresponding
to slow tectonic plate motion. The major difficulty with this model is that the numerical solution
of the corresponding equations of motion is computationally intensive. For this reason we consider
several cellular automaton models that retain some of the basic physics of the Burridge-Knopoff
model.

Problem 14.8. A simple earthquake model

Define the real variable F (i, j) on a square lattice, where F represents the force or stress on the
block at position (i, j). The initial state of the lattice at time t = 0 is found by assigning small
random values to F (i, j). The lattice is updated according to the following rules:

(i) Increase F at every site by a small amount ∆F , for example, ∆F = 10−3, and increase the
time t by 1. This increase represents the effect of the driving force due to the slow motion of
the tectonic plate.

(ii) Check if F (i, j) is greater than Fc, the threshold value of the force. If not, the system is
stable and step 1 is repeated. If the system is unstable, go to step 3. Choose Fc = 4 for
convenience.

(iii) The release of stress due to the slippage of a block is represented by letting F (i, j) = F (i, j)−
Fc. The transfer of stress is represented by updating the stress at the sites of the four
neighbors at (i, j ± 1) and (i± 1, j): F → F +1. Periodic boundary conditions are not used.

These rules are equivalent to the Bak-Tang-Wiesenfeld model. What is the relation of this model
to the sandpile model considered in Problem 14.7?

As an example, choose L = 10. Do the simulation and show that the system eventually comes
to a statistically stationary state, where the average value of the stress at each site stops growing.
Monitor N(s), the number of earthquakes of size s, where s is the total number of sites (blocks)
that are affected by the instability. Then consider L = 30 and repeat your simulations. Are your
results for N(s) consistent with scaling?

Problem 14.9. A dissipative earthquake model

The Bak-Tang-Wiesenfeld earthquake model discussed in Problem 14.8 displays power law scal-
ing due to the inherent conservation of the dynamical variable, the stress. It is easy to modify
the model so that the stress is not conserved and the model is more realistic. The Rundle-
Jackson-Brown/Olami-Feder-Christensen model of a earthquake fault is a simple example of such
a nonconservative system.
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a. Modify the toppling rule in Problem 14.8 so that when the stress on site (i, j) exceeds Fc, not
all the excess stress is given to the neighbors. In particular, assume that when site (i, j) topples,
F (i, j) is reduced to the residual stress Fr(i, j). The amount α(Fij − Fr) is dissipated leaving
(Fij − Fr)(1− α) to be distributed equally to the neighbors. If α = 0, the model is equivalent
to the model considered in Problem 14.8. Choose α = 0.2 and determine if N(s) exhibits power
law scaling. For simplicity, choose Fc = 4 and Fr = 1 (see Grassberger).

b. Make the model more realistic by adding a small amount of noise to Fr so that Fr is uniformly
distributed between 1− δ, 1 + δ with δ = 0.05. Also run the model in what is called the “zero-
velocity limit” by finding the site with the maximum stress Fmax and then increasing the stress
on all sites by Fc − Fmax so that only one site initially becomes unstable. Determine N(s) and
see if your results differ from what you found in part (a). Do you still observe power law scaling?

c. The model can be made more realistic still by assuming that the interaction between the blocks
is long range due to the existence of elastic forces. Distribute the excess stress equally to all z
neighbors that are within a distance of radius R of an unstable site. Each of the z neighbors
receives a stress equal to (Fij − Fr)(1 − α)/z. First choose R = 3 and see if the qualitative
behavior of N(s) changes as R becomes larger. Lattices with L ≥ 256 are typically considered
with R ≃ 30 (see Rundle et al.).

The behavior of some other simple models of natural phenomena is explored in the following.

Problem 14.10. Forest fire model

a. Consider the following model of the spread of a forest fire. Suppose that at t = 0 the L × L
sites of a square lattice either have a tree or are empty with probability p and 1−p respectively.
The sites that have a tree are on fire with probability f . At each iteration an empty site grows
a tree with probability g, a tree that has a nearest neighbor site on fire catches fire, and a site
that is already on fire dies and becomes empty. This model is an example of a probabilistic
cellular automaton. Write a program to simulate this model and color code the three types of
sites. Use periodic boundary conditions.

b. Choose L ≥ 30 and determine the values of g for which the forest maintains fires indefinitely.
Note that as long as g > 0, new trees will always grow.

c. Use the value of g that you found in part (b) and compute the distribution of the number of
sites sf on fire. If the distribution is critical, determine the exponent α that characterizes this
distribution. Also compute the distribution for the number of trees, st. Is there any relation
between these two distributions?

d.∗ To obtain reliable results it is frequently necessary to average over many initial configurations.
However, the behavior of many systems is independent of the initial configuration and averaging
over many initial configurations is unnecessary. This latter possibility is called self-averaging .
Repeat parts (b) and (c), but average your results over ten initial configurations. Is this forest
fire model self-averaging?

Problem 14.11. Another forest fire model



CHAPTER 14. COMPLEX SYSTEMS 568

Consider a simple variation of the model discussed in Problem 14.10. At t = 0 each site is occupied
by a tree with probability p; otherwise, it is empty. The system is updated in successive iterations
as follows:

(i) Randomly grow new trees at time t with a small probability g from sites that are empty at
time t− 1;

(ii) A tree that is not on fire at t− 1 catches fire due to lightning with probability f ;

(iii) Trees on fire ignite neighboring trees, which in turn ignite their neighboring trees, etc. The
spreading of the fire occurs instantaneously.

(iv) Trees on fire at time t − 1 die (become empty sites) and are removed at time t (after they
have set their neighbors on fire).

As in Problem 14.10, the changes in each site occur synchronously.

a. Determine N(s), the number of clusters of trees of size s that catch fire in each iteration. Two
trees are in the same cluster if they are nearest neighbors. Is the behavior of N(s) consistent
with N(s) ∼ s−α? If so, estimate the exponent α for several values of g and f .

b.∗ The balance between the mean rate of birth and burning of trees in the steady state suggests a
value for the ratio f/g at which this model is likely to be scale invariant. If the average steady
state density of trees is ρ, then at each iteration the mean number of new trees appearing is
gN(1− ρ), where N = L2 is the total number of sites. In the same spirit, we can say that for
small f , the mean number of trees destroyed by lightning is fρN⟨s⟩, where ⟨s⟩ is the mean
number of trees in a cluster. Is this reasoning consistent with the results of your simulation?
If we equate these two rates, we find that ⟨s⟩ ∼ [(1 − ρ]/ρ)(g/f). Because 0 < ρ < 1, it
follows that ⟨s⟩ → ∞ in the limit f/g → 0. Given the relation ⟨s⟩ =

∑∞
s=1 sN(s)/

∑
s N(s)

and the divergent behavior of ⟨s⟩, why does it follow that N(s) must decay more slowly than
exponentially with s? This reasoning suggests that N(s) ∼ s−α with α < 2. Is this expectation
consistent with the results that you obtained in part (a)?

In this model there are three well separated time scales, that is, the time for lightning to
strike (∝ f−1), the time for trees to grow (∝ g−1), and the instantaneous spreading of fire through
a connected cluster. This separation of time scales seems to be an essential ingredient for self-
organized criticality (see Grinstein and Jayaprakash).

Problem 14.12. Model of punctuated equilibrium

a. The idea of punctuated equilibrium is that biological evolution occurs episodically rather than
as a steady, gradual process. That is, most of the major changes in life forms occur in relatively
short periods of time. Bak and Sneppen have proposed a simple model that exhibits some
of the behavior of punctuated equilibrium. The model consists of a one-dimensional cellular
automaton of linear dimension L, where cell i represents the biological fitness of species i.
Initially, all cells receive a random fitness fi between 0 and 1. Then the cell with the lowest
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fitness and its two nearest neighbors are randomly given new fitness values. This update rule
is repeated indefinitely. Write a program to simulate the behavior of this model. Use periodic
boundary conditions, and display the fitness of each cell as a column of height fi. Begin with
L = 64 and describe what happens to the distribution of fitness values after a long time.

b. We can crudely think of the update process as replacing a species and its neighbors by three
new species. In this sense the fitness represents a barrier to creating a new species. If the
barrier is low, it is easier to create a new species. Do the low fitness species die out? What is
the average value of fitness of the species after the model is run for a long time (104 or more
iterations)? Compute the distribution of fitness values, N(f), averaged over all cells and over
many iterations. Allow the system to come to a fluctuating steady state before computing N(f).
Plot N(f) versus f . Is there a critical value fc below which N(f) is much less than the values
above fc? Is the update rule reasonable from a evolutionary point of view?

c. Modify your program to compute the distance x between successive fitness changes and the
distribution of these distances, P (x). Make a log-log plot of P (x) versus x. Is there any
evidence of self-organized criticality (power law scaling)?

d. Another way to visualize the results is to make a plot of the time at which a cell is changed
versus the position of the cell. Is the distribution of the plotted points approximately uniform?
We might expect that the survival time of a species depends exponentially on its fitness, and
hence each update corresponds to an elapsed time of e−cfi , where the constant c sets the time
scale and fi is the fitness of the cell that has been changed. Choose c = 100 and make a similar
plot with the time axis replaced by the logarithm of the time, that is, the quantity 100fi. Is
this plot more meaningful?

e. Another way of visualizing punctuated equilibrium is to plot the number of times groups of
cells change as a function of time. Divide the time into units of 100 updates and compute the
number of fitness changes for cells i = 1 to 10 as a function of time. Do you see any evidence
of punctuated equilibrium?

14.3 The Hopfield Model and Neural Networks

Neural network models have been motivated in part by how neurons in the brain collectively store
and recall memories. Usually, a neuron is in one of two states, a resting potential (not firing), or
firing at the maximum rate. A neuron “fires” once it receives electrical inputs from other neurons
whose strength reaches a certain threshold. An important characteristic of a neuron is that its
output is a nonlinear function of the sum of its inputs. The assumption is that when memories are
stored in the brain, the strengths of the connections between neurons change.

One of the uses of neural network models is pattern recognition. If we see someone more
than once, the person’s face provide input that helps us to recall the person’s name. In the same
spirit, a neural network can be given a pattern, for example, a string of ±1s, that partially reflect
a previously memorized pattern. The idea is to store memories so that a computer can recall them
when the inputs are close to a particular memory.
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We now consider an example of a neural network due to Hopfield. The network consists of
N neurons and the state of the network is defined by the state of each neuron, Si, which in the
Hopfield model takes on the values −1 (not firing) and +1 (firing). The strength of the connection
between neuron i and neuron j is denoted by wij , which is determined by the M stored memories:

wij =

M∑
s=1

Sα
i S

α
j , (14.4)

where Sα
i represents the state of neuron i in stored memory α. Given the initial state of all the

neurons, the dynamics of the network is simple. We choose a neuron i at random and change its
state according to its input, which is

∑
i ̸=j wijSj , where Sj represents the current state of neuron

j. Then we change the state of neuron i by setting

Si =

{
+1, for

∑
i ̸=j wijSj > 0

−1, for
∑

i ̸=j wijSj ≤ 0.
(14.5)

The threshold value of the input has been set equal to zero, but other values could be used as well.

The HopfieldApp class in Listing 14.8 implements this model of a neural network and stores
memories based on user input. The state of the network is stored in the array S[i] and the
connections between the neurons are stored in the array w[i][j]. The user initially clicks on
various cells to toggle their values between −1 and +1 and presses the Remember button to store
a pattern. Then the user presses the Randomize button to initialize the Si by setting Si to ±1 at
random. After the memories are stored, press the Start button to update the neurons using the
Hopfield algorithm to try to recall one of the stored memories.

Listing 14.8: HopfieldApp class.

package org . opensourcephys i c s . s i p . ch14 ;
import org . opensourcephys i c s . c on t r o l s . * ;
import org . opensourcephys i c s . frames . * ;

public class HopfieldApp extends AbstractS imulat ion { // Hop f i e l d model o f a neura l network
LatticeFrame l a t t i c e ;
int N; // t o t a l number o f neurons
double [ ] [ ] w; // connect ion array (N by N elements )
int numberOfStoredMemories ;

public HopfieldApp ( ) {
l a t t i c e = new LatticeFrame ("Hopfield state" ) ;
l a t t i c e . setToggleOnClick ( true , −1, 1 ) ;
l a t t i c e . se t IndexedColor (−1 , java . awt . Color . b lue ) ;
l a t t i c e . se t IndexedColor (0 , java . awt . Color . b lue ) ;
l a t t i c e . se t IndexedColor (1 , java . awt . Color . green ) ;
l a t t i c e . s e t S i z e (600 , 120 ) ;

}

public void doStep ( ) {
int [ ] S = l a t t i c e . g e tA l l ( ) ;
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for ( int counter = 0 ; counter<N; counter++) {
int i = ( int ) (N*Math . random ( ) ) ; // chooses random neuron index
double sum = 0 ;
for ( int j = 0 ; j<N; j++) {

sum += w[ i ] [ j ]*S [ j ] ;
}
S [ i ] = (sum>0) ? 1 : −1;

}
l a t t i c e . s e tA l l (S ) ;

}

public void i n i t i a l i z e ( ) {
N = con t r o l . g e t In t ("Lattice size" ) ;
w = new double [N ] [N ] ;
l a t t i c e . r e s i z e L a t t i c e (N, 1 ) ;
for ( int i = 0 ; i<N; i++) {

l a t t i c e . setAtIndex ( i , −1);
}
l a t t i c e . setMessage ("# memories = "+(numberOfStoredMemories = 0 ) ) ;

}

public void r e s e t ( ) {
c on t r o l . setValue ("Lattice size" , 8 ) ;
l a t t i c e . setMessage ("# memories = "+(numberOfStoredMemories = 0 ) ) ;

}

public void addMemory ( ) {
int [ ] S = l a t t i c e . g e tA l l ( ) ;
for ( int i = 0 ; i<N; i++) {

for ( int j = i +1; j<N; j++) {
w[ i ] [ j ] += S [ i ]*S [ j ] ;
w[ j ] [ i ] += S [ i ]*S [ j ] ;

}
}
l a t t i c e . setMessage ("# memories = "+(++numberOfStoredMemories ) ) ;

}

public void randomizeState ( ) {
for ( int i = 0 ; i<N; i++) {

l a t t i c e . setAtIndex ( i , Math . random()<0.5 ? −1 : 1 ) ;
}
l a t t i c e . r epa in t ( ) ;

}

public stat ic void main ( St r ing args [ ] ) {
Simulat ionContro l c on t r o l = Simulat ionContro l . createApp (new HopfieldApp ( ) ) ;
c on t r o l . addButton ("addMemory" , "Remember" ) ;
c on t r o l . addButton ("randomizeState" , "Randomize" ) ;

}
}
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Problem 14.13. Memory recall in the Hopfield model

a. Use the HopfieldApp class to explore the ability of the Hopfield neural network to store and
recall memories. Begin with N = 10 neurons and click on the cells to choose a pattern to
remember. Then click on the Randomize button to randomize the spins. Does the neural
network find a pattern similar to the one you saved? Consider other values of N and various
patterns to obtain a feel for how the algorithm works.

b. Store two memories of 20 bits, for example, 111111̄1̄1̄11̄1̄1̄1̄1̄1̄1̄11111 and 111̄1̄111̄1̄111̄1̄111̄1̄111̄1̄,
where we have written −1 as 1̄. Try to recall a memory using the input 11111111̄1̄1̄1̄1̄1̄1111111.
This input is similar to the first memory. Record the Hamming distance between the final state
and the closest memory, where the Hamming distance is the number of bits that differ between
two strings. Repeat this procedure for several different values of the number of neurons and the
memory length.

c. Estimate how many memories can be stored for a given number of neurons before recall becomes
severely reduced. Make estimates for N = 10, 20, and 40. What is your criteria for the recall
to be considered correct?

d. In the Hopfield model every neuron is linked to every other neuron. (The value of the links
wij is determined by the stored memories.) Is the spatial dimension of the system relevant?
Describe how the HopfieldApp class can store two-dimensional patterns.

Neural networks also can be used for difficult optimization problems. In Problem 14.14 we
consider the problem of finding the minimum energy of a model spin glass. The latter is a magnetic
analog of an ordinary glass in which the positions of the molecules are not ordered as in a crystal.
In a spin glass the local magnetic moment is disordered because random magnetic interactions
are “frozen in” and do not change. The simplest model of a spin glass is based on the simplest
model of magnetism, the Ising model (see Section 16.5). In the Ising model the magnetic moment
is represented by a spin si which can take on two values, ±1. The spins are located on the sites of
a lattice. Each spin is assumed to interact with all other spins, and the total energy of the system
is given by

E = −
∑
i,j ̸=i

JijViVj , (14.6)

where the sum is over all pairs of spins. We have let w → J so that the notation is the same as
the Ising model. If Jij > 0, the spins i and j lower their energy by lining up in the same direction.
If Jij < 0, the spins lower their energy by lining up in opposite directions (see Figure 16.1).

We are interested in finding the ground state when the coupling constant Jij randomly takes
on the values ±J0/N , where N is the number of spins and J0 is an arbitrary constant. To find
the ground state we need to find the configurations of spins that give the lowest value of the
energy. Finding the ground state of a spin glass is particularly difficult because there are many
configurations that correspond to local minima of the energy. In fact the problem of finding
the exact ground state is an example of a computationally difficult problem called NP-complete.
(Another example of such a problem is considered in Problem 16.31.) In Problem 14.14 we explore
if the Hopfield algorithm can find a good approximation to the global minimum.

Problem 14.14. Minimum energy of an Ising spin glass
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a. Choose J0 = 4 in (14.6) and modify the HopfieldApp class so that it applies to a model spin
glass. Display the output string and the energy after every N attempts to change a spin. Begin
with N = 20.

b. What happens to the energy after a long time? For different initial states, but the same set
of the Jij , is the value of the energy the same after the system has evolved for a long time?
Explain your results in terms of the number of local energy minima.

c. What is the behavior of the system? Do you find periodic behavior, or random behavior, or
does the system evolve to a state that does not change?

14.4 Growing Networks

A network is a collection of points called nodes that are connected by lines called links. Mathe-
maticians refer to networks as graphs, and graph theory has been an active field of mathematics
for many years. A mathematical network can represent an actual network by defining what a node
represents, and the kind of relationship represented by a link. For example, in an airline network
the nodes represent airports and the links represent flights between airports. In an acquaintance
network, the nodes represent individuals, and the links represent the state of two people knowing
each other. In a biochemical network the nodes represent various molecular types, and the links
represent a reaction between molecules.

One reason for the recent interest in networks is that data on existing networks is now more
readily available due to the widespread use of computers. Indeed, one of the networks of current
interest is the network of websites. Another reason for the interest in networks is that some new
models of networks have been developed.

We first discuss one of the original network models, the Erdös-Rényi model. In this model we
start with N nodes and then form n links between pairs of nodes such that each pair has either
one link or no links. The probability of a link between any pair of nodes is p = n/(N(N − 1)/2).
One quantity of interest is the degree distribution, D(ℓ), which is the fraction of nodes that have ℓ
links. An example of the determination of D(ℓ) is shown in Figure 14.3. In the Erdös-Rényi model
this distribution is a Poisson distribution for large N . Thus, there is a peak in D(ℓ), and for large
ℓ, D(ℓ) decreases exponentially.

In some network models there is a path between any pair of nodes. In other models, such
as the Erdös-Rényi model, there are some nodes that cannot be reached from other nodes (see
Figure 14.3). In these networks there are other quantities of interest that are analogous to those
in percolation theory. The main difference is that in network models the position of the nodes is
irrelevant, and only their connectivity is relevant. In particular, there is no spanning cluster as can
exist in percolation models. Instead, there can be a cluster that is significantly larger than the other
clusters. In the Erdös-Rényi model the transition at which such a “giant” cluster appears depends
on the probability p that any pair of nodes is connected. In the large N limit this transition occurs
at p = 1/N .

Problem 14.15. The Erdös-Rényi model
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Figure 14.3: Example of a disconnected network with 10 nodes and 9 links. The degree distribution
for this network is D(1) = 5/10 = 0.5, D(2) = 3/10 = 0.3, D(3) = 1/10 = 0.1, and D(4) = 1/10 =
0.1. The cluster coefficient or transitivity is defined as 3 times the number of triangles divided by
the number of possible triples of connected nodes. In this case we have 1 triangle and 12 triples.
Thus, the clustering coefficient equals 3 × 1/12 = 0.25. If a node has ℓ links, then the number of
triples centered at that node is ℓ/(2!(ℓ− 2)!).

a. Write a program to create networks based on the Erdös-Rényi model. Choose N = 100 and
p ≈ 0.01, and compute D(ℓ); average over at least 10 networks. Show that D(ℓ) follows a
Poisson distribution.

b. Define a giant cluster as one that has over three times as many nodes as any other cluster and at
least 10% of the nodes. Find the value of p at which the giant cluster first appears for N = 64,
128, and 256. Average over 10 networks for each value of N . The cluster distribution should
be updated after every link is added using the labeling procedure used in Chapter 12. In this
case it is easier, because every time we add a link we either combine two clusters or we make
no change in the cluster distribution.

Some of the networks that we will consider are by definition connected. In these cases one
of the important quantities of interest is the mean path length between two nodes, where the
path length between two nodes is the shortest number of links from one node to the other. If the
mean path length weakly depends on the total number of nodes and is small, then this property
of networks is known as the “small world” property. A well known example of the small world
property is what is called “six degrees of separation,” which refers to the fact that almost any
person is connected through a sequence of six connections to almost any other person.

We wish to understand the structure of different networks. One structural property is the
clustering coefficient or transitivity. If node A is linked to B and B to C, the clustering coefficient
is the probability that A is linked to C (see Figure 14.3 for a precise definition). If this coefficient
is large, then there will be many small loops of nodes in the network. If we think of the nodes
as people and the links as friendship connections, then the clustering coefficient is a measure of
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the tendency of people to form cliques. It also is of interest to see to what extent the network is
hierarchically organized. Can we find groups of nodes that are linked together at different levels of
organization? Can we produce an organizational chart for the network similar to what is used by
many businesses? Algorithms for computing the hierarchical or community structure of a network
are discussed in the references.

Two popular network models are the Watts-Strogatz small world model and the Barabasi-
Albert preferential attachment model. In the Watts-Strogatz model a regular lattice of nodes
connected by nearest neighbor links is “rewired” so that a link between two neighboring nodes is
broken with probability p, and a link is randomly added between one of the nodes and any other
node in the system. The small world property shows up as a logarithmic dependence of the mean
path length on the system size N for large p. The degree distribution is similar to that of the
Erdös-Rényi model.

In the preferential attachment model we begin with a few connected nodes and then add one
node at a time. Each new node is then linked to m existing nodes, with preference given to those
nodes that already have many links. The probability of a node with ℓ links being connected to a
new node is proportional to ℓ. For example, if we have ten nodes in the network with 1, 1, 3, 2, 7,
3, 4, 7, 10, and 2 links, respectively, then there are a total of 40 links and the probability of getting
the next link from a new node is 1/40, 1/40, 3/40, 2/40, 4/40, 3/40, 4/40, 7/40, 10/40, and 2/40,
respectively. The result of this growth rule is that some nodes will accumulate many links. The
key result is that the link distribution is a power law with D(ℓ) ∼ ℓ−α. This scale-free behavior is
very important because it says there in the limit of an infinite network, there is a non-negligible
probability that a node exists with any particular number of links. Examples of real networks that
have this behavior are actor networks where the links correspond to two actors appearing in the
same movie, airport networks, the internet, and the links between various web sites. In addition
to the scale free degree distribution, the preferential attachment model also has the small world
property that the mean path length grows only logarithmically with the number of nodes.

The PreferentialAttachmentModel class implements the preferential attachment model.
Method setPosition is not relevant to the actual growth model. It places the nodes in ran-
dom positions so that the network can be drawn so that the nodes are too close to each other.
This drawing method is useful only for networks less than about 100 nodes.

Listing 14.9: PreferentialAttachmentModel class: Preferential attachment network model.

package org . opensourcephys i c s . s i p . ch14 . networks ;
import java . awt . Color ;
import java . awt . Graphics ;
import org . opensourcephys i c s . frames . * ;
import org . opensourcephys i c s . d i sp l ay . Drawable ;
import org . opensourcephys i c s . d i sp l ay . DrawingPanel ;

public class Pre fe rent ia lAttachment implements Drawable {
int [ ] node , linkFrom , degree ;
double [ ] x , y ; // p o s i t i o n s o f nodes , on ly meaningfu l f o r d i s p l a y purposes
int N; // maximum number o f nodes
int m = 2 ; // number o f at tempted l i n k s per node
int linkNumber = 0 ; // tw ice current number o f l i n k s
int n = 0 ; // curren t number o f nodes
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boolean drawPos i t ions = true ; // only draw network i f t rue
int numberOfCompletedNetworks = 0 ;

public void i n i t i a l i z e ( ) {
degree = new int [N ] ; // degree d i s t r i b u t i o n to be averaged over many networks
numberOfCompletedNetworks = 0 ; // w i l l be drawing many networks
startNetwork ( ) ;

}

public void addLink ( int i , int j , int s ) {
l inkFrom [ i *m+s ] = j ;
node [ i ]++;
node [ j ]++;
linkNumber += 2 ; // tw ice curren t number o f l i n k s

}

public void startNetwork ( ) {
n = 0 ;
linkFrom = new int [m*N] ;
node = new int [N ] ;
x = new double [N ] ;
y = new double [N ] ;
linkNumber = 0 ;
for ( int i = 0 ; i<=m; i++) {

n++;
s e tPo s i t i o n ( i ) ;

}
for ( int i = 1 ; i<m+1; i++) {

for ( int j = 0 ; j<i ; j++) {
addLink ( i , j , j ) ;

}
}

}

public void s e tPo s i t i o n ( int i ) {
double r2min = 1000./N;
boolean ok = true ; // used to insure two nodes are not drawn too c l o s e to each o ther
do {

ok = true ;
x [ i ] = Math . random ( )*100 ;
y [ i ] = Math . random ( )*100 ;
int j = 0 ;
while ( j<i&&ok ) {

double dx = x [ i ]−x [ j ] ;
double dy = y [ i ]−y [ j ] ;
double r2 = dx*dx+dy*dy ;
i f ( r2<r2min ) {

ok = fa l se ;
}
j++;
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}
} while ( ! ok ) ;

}

public int f indNode ( int i , int s ) {
boolean ok = true ;
int j = 0 ;
do {

ok = true ;
int k = ( int ) (1+Math . random ()* linkNumber ) ;
j = −1;
int sum = 0 ;
do {

j++;
sum += node [ j ] ;

} while (k>sum ) ;
for ( int r = 0 ; r<s ; r++) {

i f ( linkFrom [ i *m+r]==j ) {
ok = fa l se ;

}
}

} while ( ! ok ) ;
return j ;

}

public void addNode ( int i ) {
n++;
i f ( drawPos i t ions ) {

s e tPo s i t i o n ( i ) ;
}
for ( int s = 0 ; s<m; s++) {

addLink ( i , f indNode ( i , s ) , s ) ;
}

}

public void s tep ( ) {
i f (n<N) {

addNode (n ) ;
} else {

numberOfCompletedNetworks++;
for ( int i = 0 ; i<n ; i++) { // accumulate data f o r degree d i s t r i b u t i o n

degree [ node [ i ] ]++;
}
startNetwork ( ) ; // s t a r t another network

}
}

public void deg r e eD i s t r i bu t i on ( PlotFrame p lo t ) {
p lo t . c l earData ( ) ;
for ( int i = 1 ; i<N; i++) {
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i f ( degree [ i ]>0) {
p lo t . append (0 , Math . l og ( i ) , Math . l og ( degree [ i ] * 1 . 0 / (N*numberOfCompletedNetworks ) ) ) ;

}
}

}

public void draw (DrawingPanel panel , Graphics g ) {
i f ( node !=null&&drawPos i t ions ) {

int pxRadius = Math . abs ( panel . xToPix (1.0)− panel . xToPix ( 0 ) ) ;
int pyRadius = Math . abs ( panel . yToPix (1.0)− panel . yToPix ( 0 ) ) ;
g . s e tCo lo r ( Color . green ) ;
for ( int i = 0 ; i<n ; i++) {

int xpix = panel . xToPix (x [ i ] ) ;
int ypix = panel . yToPix (y [ i ] ) ;
for ( int s = 0 ; s<m; s++) {

int j = linkFrom [ i *m+s ] ;
int xp ix j = panel . xToPix (x [ j ] ) ;
int yp ix j = panel . yToPix (y [ j ] ) ;
g . drawLine ( xpix , ypix , xpix j , yp ix j ) ; // draw l i n k

}
}
g . s e tCo lo r ( Color . red ) ;
for ( int i = 0 ; i<n ; i++) {

int xpix = panel . xToPix (x [ i ])−pxRadius ;
int ypix = panel . yToPix (y [ i ])−pyRadius ;
g . f i l l O v a l ( xpix , ypix , 2*pxRadius , 2*pyRadius ) ; // draw node

}
}

}
}

Problem 14.16. Preferential attachment model

a. Write a target class that uses the PreferentialAttachmentModel class and continuously creates
new networks until stopped by the user (so we can compute averages over many networks). To
speed up the computation, make it possible to optionally display the networks. The program
should output the average degree distribution, D(ℓ).

b. Estimate the exponent α defined by D(ℓ) ∼ ℓ−α for N = 100 and m = 2. Repeat for N = 500.
Does the exponent α change? If time permits, consider N = 10000. Does α depend on m?

c. Modify PreferentialAttachmentModel so that the ℓ links are made randomly so that the
number of links a node already has is irrelevant to adding a link. What functional form does
the link distribution have now? Is this model equivalent to the Erdös-Rényi model?

d.∗ Write a method to compute the clustering coefficient, which is defined in Figure 14.3. Plot
lnC(N) versus lnN for both the preference attachment model and the Erdös-Rényi model.
Compare and discuss your results in terms of the visual appearance of the networks.
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Problem 14.17. Watts-Strogatz network

a. Write a class to create a Watts-Strogatz network. Begin with N = 100 nodes which you can
visualize as equally spaced on a circle. (Their actual position is irrelevant.) Place links between
the 2m nearest neighbors. Thus, if m = 1, then only the nearest neighbors are linked. If m = 2,
then the nearest and next nearest neighbors are linked. Then write a method to go through
each link and then with probability p, break the link connection at one end and reconnect it to
another node at random.

b. Compute the degree distribution as a function of m for several values of p. Discuss your results.

c. As we increase p, the networks becomes more and more random. There is a transition from
a network where the path length ℓ ∼ N to one where ℓ ∼ lnN . This transition occurs when
Np1/d ∼ 1, where d is the dimension of the original lattice before rewiring (d = 1 for a circle).
Draw a number of networks with different values of N and p and use this visualization to explain
the dependence of ℓ on N .

d.∗ Write a method to compute the clustering coefficient, C. Plot C versus ln p for N = 100 and
m = 2. Repeat for larger N .

Problem 14.18. A model of a social network

In many social situations we notice groups of people who interact closely with each other, but not
necessarily with other groups. Usually, those in a group have some common interest or personal
attribute. How can we model this situation? People do not usually become friends with other
people just because they have many friends already (the preferential attachment mechanism).
Instead, they choose someone to interact with and a friendship is established with some probability.
A simple model is given by the following rule. As each node is added to a system, choose m existing
nodes at random, and with probability p establish a link. This process will create a number of
clusters of linked nodes. We can imagine that there is a possibility of a phase transition between
the existence of a giant cluster that contains a large fraction of the nodes, and a situation where
all the clusters are small. This model was analyzed by Zalányi et al.

a. Write a class to model this random attachment model and compute the degree distribution as
well as the cluster distribution. Consider at least N = 1000 nodes and measure D(ℓ), the degree
distribution, for m = 2, 3, and 5 and p = 0.1 and p = 0.9. Average over at least ten trials. You
should not find power law behavior for D(ℓ). Explain why this behavior is expected.

b. Compute D(ℓ, t), the number of links connected to a node, as a function of t, the time when the
node is added. We would expect nodes added in the beginning to have more links than those
at the end. Describe and discuss the functional form of D(ℓ, t).

c. Consider m = 5 and generate many networks for different values of p. Determine the cluster
distribution. A giant cluster exists when the largest cluster is at least three times larger than
the next largest cluster. Estimate the value of p for which the giant cluster first appears. You
should find an approximate power law cluster distribution only at the transition. What is the
exponent of the power law?

d. How does the value of p at the transition change with m? Explain your results.
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e. Consider m = 1 and generate networks for many values of p. Determine the cluster distribution.
You should find an approximate power law distribution for all values of p. What are the
exponents for the power law? Why do you think there is not a phase transition for m = 1?
Consider the possibility of two clusters merging for different values of m.

14.5 Genetic Algorithms

Many people find it difficult to accept that evolution is sufficiently powerful to generate the bio-
logical complexity observed in nature. Part of this difficulty arises from the inability of humans to
intuitively grasp time scales that are much greater than their own lifetimes. Another reason is that
it is very difficult to appreciate how random changes can lead to emergent complex structures.
Genetic algorithms provide one way of understanding the nature of evolution. Their principal
utility at present is in optimization problems, but they also are being used to model biological and
social evolution.

Historically, developments in physics such as x-ray crystallography and quantum mechanics
have lead to developments in biology. In recent years developments in biology as well as in computer
science and other areas have had a direct impact on developments in physics. Genetic algorithms
are an example of the influence of ideas in biology impacting ideas in physics.

The idea of genetic algorithms is to model the process of evolution by natural selection. This
process involves two steps: random changes in the genetic code during reproduction and selection
according to some fitness criteria. In biological organisms the genetic code is stored in the DNA.
We will store the genetic code as a string of 1s and 0s. The genetic code constitutes the genotype.
The conversion of this string to the organism or phenotype depends on the problem. The selection
criteria is applied to the phenotype.

First we describe how change is introduced into the genotype. Typically, nature changes the
genetic code in two ways. The most obvious, but less often used method, is mutation. Mutation
corresponds to changing a character at random in the genetic code string from 0 to 1 or from 1
to 0. The other much more powerful method is associated with sexual reproduction. We take two
strings, remove a piece from one string and exchange it with the same length piece from the other
string. For example, if string A = 0011001010 and string B = 0001110001, then exchanging the
piece from position 4 to position 7 leads to two new strings A′ = 0011110010 and B′ = 0001001001.
This type of change is called recombination or crossover.

At each generation we produce changes using recombination and mutation. We then select
from the enlarged population of strings (including strings from the previous generation), a new
population for the next generation. Usually, a constant population size is maintained from one
generation of strings to the next.

We next have to choose a selection criterion. If we want to model an actual ecosystem, we can
include a physical environment and other sets of populations corresponding to different species.
The fitness could depend on the interaction of the different species with one another, the interaction
within each species, and the interaction with the physical environment. In addition, the behavior
of the populations might change the environment from one generation to the next. For simplicity,
we will consider only a single population of strings, a simple phenotype, and a simple criteria for
fitness.
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The phenotype we consider is a variant of the Ising model considered in Problem 14.14. We
consider a square lattice of linear dimension L occupied by N = L2 spins that have the values
si = ±1. The energy of the system is given by

E = −
∑

i,j=nn(i)

Jijsisj , (14.7)

where the sum is over all pairs of spins that are nearest neighbors. The energy function in (14.7)
assumes that only nearest neighbor spins interact, in contrast to the energy function in (14.6) which
assumes that every spin interacts with every other spin. The coupling constants Jij are either +1,
−1, or distributed according to some probability distribution. If we assume that |Jij | = 1, then
the minimum energy equals −2N and the maximum energy is 2N . Because we want the fitness
to be positive, we choose 2N −E as the measure of fitness, and take the probability of selecting a
particular string with energy E for the next generation to be proportional to the fitness 2N − E.

How does a genotype become “expressed” as a phenotype? A genotype consists of a string
of length N with 1s and 0s. The lattice site (i, j) corresponds to the nth position in the string
where n = jL+ i. If the character in the string at position n is 0, then the spin at site (i, j) equals
−1. If the character is 1, then the spin equals +1. Note that in this case the representation of the
genotype is very similar to that of the phenotype. In particular, they have the same size, N , and
each “piece” can have only two values. In general, the expression of the genotype in the phenotype
is much more complicated. Usually, a sequence within the genotype corresponds to one value in
the phenotype, which in biological systems is related to the coding for a specific protein. Such a
sequence is what we call a gene.

We now have all the ingredients we need to apply the genetic algorithm. The GeneticApp

class obtains the various parameters, initializes the population of genotypes, and calls the various
methods needed to evolve the gene pool (see the doStep method). The GenePool class carries out
the evolution. In method recombine two genotypes are chosen at random, and a random piece of
one is exchanged for the equivalent piece of the other. In method mutate a random position in a
randomly selected genotype is changed. We use a boolean array to represent the genotype, so that
a change represents converting true to false or vice versa. In both methods we do not replace
the original genotype, but instead add a new genotype to the population. The Phenotype class
determines the fitness of each member of the population by computing the energy of the lattice of
spins corresponding to each member of the population. Members of this population are selected
for the new generation by generating a discrete nonuniform probability distributions as discussed
in Section 11.5.

Listing 14.10: The GeneticApp class.

package org . opensourcephys i c s . s i p . ch14 . g en e t i c ;
import org . opensourcephys i c s . c on t r o l s . * ;
import org . opensourcephys i c s . frames . * ;

public class GeneticApp extends AbstractS imulat ion {
GenePool genePool = new GenePool ( ) ;
Phenotype phenotype = new Phenotype ( ) ;
DisplayFrame frame = new DisplayFrame ("Gene pool" ) ;

public void i n i t i a l i z e ( ) {
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phenotype .L = con t r o l . g e t In t ("Lattice size" ) ;
genePool . populationNumber = con t r o l . g e t In t ("Population size" ) ;
genePool . recombinationRate = con t r o l . g e t In t ( "Recombination rate" ) ;
genePool . mutationRate = con t r o l . g e t In t ( "Mutation rate" ) ;
genePool . genotypeS ize = phenotype .L*phenotype .L ;
genePool . i n i t i a l i z e ( phenotype ) ;
phenotype . i n i t i a l i z e ( ) ;
frame . addDrawable ( genePool ) ;
frame . setPreferredMinMax (−1.0 , genePool . genotypeS ize+5, −1.0 , genePool . populationNumber+2);
frame . s e t S i z e ( phenotype .L*phenotype .L*10 , genePool . populationNumber *20 ) ;

}

public void doStep ( ) {
genePool . evo lve ( ) ;
phenotype . dete rmineF i tnes s ( genePool ) ;
phenotype . s e l e c t ( genePool ) ;
c on t r o l . c l ea rMessages ( ) ;
c on t r o l . p r i n t l n ( genePool . g ene ra t i on+" generations , best fitness = "+phenotype . b e s tF i t n e s s ) ;

}

public void r e s e t ( ) {
c on t r o l . setValue ("Lattice size" , 8 ) ;
c on t r o l . setValue ("Population size" , 2 0 ) ;
c on t r o l . setValue ("Recombination rate" , 1 0 ) ;
c on t r o l . setValue ("Mutation rate" , 4 ) ;

}

public stat ic void main ( St r ing args [ ] ) {
Simulat ionContro l . createApp (new GeneticApp ( ) ) ;

}
}

Listing 14.11: The GenePool class.

package org . opensourcephys i c s . s i p . ch14 . g en e t i c ;
import java . awt . Color ;
import java . awt . Graphics ;
import org . opensourcephys i c s . d i sp l ay . * ;

public class GenePool implements Drawable {
int populationNumber ;
int numberOfGenotypes ;
int recombinationRate ;
int mutationRate ;
int genotypeS ize ;
boolean [ ] [ ] genotype ;
int genera t i on = 0 ;
Phenotype phenotype ;

public void i n i t i a l i z e ( Phenotype phenotype ) {
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this . phenotype = phenotype ;
gene ra t i on = 0 ;
numberOfGenotypes = populationNumber+2*recombinationRate+mutationRate ;
genotype = new boolean [ numberOfGenotypes ] [ genotypeS ize ] ;
for ( int i = 0 ; i<populationNumber ; i++) {

for ( int j = 0 ; j<genotypeS ize ; j++) {
i f (Math . random()>0.5) {

genotype [ i ] [ j ] = true ; // s e t s genes randomly
}

}
}

}

public void copyGenotype (boolean a [ ] , boolean b [ ] ) { // copy a to b
for ( int i = 0 ; i<genotypeS ize ; i++) {

b [ i ] = a [ i ] ;
}

}

public void recombine ( ) {
for ( int r = 0 ; r<recombinationRate ; r += 2) {

int i = ( int ) (Math . random ()* populationNumber ) ; // chooses random genotype
int j = 0 ;
do {

j = ( int ) (Math . random ()* populationNumber ) ; // chooses second random genotype
} while ( i==j ) ;
int s i z e = 1+( int ) ( 0 . 5* genotypeS ize *Math . random ( ) ) ; // random s i z e to recombine
int s t a r tPo s i t i o n = ( int ) ( genotypeS ize *Math . random ( ) ) ; // random l o c a t i o n
int r1 = populationNumber+r ; // index f o r new genotype
int r2 = populationNumber+r+1; // index f o r second new genotype
copyGenotype ( genotype [ i ] , genotype [ r1 ] ) ;
copyGenotype ( genotype [ j ] , genotype [ r2 ] ) ;
for ( int po s i t i o n = s t a r tPo s i t i o n ; po s i t i on<s t a r tPo s i t i o n+s i z e ; p o s i t i o n++) {

int pbcPos i t ion = po s i t i o n%genotypeS ize ;
genotype [ r1 ] [ pbcPos i t ion ] = genotype [ j ] [ pbcPos i t ion ] ; // make new genotypes
genotype [ r2 ] [ pbcPos i t ion ] = genotype [ i ] [ pbcPos i t ion ] ;

}
}

}

public void mutate ( ) {
int index = populationNumber+2*recombinationRate ; // index f o r new genotype
for ( int m = 0 ;m<mutationRate ;m++) {

int n = ( int ) (Math . random ()* populationNumber ) ; // cho ice random e x i s t i n g genotype
int po s i t i o n = ( int ) ( genotypeS ize *Math . random ( ) ) ; // random po s i t i o n to mutate
copyGenotype ( genotype [ n ] , genotype [ index+m] ) ; // copy genotype
genotype [ index+m] [ p o s i t i o n ] = ! genotype [ n ] [ p o s i t i o n ] ; // mutate

}
}
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public void evo lve ( ) {
recombine ( ) ;
mutate ( ) ;
g ene ra t i on++;

}

public void draw (DrawingPanel panel , Graphics g ) {
// draws genotype as s t r i n g o f red or green squares and l i s t s f i t n e s s f o r each genotype
i f ( genotype==null ) {

return ;
}
i f ( phenotype . s e l e c t edPopu l a t i onF i tn e s s==null ) {

return ;
}
int s izeX = Math . abs ( panel . xToPix (0.8)− panel . xToPix ( 0 ) ) ;
int s izeY = Math . abs ( panel . yToPix (0.6)− panel . yToPix ( 0 ) ) ;
for ( int n = 0 ; n<populationNumber ; n++) {

int ypix = panel . yToPix (1 . 5*n)− s izeY ;
for ( int po s i t i o n = 0 ; po s i t i on<genotypeS ize ; p o s i t i o n++) {

i f ( genotype [ n ] [ p o s i t i o n ] ) {
g . s e tCo lo r ( Color . red ) ;

} else {
g . s e tCo lo r ( Color . green ) ;

}
int xpix = panel . xToPix ( p o s i t i o n )− s izeX ;
g . f i l l R e c t ( xpix , ypix , sizeX , s izeY ) ;

}
g . s e tCo lo r ( Color . b lack ) ;
g . drawString ( S t r ing . valueOf ( phenotype . s e l e c t edPopu l a t i onF i tn e s s [ n ] ) ,

panel . xToPix ( genotypeS ize +1) , ypix+sizeY ) ;
}

}
}

Listing 14.12: The Phenotype class.

/* popu la t i on o f phenotypes ( random bond I s i n g model ) */
package org . opensourcephys i c s . s i p . ch14 . g en e t i c ;
public class Phenotype {

int L ;
int [ ] [ ] [ ] J ; // random bonds
int [ ] popu la t i onF i tnes s , s e l e c t edPopu l a t i onF i tn e s s ;
int t o t a l F i t n e s s ;
int highestEnergy ;
int be s tF i t n e s s ;

public void i n i t i a l i z e ( ) {
J = new int [ L ] [ L ] [ 2 ] ;
h ighestEnergy = 2*L*L ; // h i g h e s t p o s s i b l e energy
be s tF i tn e s s = 0 ;
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for ( int i = 0 ; i<L ; i++) {
for ( int j = 0 ; j<L ; j++) {

for ( int bond = 0 ; bond<2;bond++) {
i f (Math . random()>0.5) {

J [ i ] [ j ] [ bond ] = 1 ;
} else {

J [ i ] [ j ] [ bond ] = −1;
}

}
}

}
}

public void dete rmineF i tnes s (GenePool genePool ) {
t o t a l F i t n e s s = 0 ;
int s t a t e [ ] [ ] = new int [ L ] [ L ] ;
popu la t i onF i tne s s = new int [ genePool . numberOfGenotypes ] ;
for ( int n = 0 ; n<genePool . numberOfGenotypes ; n++) {

for ( int i = 0 ; i<L ; i++) {
for ( int j = 0 ; j<L ; j++) { // s e t s up l a t t i c e based on genotype

int po s i t i o n = i+j *L ;
i f ( genePool . genotype [ n ] [ p o s i t i o n ] ) {

s t a t e [ i ] [ j ] = 1 ;
} else {

s t a t e [ i ] [ j ] = −1;
}

}
}
for ( int i = 0 ; i<L ; i++) {

for ( int j = 0 ; j<L ; j++) { // compute energy o f l a t t i c e c on f i g u r a t i on
popu la t i onF i tne s s [ n ] −= s ta t e [ i ] [ j ]

*( J [ i ] [ j ] [ 0 ] * s t a t e [ ( i+1)%L ] [ j ]+J [ i ] [ j ] [ 1 ] * s t a t e [ i ] [ ( j+1)%L ] ) ;
}

}
// de f i n e f i t n e s s to be p o s i t i v e and low energy −> h igh f i t n e s s
popu la t i onF i tne s s [ n ] = highestEnergy−popu la t i onF i tne s s [ n ] ;
t o t a l F i t n e s s += popu la t i onF i tne s s [ n ] ;

}
}

public void s e l e c t (GenePool genePool ) {
s e l e c t edPopu l a t i onF i tn e s s = new int [ genePool . numberOfGenotypes ] ;
boolean savedGenotype [ ] [ ] = new boolean [ genePool . numberOfGenotypes ] [ genePool . genotypeS ize ] ;
for ( int n = 0 ; n<genePool . numberOfGenotypes ; n++) {

genePool . copyGenotype ( genePool . genotype [ n ] , savedGenotype [ n ] ) ;
}
for ( int n = 0 ; n<genePool . populationNumber ; n++) {

int f i t n e s sF r a c t i o n = ( int ) (Math . random ()* t o t a l F i t n e s s ) ;
int cho i c e = 0 ;
int f i tnessSum = popu la t i onF i tne s s [ 0 ] ;
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while ( f i tnessSum<f i t n e s sF r a c t i o n ) {
cho i c e++;
f i tnessSum += popu la t i onF i tne s s [ cho i c e ] ;

}
s e l e c t edPopu l a t i onF i tn e s s [ n ] = popu la t i onF i tne s s [ cho i c e ] ;
i f ( s e l e c t edPopu l a t i onF i tn e s s [ n]> be s tF i tn e s s ) {

be s tF i tn e s s = s e l e c t edPopu l a t i onF i tn e s s [ n ] ;
}
genePool . copyGenotype ( savedGenotype [ cho i c e ] , genePool . genotype [ n ] ) ;

}
}

}

Problem 14.19. Ground state of Ising-like models

a. Use the genetic algorithm we have discussed to find the ground state of the ferromagnetic Ising
model for which Jij = 1. In this case the ground state energy is E = −2L2 (all spins up or all
spins down). It will be necessary to modify method Initialize in class Phenotype. Choose
L = 4 and consider a population of 20 strings, with 10 recombinations and 4 mutations per
generation. How long does it take to find the ground state energy? You might wish to modify
the program so that each new generation is shown on the screen so that you can look at the
new generations as they appear.

b. Find the mean number of generations needed to find the ground state for L = 4, 6, and 8.
Repeat each run several times. Use a population of 100, a recombination rate of 50, and a
mutation rate of 20. Are there any general trends as L is increased? How do your results
change if you double the population size? What happens if you double the recombination rate
or mutation rate? Use larger lattices if you have sufficient computer resources.

c. Repeat part (b) for the antiferromagnetic model for which Jij = −1.

d. Repeat part (b) for a spin glass for which Jij = ±1 at random. In this case we do not know the
ground state energy in advance. What criterion can you use to terminate a run?

One of the important features of the genetic algorithm is that the change in the genetic code is
selected not in the genotype directly, but in the phenotype. Note that the way we change the strings
(particularly with recombination) is not closely related to the two-dimensional lattice of spins. We
could have used some other prescription for converting a string of 0s and 1s to a configuration
of spins on a two-dimensional lattice. If the phenotype is a three-dimensional lattice, we could
use the same procedure for modifying the genotype, but a different prescription for converting the
genetic sequence (the string of 0s and 1s) to the phenotype (the three-dimensional lattice of spins).
The point is that it is not necessary for the genetic coding to mimic the phenotypic expression.
This point becomes distorted in the popular press when a gene is tied to a particular trait, because
specific pieces of DNA rarely correspond directly to any explicitly expressed trait in the phenotype.
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velocity vector direction symbol abbreviation decimal binary
v0 (1, 0) RIGHT RI 1 00000001

v1 (1,−
√
3)/2 RIGHT DOWN RD 1 00000010

v2 −(1,
√
3)/2 LEFT DOWN LD 4 00000100

v3 (−1, 0) LEFT LE 8 00001000

v4 (−1,
√
3)/2 LEFT UP LU 16 00010000

v5 (1,
√
3)/2 RIGHT UP RU 32 00100000

v6 (0, 0) STATIONARY S 64 01000000

BARRIER 128 10000000

Table 14.1: Summary of the possible velocities and their representations.

14.6 Lattice Gas Models of Fluid Flow

We now return to cellular automaton models and discuss one of their more interesting applications
– simulations of fluid flow. In general, fluid flow is very difficult to simulate because the partial
differential equation describing the flow of incompressible fluids, the Navier-Stokes equation, is
nonlinear, and this nonlinearity can lead to the failure of standard numerical algorithms. In
addition, there are typically many length scales that must be considered simultaneously. These
length scales include the microscopic motion of the fluid particles, the length scales associated
with fluid structures such as vortices, and the length scales of macroscopic objects such as pipes or
obstacles. Because of these considerations, simulations of fluid flow based on the direct numerical
solutions of the Navier-Stokes equation typically require very sophisticated numerical methods
(cf. Oran and Boris).

Cellular automaton models of fluids are known as lattice gas models. In a lattice gas model
the positions of the particles are restricted to the sites of a lattice, and the velocities are restricted
to a small number of vectors corresponding to neighbor sites. A time step is divided into two
substeps. In the first substep the particles move freely to their corresponding nearest neighbor
lattice sites. Then the velocities of the particles at each lattice site are changed according to a
collision rule that conserves mass (particle number), momentum, and kinetic energy. The purpose
of the collision rules is not to accurately model microscopic collisions, but rather to achieve the
correct macroscopic behavior. The idea is that if we satisfy the conservation laws associated with
microscopic collisions, then we can find the correct physics at the macroscopic level, including
translational and rotational invariance, by averaging over many particles.

We assume a triangular lattice, because it can be shown that this symmetry is sufficient to
yield the macroscopic Navier-Stokes equations for a continuum. In contrast, the more limited
symmetry of a square lattice is not sufficient. Three-dimensional models are much more difficult
to implement and justify theoretically.

All the moving particles are assumed to have the same speed and mass. The possible velocity
vectors lie only in the direction of the nearest neighbor sites, and hence there are six possible
velocities as summarized in Table 14.1. A rest particle also is allowed. The number of particles at
each site moving in a particular direction (channel) is restricted to be zero or one.

In the first substep all particles move in the direction of their velocity to a neighboring site. In
the second substep the velocity vectors at each lattice site are changed according to the appropriate
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LU RU

RILE

RDLD

Figure 14.4: Examples of collision rules for three particles, with one particle unchanged and no
stationary particles. Each direction or channel is represented by 32 bits, but we need only the first
8 bits. The various channels are summarized in Table 14.1.

(a) (b) (c)

Figure 14.5: (a) Example of collision rule for three particles with zero net momentum. (b) Example
of two particle collision rule. (c) Example of four particle collision rule. The rules for states that
are not shown is that the velocities do not change after a collision. An open circle represents a
lattice site and the absence of a stationary particle.

collision rule. Examples of the collision rules are illustrated in Figures 14.4–14.6. The rules
are deterministic with only one possible set of velocities after a collision for each possible set of
velocities before a collision. It is easy to check that momentum conservation for collisions between
the particles is enforced by these rules.

As in Section 14.1, we use bit manipulation to efficiently represent a lattice site and the
collision rules. Each lattice site is represented by one element of the integer array lattice. In
Java each int stores 32 bits, but we will use only the first 8 bits. We use the first six bits from 0 to
5 to represent particles moving in the six possible directions with bit 0 corresponding to a particle
moving with velocity v0 (see Table 14.1). If there are three particles with velocities v0, v2, and
v4 at a site and no barrier, then the value of the lattice array element at this site is 00010101 in
binary notation.

Bit 6 represents a possible rest (stationary) particle. If we want a site to act as a barrier
that blocks incoming particles, we set bit 7. For example, a barrier site containing a particle with
velocity v1 is represented by 10000010.
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The rules for the collisions are given in the declaration of the class variables in class LatticeGas.
Because rule is declared static final, we cannot normally overwrite its values. However, an
exception is made for static initializers that are run when the class is first loaded. To construct
the rules, we use the bitwise or operator, |, and use named constants for each of the possible
states. As an example, the state corresponding to one particle moving to the right, one moving to
the left and down, and one moving to the left and up is given by LU + LD + RI, which we write
as LU|LD|RI or 00010101. The collision rule in Figure 14.5(a) is that this state transforms to
one particle moving to the right and down, one moving left, and one moving to the right and up.
Hence, this collision rule is given by rule[LU|LD|RI] = RU|LE|RD. The other rules are given in
a similar way. Stationary particles also can be created or destroyed. For example, what are the
states before and after the collision for rule[LU|RI] = RU|S?

To every rule corresponds a dual rule that flips the bits corresponding to the presence and
absence of a particle. This duality means that we need to only specify half of the rules. The dual
rules can be constructed by flipping all bits of the input and output. Our convention is to list the
rules starting without a stationary particle. Then the corresponding dual rules are those that start
with a stationary particle. The dual rules are implemented by the statement

r u l e [ i ˆ(RU|LU |LE |LD |RD|RI | S ) ] = ru l e [ i ] ˆ (RU|LU |LE |LD |RD|RI | S ) ;

where ˆ is the bitwise exclusive or operator, which equals 1 if both bits are different, and is 0
otherwise. Two examples of dual rules are given in Figure 14.6.

The rules in Figures 14.5(b) and 14.5(c) cycle through the states in a particular direction.
Although these rules are straightforward, they are not invariant under reflection. To help eliminate
this bias, we cycle in the opposite direction when a stationary particle is present (see Figure 14.6).

We adopt the rule that when a particle moves onto a barrier site, we set the velocity v of
this particle equal to −v (see Figure 14.7). Because of our ordering of the velocities, the rule for
updating a barrier can be expressed compactly using bit manipulation. Reflection off a barrier is
accomplished by shifting the higher order bits to the right by three bits (>>>3) and shifting the
lower order bits to the left by three bits (<<3). Check the rules given in Listing 14.13. Other
possibilities are to set the angle of incidence equal to the angle of reflection or to set the velocity
to an arbitrary direction. The latter case would correspond to a collision off a rough surface.

The step method runs through the entire lattice and moves all the particles. The updated
values of the sites are placed in the array newLattice. We then go through the newLattice array,
implement the relevant collision rule at each site, and write the results into the array Lattice.

The movement of the particles is accomplished as follows. Because the even rows are horizon-
tally displaced one half a lattice spacing from the odd rows, we need to treat odd and even rows
separately. In the step method we loop through every other row and update site1 and site2 at
the same time. An example will show how this update works. The statement

rght [ j −1] |= s i t e 1 & RIGHTDOWN;

means that if there is a particle moving to the right and down at site1, then the bit corresponding
to RIGHT DOWN is added to the site rght (see Figure 14.8). The statement

cent [ j ] |= s i t e 1 & (STATIONARY|BARRIER) | s i t e 2 & RIGHTDOWN;
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(a) (b)

(c) (d)

Figure 14.6: (a) and (c) and (b) and (d) are duals of each other. An open circle represents the
absence of a stationary particle, and a filled circle represents the presence of a stationary particle.
Note that the collision rule in (c) is similar to (b), and the collision rule in (d) is similar to (a),
but in the opposite direction.

means that a stationary particle at site1 remains there, and if site1 is a barrier, it remains so.
If site2 has a particle moving in the direction RD, then site1 will receive this particle.

To maintain a steady flow rate, we add the necessary horizonal momentum to the lattice
uniformly after each time step. The procedure is to chose a site at random and determine if it is
possible to change the sites’s horizontal momentum. If so, we then remove the left bit and add the
right bit or vice versa. This procedure is accomplished by the statements at the end of the step

method.

Listing 14.13: Listing of the LatticeGas class.

package org . opensourcephys i c s . s i p . ch14 . l a t t i c e g a s ;
import org . opensourcephys i c s . d i sp l ay . * ;
import java . awt . * ;
import java . awt . geom . Aff ineTransform ;
import java . awt . geom . Line2D ;

public class Latt iceGas implements Drawable {
// input parameters from user
public double f lowSpeed ; // con t r o l s pre s sure
public double arrowSize ; // s i z e o f v e l o c i t y arrows d i s p l a y ed
public int spat ia lAverag ingLength ; // s p a t i a l averag ing o f v e l o c i t y
public int Lx , Ly ; // l i n e a r dimensions o f l a t t i c e
public int [ ] [ ] l a t t i c e , newLatt ice ;
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t = 0 t = 1 t = 2

Figure 14.7: Example of a collision from a barrier. The symbol ⊗ denotes a barrier site.
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Figure 14.8: We update site1 and site2 at the same time. The rows are indexed by j. The
dotted line connects sites in the same column.

private double numPart ic les ;
stat ic f ina l double SQRT3 OVER2 = Math . s q r t ( 3 ) / 2 ;
stat ic f ina l double SQRT2 = Math . s q r t ( 2 ) ;
stat ic f ina l int

RIGHT = 1 , RIGHTDOWN = 2 , LEFTDOWN = 4 ;
stat ic f ina l int

LEFT = 8 , LEFT UP = 16 , RIGHT UP = 32 ;
stat ic f ina l int

STATIONARY = 64 , BARRIER = 128 ;
stat ic f ina l int NUMCHANNELS = 7 ; // maximum number o f p a r t i c l e s per s i t e
stat ic f ina l int NUM BITS = 8 ; // 7 channel b i t s p l u s 1 b a r r i e r b i t per s i t e
stat ic f ina l int NUMRULES = 1<<8; // t o t a l number o f p o s s i b l e s i t e c on f i g u r a t i on s = 2ˆ8
// 1 << 8 means move the z e ro th b i t over 8 p l a c e s to the l e f t to the e i g h t h b i t

stat ic f ina l double ux [ ] = {
1 . 0 , 0 . 5 , −0.5 , −1.0 , −0.5 , 0 . 5 , 0

} ;
stat ic f ina l double uy [ ] = {

0 . 0 , −SQRT3 OVER2, −SQRT3 OVER2, 0 . 0 , SQRT3 OVER2, SQRT3 OVER2, 0
} ;
stat ic f ina l double [ ] vx , vy ; // averaged v e l o c i t i e s f o r every s i t e c on f i g u r a t i on
stat ic f ina l int [ ] r u l e ;

stat ic { // s e t r u l e t a b l e
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// d e f a u l t r u l e i s the i d e n t i t y r u l e
r u l e = new int [NUMRULES ] ;
for ( int i = 0 ; i<BARRIER; i++) {

r u l e [ i ] = i ;
}
// a b b r e v i a t i o n s f o r channel b i t i n d i c e s
int RI = RIGHT, RD = RIGHTDOWN, LD = LEFTDOWN;
int LE = LEFT, LU = LEFT UP, RU = RIGHT UP;
int S = STATIONARY;
// th r ee p a r t i c l e zero momentum ru l e s
r u l e [LU |LD |RI ] = RU|LE |RD;
ru l e [RU|LE |RD] = LU |LD |RI ;
// th r ee p a r t i c l e r u l e s wi th unperturbed p a r t i c l e
r u l e [RU|LU |LD] = LU |LE |RI ;
r u l e [LU |LE |RI ] = RU|LU |LD;
ru l e [RU|LU |RD] = RU|LE |RI ;
r u l e [RU|LE |RI ] = RU|LU |RD;
ru l e [RU|LD |RD] = LE |RD|RI ;
r u l e [LE |RD|RI ] = RU|LD |RD;
ru l e [LU |LD |RD] = LE |LD |RI ;
r u l e [LE |LD |RI ] = LU |LD |RD;
ru l e [RU|LD |RI ] = LU |RD|RI ;
r u l e [LU |RD|RI ] = RU|LD |RI ;
r u l e [LU |LE |RD] = RU|LE |LD;
ru l e [RU|LE |LD] = LU |LE |RD;
// two p a r t i c l e c y c l i c r u l e s
r u l e [LE |RI ] = RU|LD;
ru l e [RU|LD] = LU |RD;
ru l e [LU |RD] = LE |RI ;
// four p a r t i c l e c y c l i c r u l e s
r u l e [RU|LU |LD |RD] = RU|LE |LD |RI ;
r u l e [RU|LE |LD |RI ] = LU |LE |RD|RI ;
r u l e [LU |LE |RD|RI ] = RU|LU |LD |RD;
// s t a t i ona r y p a r t i c l e c r ea t i on r u l e s
r u l e [LU |RI ] = RU| S ;
r u l e [RU|LE] = LU | S ;
r u l e [LU |LD] = LE | S ;
r u l e [LE |RD] = LD | S ;
r u l e [LD |RI ] = RD| S ;
r u l e [RD|RU] = RI | S ;
r u l e [LU |LE |LD |RD|RI ] = RU|LE |LD |RD| S ;
r u l e [RU|LE |LD |RD|RI ] = LU |LD |RD|RI | S ;
r u l e [RU|LU |LD |RD|RI ] = RU|LE |RD|RI | S ;
r u l e [RU|LU |LE |RD|RI ] = RU|LU |LD |RI | S ;
r u l e [RU|LU |LE |LD |RI ] = RU|LU |LE |RD| S ;
r u l e [RU|LU |LE |LD |RD] = LU |LE |LD |RI | S ;
// add a l l r u l e s indexed wi th a s t a t i ona r y p a r t i c l e ( dua l r u l e s )
for ( int i = 0 ; i<S ; i++) {

r u l e [ i ˆ(RU|LU |LE |LD |RD|RI | S ) ] = ru l e [ i ] ˆ (RU|LU |LE |LD |RD|RI | S ) ; // ˆ i s the e x c l u s i v e or opera tor
}
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// add r u l e s to bounce back at b a r r i e r s
for ( int i = BARRIER; i<NUMRULES; i++) {

int h ighBi t s = i&(LE |LU |RU) ; // & i s b i t w i s e and opera tor
int lowBits = i&(RI |RD|LD) ;
r u l e [ i ] = BARRIER | ( h ighBits >>3)|( lowBits <<3);

}
}
stat ic { // s e t average s i t e v e l o c i t i e s

// f o r every p a r t i c l e s i t e c on f i g u r a t i on i , c a l c u l a t e t o t a l net v e l o c i t y
// and p lace in vx [ i ] , vy [ i ]
vx = new double [NUMRULES ] ;
vy = new double [NUMRULES ] ;
for ( int i = 0 ; i<NUMRULES; i++) {

for ( int d i r = 0 ; d i r<NUMCHANNELS; d i r++) {
i f ( ( i&(1<<d i r ) ) !=0) {

vx [ i ] += ux [ d i r ] ;
vy [ i ] += uy [ d i r ] ;

}
}

}
}
public void i n i t i a l i z e ( int Lx , int Ly , double dens i ty ) {

this . Lx = Lx ;
this . Ly = Ly−Ly%2; // Ly must be even
numPart ic les = Lx*Ly*NUMCHANNELS* dens i ty ; // approximate t o t a l number o f p a r t i c l e s
// den s i t y i s the number o f p a r t i c l e s d i v i d ed by the maximum number p o s s i b l e
l a t t i c e = new int [ Lx ] [ Ly ] ;
newLatt ice = new int [ Lx ] [ Ly ] ;
int s e v e nPa r t i c l e S i t e = ((1<<NUMCHANNELS)−1); // equa l s 127
for ( int i = 0 ; i<Lx ; i++) {

l a t t i c e [ i ] [ 1 ] = l a t t i c e [ i ] [ Ly−2] = BARRIER; // wa l l a t top and bottom
for ( int j = 2 ; j<Ly−2; j++) {

// occupy s i t e by 0 or 7 p a r t i c l e s , average occupat ion w i l l be about the d en s i t y
int s i t eVa lue = Math . random()< dens i ty ? s e v enPa r t i c l e S i t e : 0 ;
l a t t i c e [ i ] [ j ] = s i t eVa lue ; // random p a r t i c l e c on f i g u r a t i on

}
}
for ( int j = 3*Ly/10 ; j<7*Ly/10 ; j++) {

l a t t i c e [ 2*Lx / 1 0 ] [ j ] = BARRIER; // o b s t r u c t i on toward the l e f t
}

}

public void s tep ( ) {
// move a l l p a r t i c l e s forward
for ( int i = 0 ; i<Lx ; i++) {

// de f i n e the columns o f a 2−dim array
int [ ] l e f t = newLatt ice [ ( i−1+Lx)%Lx ] ;
int [ ] cent = newLatt ice [ i ] ; // use a b b r e v i a t i o n s to a l i g n e xp r e s s i on s
int [ ] rght = newLatt ice [ ( i+1)%Lx ] ;
for ( int j = 1 ; j<Ly−2; j += 2) {
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// loop j in increments o f 2 in order to decrease reads and wr i t e s o f ne i ghbor s
int s i t e 1 = l a t t i c e [ i ] [ j ] ;
int s i t e 2 = l a t t i c e [ i ] [ j +1] ;
// move a l l p a r t i c l e s in s i t e 1 and s i t e 2 to t h e i r ne i ghbor s
rght [ j −1] |= s i t e 1&RIGHTDOWN;
cent [ j −1] |= s i t e 1&LEFTDOWN;
rght [ j ] |= s i t e 1&RIGHT;
cent [ j ] |= s i t e 1&(STATIONARY|BARRIER) | s i t e 2&RIGHTDOWN;
l e f t [ j ] |= s i t e 1&LEFT | s i t e 2&LEFTDOWN;
rght [ j +1] |= s i t e 1&RIGHT UP | s i t e 2&RIGHT;
cent [ j +1] |= s i t e 1&LEFT UP | s i t e 2&(STATIONARY|BARRIER) ;
l e f t [ j +1] |= s i t e 2&LEFT;
cent [ j +2] |= s i t e 2&RIGHT UP;
l e f t [ j +2] |= s i t e 2&LEFT UP;

}
} // handle c o l l i s i o n s , f i nd average x v e l o c i t y
double vxTotal = 0 ;
for ( int i = 0 ; i<Lx ; i++) {

for ( int j = 0 ; j<Ly ; j++) {
int s i t e = ru l e [ newLatt ice [ i ] [ j ] ] ; // use c o l l i s i o n ru l e
l a t t i c e [ i ] [ j ] = s i t e ;
newLatt ice [ i ] [ j ] = 0 ; // r e s e t newLat t ice va l u e s to 0
vxTotal += vx [ s i t e ] ;

}
}
int s c a l e = 4 ;
int i n j e c t i o n s = ( int ) ( ( f lowSpeed *numPartic les−vxTotal )/ s c a l e ) ;
for ( int k = 0 ; k<Math . abs ( i n j e c t i o n s ) ; k++) {

int i = ( int ) (Math . random ()*Lx ) ; // choose s i t e a t random
int j = ( int ) (Math . random ()*Ly ) ;
// f l i p d i r e c t i o n o f h o r i z o n t a l l y moving p a r t i c l e i f p o s s i b l e
i f ( ( l a t t i c e [ i ] [ j ]&(RIGHT |LEFT))==(( i n j e c t i o n s >0) ? LEFT : RIGHT) ) {

l a t t i c e [ i ] [ j ] ˆ= RIGHT |LEFT;
}

}
}

public void draw (DrawingPanel panel , Graphics g ) {
i f ( l a t t i c e==null ) {

return ;
}
// i f s = 1 draw l a t t i c e and p a r t i c l e d e t a i l s e x p l i c i t l y
// o the rw i s e average v e l o c i t y over an s by s square
int s = spat ia lAverag ingLength ;
Graphics2D g2 = (Graphics2D ) g ;
Aff ineTransform toP i x e l s = panel . getPixe lTrans form ( ) ;
Line2D . Double l i n e = new Line2D . Double ( ) ;
for ( int i = 0 ; i<Lx ; i++) {

for ( int j = 2 ; j<Ly−2; j++) {
double x = i+( j %2)*0.5 ;
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double y = j *SQRT3 OVER2;
i f ( s==1) {

g2 . s e tPa in t ( Color .BLACK) ;
for ( int d i r = 0 ; d ir<NUMCHANNELS; d i r++) {

i f ( ( l a t t i c e [ i ] [ j ]&(1<<d i r ) ) !=0) {
l i n e . s e tL ine (x , y , x+ux [ d i r ] * 0 . 4 , y+uy [ d i r ] * 0 . 4 ) ;
g2 . draw ( t oP i x e l s . createTransformedShape ( l i n e ) ) ;

}
}

}
i f ( ( l a t t i c e [ i ] [ j ]&BARRIER)==BARRIER | | s==1) { // draw po in t s a t l a t t i c e s i t e s

Ci r c l e c = new Ci r c l e (x , y ) ;
c . pixRadius = ( ( l a t t i c e [ i ] [ j ]&BARRIER)==BARRIER) ? 2 : 1 ;
c . draw ( panel , g ) ;

}
}

}
i f ( s==1) {

return ;
}
for ( int i = 0 ; i<Lx ; i += s ) {

for ( int j = 0 ; j<Ly ; j += s ) {
double x = i+s / 2 . 0 ;
double y = ( j+s /2 . 0 )*SQRT3 OVER2;
double

wx = 0 , wy = 0 ; // compute coarse gra ined average v e l o c i t y
for ( int m = i ;m!=( i+s)%Lx ;m = (m+1)%Lx) {

for ( int n = j ; n!=( j+s)%Ly ; n = (n+1)%Ly) {
wx += vx [ l a t t i c e [m] [ n ] ] ;
wy += vy [ l a t t i c e [m] [ n ] ] ;

}
}
Arrow a = new Arrow(x , y , arrowSize *wx/s , arrowSize *wy/ s ) ;
a . setHeadSize ( 2 ) ;
a . draw ( panel , g ) ;

}
}

}
}

Listing 14.14: Listing of the LatticeGasApp class.

package org . opensourcephys i c s . s i p . ch14 . l a t t i c e g a s ;
import org . opensourcephys i c s . c on t r o l s . * ;
import org . opensourcephys i c s . frames . * ;

public class LatticeGasApp extends AbstractS imulat ion {
Latt iceGas model = new Latt iceGas ( ) ;
DisplayFrame d i sp l ay = new DisplayFrame ("Lattice gas" ) ;
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public LatticeGasApp ( ) {
d i sp l ay . addDrawable (model ) ;
d i sp l ay . s e t S i z e (800 , ( int ) (400*Math . s q r t ( 3 ) / 2 ) ) ;

}

public void i n i t i a l i z e ( ) {
int l x = con t r o l . g e t In t ("lx" ) ;
int l y = con t r o l . g e t In t ("ly" ) ;
double dens i ty = con t r o l . getDouble ("Particle density" ) ;
model . i n i t i a l i z e ( lx , ly , dens i ty ) ;
model . f lowSpeed = con t r o l . getDouble ( "Flow speed" ) ;
model . spat ia lAverag ingLength = con t r o l . g e t In t ( "Spatial averaging length" ) ;
model . arrowSize = con t r o l . g e t In t ("Arrow size" ) ;
d i sp l ay . setPreferredMinMax (−1 , lx , −Math . s q r t (3 )/2 , l y *Math . sq r t ( 3 ) / 2 ) ;

}

public void doStep ( ) {
model . f lowSpeed = con t r o l . getDouble ( "Flow speed" ) ;
model . spat ia lAverag ingLength = con t r o l . g e t In t ( "Spatial averaging length" ) ;
model . arrowSize = con t r o l . getDouble ( "Arrow size" ) ;
model . s tep ( ) ;

}

public void r e s e t ( ) {
c on t r o l . setValue ("lx" , 1000 ) ;
c on t r o l . setValue ("ly" , 5 00 ) ;
c on t r o l . setValue ("Particle density" , 0 . 2 ) ;
c on t r o l . s e tAdjustab leValue ("Flow speed" , 0 . 2 ) ;
c on t r o l . s e tAdjustab leValue ("Spatial averaging length" , 2 0 ) ;
c on t r o l . s e tAdjustab leValue ("Arrow size" , 2 ) ;
enab leStepsPerDisp lay ( true ) ;
c on t r o l . s e tAdjustab leValue ("steps per display" , 1 00 ) ;

}

public stat ic void main ( St r ing [ ] a rgs ) {
Simulat ionContro l . createApp (new LatticeGasApp ( ) ) ;

}
}

An important application of lattice gas models is to simulate the flow in and around various
geometries. In Problem 14.20 we will see that the fluid velocity field develops vortices, wakes, and
other fluid structures near obstacles. Method initialize in class LatticeGas places an obstacle
in the middle of the lattice and provides initial values for each site. Large lattices are required to
obtain quantitative results, because it is necessary to average the velocity over many sites. The
parameter density is the average number of particles divided by the maximum possible. The
pressure can be varied by changing the flowSpeed parameter.

Problem 14.20. Flow past a barrier

a. Convince yourself that you understand the collision rules and their implementation in class
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LatticeGas. Then download the class FastLatticeGas from the ch14 directory. This latter
class uses all 32 bits of an int variable and runs about twice as fast. The tradeoff is that the
code is more difficult to debug and understand. Use the parameters in Listing 14.14. Describe
the flow once a steady state velocity field begins to appear. Do you see a wake appearing behind
the obstacle? Are there vortices?

b. Repeat part (a) with different size obstacles. Are there any systematic trends? (One limitation
of the present program is that it naively redraws a circle to represent each barrier site. This
redrawing requires a significant amount of computer resources and limits the size of the obstacles
that we can consider.)

c. Reduce the pressure by reducing the flow speed. Are there any noticeable changes in behavior
from parts (a) and (b)? Reduce the pressure still further and describe any changes in the fluid
flow.

Problem 14.21. Approach to equilibrium

a. Consider the approach of a lattice gas to equilibrium. Modify LatticeGas so that the initial
configuration has zero net momentum, the particles are localized in a b× b region, and there are
no barrier sites. Choose L = 30 and b = 4 and place six particles at every site in the localized
region. The other sites in the lattice are initially empty. Describe what happens to the particles
as a function of time. Approximately how many time steps does it take for the system to come
to equilibrium? Do the particles appear to be at random positions with random velocities?
What is your visual algorithm for determining when equilibrium has been reached?

b. Repeat part (a) for b = 2, 6, 8, and 10. Estimate the equilibration time in each case. What
is the qualitative dependence of the equilibration time on b? How does the equilibration time
depend on the number density ρ?

c. Repeat part (a) with b = 4, but with L = 10, 20, and 40. Estimate the equilibration time in
each case. How does the equilibration time depend on ρ?

Problem 14.22. Fluid flow in porous media

a. Modify class LatticeGas so that instead of a rectangular barrier, the barrier sites are placed
at random in the system. We define the porosity, ϕ, as the fraction of sites without a barrier.
The interesting quantity to measure is the permeability, k, which is a measure of the fluid
conductivity. We can compute the permeability using the relation

k ∝
ϕ
∑

i⟨vi,x⟩∑
j⟨∆pj,x⟩

, (14.8)

where the sum in the numerator is over the horizontal velocity of all particles in the pore space
(the sites at which there are no barriers), and the sum in the denominator is over the injected
momentum at all sites used to maintain the flow. The brackets refer to averages over time.
Compute the permeability as a function of the porosity ϕ and display your results on a log-log
plot. You should average over at least 10 configurations of random barrier sites for each value of
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the porosity. What value of ϕ corresponds to the percolation threshold, defined by k = 0? See
Rothman and Zaleski for a discussion of the comparison of this type of simulation with results
for real rocks.

b.∗ Vary the size of the lattice and use the finite size scaling procedure discussed in Section 12.4 to
estimate the critical exponent µ defined by the dependence of the permeability on the porosity,
that is, k ∼ (ϕ− ϕc)

µ. Assume that you know the value of the percolation exponent ν defined
by the critical behavior of the connectedness length ξ ∼ |p− pc|−ν (see Table 12.1).

The principal virtues of lattice gas models are their use of simultaneous updating, which
makes them very fast on parallel computers, and their use of integer or boolean arithmetic and
bit manipulation, which is faster than floating point arithmetic. Their major limitation is that it
is necessary to average over many sites to obtain quantitative results. It is not yet clear whether
lattice gas models are more efficient than standard simulations of the Navier-Stokes equation. The
greatest promise for lattice gas models may not be with simple single component fluids, but with
multicomponent fluids such as binary fluids and fluids containing bubbles (see the book by Rothman
and Zaleski). A related technique that might hold greater promise is the lattice Boltzmann method
(see the references).

14.7 Overview and Projects

The models we have discussed in this chapter have been presented as algorithms rather than in
terms of differential equations and are a reflection of the way that technology affects the way we
think. Can you discuss the models in this chapter without thinking about their implementation on
a computer? Can you imagine understanding these models without the use of computer graphics?

We have given only a brief introduction to cellular automata and other models that are
relevant to the rapidly developing study of complex systems. There are many more models and
applications that we have not discussed, ranging from aging, the immune system, economic cycles,
and pedestrian movements, to name just a few.

Models of opinion formation have become popular in recent years. The basic idea is that the
opinions of others will influence the opinion of individuals. The following two projects explore
some of the popular models.

Project 14.23. Models of opinion formation

a. The voter model. On a regular lattice assign each site the value ±1. Choose a site (the voter)
at random (the voter). The voter then adopts the same value as a randomly chosen neighbor.
These two steps continue until all sites have the same value, that is, when they have reached
consensus. Compute the probability of achieving a consensus of +1 given that the initial density
of +1 sites is ρ0. Use a 10 × 10 square lattice and make at least 20 runs at each density. Also
compute the time to reach consensus as a function of the lattice size. In two dimensions this
time scales as N lnN , where N is the number of sites. How does the consensus time scale with
N in d = 1 and d = 3 dimensions? How does it scale on a preferential attachment network (see
the article by Sood and Redner)?
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b. The relative agreement interaction model. N individuals are initially assigned an opinion that
takes on a value between 0 and 1. Choose two individuals, i and j, at random. Assume that
the ith opinion, Oi is greater than the jth opinion, Oj . If their opinions differ by less than
the parameter ϵ, then increase Oj by (m/2)(Oi − Oj) and decrease Oi by the same amount,
where m is another parameter. This model implements the idea that two people will influence
each other only if their opinions are sufficiently close. Write a program to simulate this model.
Use a LatticeFrame for which each cell can take on one of 256 values. The approximation
of the continuum by 256 values is for visualization purposes only, and the 256 values should
be sufficiently large to approximate a continuum of values. Choose ϵ = 10, 50 and 100, and
m = 0.3 and 0.6. Include in your program the option to plot configurations only after a certain
number of iterations to speed up the simulation (use enableStepsPerDisplay(true)). Choose
N ≥ 2500, begin with a random set of opinions, and discuss whether a single opinion emerges
and the magnitude of the fluctuations.

c. The Sznajd model. Place individuals on a square lattice with linear dimension L and periodic
boundary conditions. Each individual has one of two opinions. At each iteration, an individual
and one of her neighbors is chosen at random. If the two individuals have the same opinion,
the opinion of the six neighbors of the pair is changed to that of the pair. The idea is that
people are more likely to change their opinion to those physically near them if more than one
person shares the same opinion (peer pressure). Write a program to simulate this model and
show that consensus is always reached for all sites if the simulation is run for a sufficiently
long time. Discuss the visual appearance of the groups of like-minded individuals. Consider
initial configurations where the individuals are randomly assigned the two opinions, and initial
configurations where one opinion has a majority of 1%, 5%, and 10%. Choose L ≥ 50.

d. Generalize the Sznajd model so that an individual may be assigned one of more than two
opinions. Is consensus still always reached? What happens if the individuals are not on the
sites of a square lattice, but rather are the nodes of a preferential attachment network of at
least 5000 nodes?

Project 14.24. The minority game

In certain situations we wish to be in the minority. For example, we might wish to go to a popular
restaurant on an off-night so that we do not have to wait in line. A business might want to sell
goods and services that are not being sold by other businesses. The following algorithm, known
as the minority game, is a model of adaptive competition where each player tries to maximize his
gain. We will find that there is a phase transition between states where the players mainly act on
their own, and states for which cooperative behavior emerges.

There are N players, where N is odd. At each iteration, each player can choose one of two
actions which we call 1 or 0, but which we encode as the boolean true or false. A player’s
choice is determined by a strategy based on the previous m (memory) iterations. Each strategy is
represented by a table of all the possible outcomes of the previous m iterations and a decision on
what to do for each outcome. Each player has his own table of strategies. An outcome is defined
as the action that was chosen least by all the players. For example, suppose m = 2. There are
four possible pasts: (1,1), (1,0), (0,1), and (0,0). The past (1,1) means that in each of the last two
iterations, action 1 was chosen by a minority of the players. A strategy would be encoded by a table
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such as the following: (1,1,1), (1,0,0), (0,1,0), and (0,0,1). The first two entries in each triple are
the possible outcomes of the last two iterations, and the third entry in the triple gives the action
that the strategy suggests taking. Thus the triple (1,1,1) means that if (1,1) occurred in the past,
the strategy is to choose action 1; (1,0,0) means that if (1,0) occurred in the past, the strategy is
to use action 0. Each player is assigned at least two strategies that are chosen at random from all
possible strategies at the beginning of the game. As the game is played, the performance of each
strategy (whether or not it is used) is updated, such that if a strategy leads to the same action
that was in the minority, then this strategy is successful and its performance is incremented by
unity; otherwise it stays the same. At each iteration each player chooses the strategy with the best
performance, and takes the action determined by his best performing strategy. Then the outcome
(which action was in the minority) for that iteration is determined, and the past m outcomes and
the performance for all the strategies are updated. Note that the strategies available to each player
does not change, but which of each player’s strategy is best changes as the game is iterated.

To simplify the code, represent the past outcomes by an integer where each bit represents an
outcome. For example, the bit 110 means that the outcome was 0 in the last iteration and was 1
for each of the earlier two iterations. You will need the following arrays: strategies[i][j][k],
which gives the action for the ith player, using its jth strategy, when the kth past occurred;
performance[i][j], which gives the performance for the ith player’s jth strategy, and chosenStrategy[i],
which gives the strategy chosen by the ith player in the current iteration.

Let N1 equal the number of players who chose action 1 in one iteration. The outcome is best
if at each iteration the value of N1 is close to N/2 because in this way there would be as many
players as possible in the minority. The quantity of interest is σ, where σ is defined as

σ2 =
∑
k

(N1(k)− ⟨N1⟩)2, (14.9)

and the sum is over all the iterations of the game andN1(k) is the number of players choosing action
1 in the kth iteration. The quantity σ decreases as the efficiency increases. High efficiency means
more players are in the minority on the average. We might think that the efficiency increases as
the number of past outcomes increases, because then the players have more information to choose
their strategy. However, you might be surprised!

a. Write a program to simulate the minority game. For simplicity, give each player only two
strategies chosen at random. Run your program for a memory m varying from 2 to about 12.
A reasonable choice for N is 101, but for testing purposes choose N = 11. Each game should be
run for at least 1000 iterations, and your results should be averaged over at least 10 independent
runs for the same m, with different strategies for the players. Plot the average of σ versus m,
and describe the behavior for different values of N . Explain why there is a minimum in these
plots.

b. The results of the minority game scale unambiguously. Plot the average of σ2/N versus 2m/N
for different values of N . You should find that your data fall on the same curve. What does 2m

represent? Discuss this scaling behavior and describe the behavior of the efficiency on either
side of the minimum. Can you describe your results as a phase transition? Where is the ordered
phase and where the disordered phase?
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c. Plot the spread in the values of σ versus m. The spread can be taken to be the standard
deviation of each game’s value of σ over many games. Discuss the significance of your results.

Project 14.25. A cellular automaton for Burger’s equation

In Section 14.6 we mentioned that the partial differential equation describing the flow of incom-
pressible fluids, the Navier-Stokes equation, is very difficult to solve numerically. A one-dimensional
approximation of the Navier-Stokes equation was given by Burgers, and is given by

∂n

∂t
+ c

∂

∂x

(
n− n2

2

)
= D

∂2n

∂x2
, (14.10)

where n(x, t) corresponds to the velocity field at position x at time t, c is the linear advection
(drift) coefficient, and D is a diffusion coefficient. Equation (14.10) is of general interest because
it can be solved analytically and its solutions exhibit discontinuities (shock waves) depending on
the values of the parameters and the initial conditions.

Boghosian and Levermore have proposed a cellular automaton that is equivalent to (14.10).
The study of this cellular automaton raises many of the same issues as the lattice gas models of
the incompressible Navier-Stokes equation considered in Section 14.6. Its study also illustrates the
idea that many partial differential equations can be formulated as cellular automata.

We know that if all particles on the lattice move one lattice site to either the right or the left
in one time step, then the density of the particles obeys the diffusion equation (see Appendix 7A)

∂n

∂t
= D

∂2n

∂x2
, (14.11)

where D = (∆x)2/2∆t, ∆x is the lattice spacing, and ∆t is the time between successive steps of
the random walk. If add a bias so that the probability of a step to the right is (1 + α)/2 and the
probability of a step to the left is (1− α)/2, the density of the walkers satisfies

∂n

∂t
+ c

∂n

∂x
= D

∂2n

∂x2
, (14.12)

where c = α∆x/∆t. To incorporate the quadratic term term, we add the rule that no two particles
occupying the same site may be moving in the same direction. In this way the state of each site
is specified by two bits. The right bit is 1 if a particle moving to the right is present and is 0
otherwise. Similarly, the left bit stores information about the presence of a particle moving to the
left. Thus each site has four possible states labeled by the binary numbers 00, 01, 10, and 11.

b1(i, t) b0(i, t) b̃1(i, t) b̃0(i, t)
0 0 0 0
0 1 (1− α(i, t)/2 (1 + α(i, t)/2
1 0 (1− α(i, t)/2 (1 + α(i, t)/2
1 1 1 1

Table 14.2: Rules for the collision substep.

In the first part of the step, the collision substep, the particles change their direction at random
at their present lattice sites subject to the exclusion rule. In the second substep, the particles move
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to the neighboring lattice site in their new direction. We follow Boghosian and Levermore and
denote the right (left) bit at lattice site i and time step t by b0(x, t) (b1(x, t)). After the collision
substep, the new states are b̃0,1(x, t) and are given in Table 14.2, where α(x, t) = ±1 with mean
α. The rules in Table 14.2 may be written in the form

b̃0(x, t) =
1 + α(x, t)

2
b0(x, t)|b1(x, t) +

1− α(x, t)

2
b0(x, t)& b1(x, t) (14.13a)

b̃1(x, t) =
1− α(x, t)

2
b0(x, t)|b1(x, t) +

1 + α(x, t)

2
b0(x, t)& b1(x, t), (14.13b)

where | is the inclusive or operation and & denotes the and operation on a pair of bits. In the
advection substep, the particles move to the neighboring lattice site in their new direction. The
rules for these moves are

b̃0(x+ 1, t+ 1) = b̃0(x, t) (14.14a)

b̃1(x− 1, t+ 1) = b̃0(x, t). (14.14b)

We can combine these two substeps to arrive at the rule for one full time step of the cellular
automaton:

b0(x+ 1, t+ 1) =
1 + α(x, t)

2
b0(x, t)|b1(x, t) +

1− α(x, t)

2
b0(x, t)& b1(x, t) (14.15a)

b1(x− 1, t+ 1) =
1− α(x, t)

2
b0(x, t)|b1(x, t) +

1 + α(x, t)

2
b0(x, t)& b1(x, t). (14.15b)

Write a program to implement (14.15) using periodic boundary conditions. Choose c = 1,
D = 2−15 and the initial condition

n(x, t = 0) = 1.0 + 0.4 cos(2πx), (14.16)

where x denotes the position of a lattice site. Boghosian and Levermore used 216 = 65536 lattice
sites so that ∆x = 2−16. The bias is given by α = c∆x/2D = 0.25 and the time step is ∆t =
(∆x)2/2D = 2−18. Average your results for 128 lattice sites and plot the average density as a
function of x for different values of t up to t = 1. Do you see any evidence of a shock wave (a
sharp discontinuity in n(x))?

V
m

kc
kL

loader plate

substrate

Figure 14.9: Schematic of the Burridge-Knopoff model. Blocks of mass m are connected by springs
with spring constant kc and move on a substrate with a velocity-dependent friction force. Each
spring is connected by a spring with spring constant kL to a loader plate that moves with velocity
v to the left.
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Project 14.26. Spring-block model of earthquakes

The first simulations of earthquakes were done by Burridge and Knopoff in 1967. Their model
represents the motion of one side of a lateral fault that is driven by a slow shear deformation
and subject to a velocity-weakening friction force (see Figure 14.9). The model consists of a one-
dimensional array of blocks, each connected to its two neighbors by springs with spring constant
kc, and constrained to move on the surface of a substrate. The coupling represents the linear
elastic response of the system to compressional deformations. Each block also is connected by a
spring with spring constant kL to a fixed loader plate. The system is loaded slowly by moving the
substrate at a velocity v to the left until the force on one of the blocks exceeds the static friction
threshold and the block slips. As this block moves relative to the substrate, the springs connecting
it to its neighbors change length, thus changing the forces acting on them. If the change in the
force is sufficient, the neighboring blocks begin to move. The blocks move until the friction force
opposing the slip is large enough to stop their motion. The slip of the blocks represents the slip
of the two surfaces of the fault past one another during an earthquake. The stick-slip behavior of
this model is similar to that of a real earthquake fault.

The equation of motion of the Burridge-Knopoff model can be written as

mẍj = kc(xj+1 − 2xj + xj−1)− kLxj − F (v + ẋj), (14.17)

where xj is the displacement of block j from its equilibrium position and F represents the velocity-
dependent friction force. The friction force has the functional form

F (ẋ) = F0ϕ(ẋ/ṽ), (14.18)

which is characterized by the speed ṽ and the static friction F0. In order for the system to exhibit
a dynamical instability corresponding to an earthquake, the friction force must become weaker as
the block slides. The form of ϕ(y) is taken to be

ϕ(y) =

{
(−∞, 1], y ≤ 0
1−σ

1+ y
1−σ

, y > 0.
(14.19)

The parameter σ represents the drop of the friction force at the onset of the slip. Note that
back-slip has been inhibited by imposing an infinite;ly large friction force for u̇ < 0.

As usual, it is convenient to introduce dimensionless variables, which we take to be uj =
(kL/F0)xj , ω

2
L = kL/m, and τ = ωLt. We rewrite (14.17) as

müj = ℓ2(xj+1 − 2xj + xj−1)− uj − ϕ(2αν + 2αu̇j), (14.20)

where the stiffness parameter ℓ =
√
kc/kL, ν = vkL/ωLF0, and 2α = ωLF0/kLṽ, and the dots now

denote differentiation with respect to τ . Typical values of the parameters are ℓ = 10, σ = 0.01,
and α = 2.5.

The equation of motion (14.20) can be solved using the Euler-Richardson algorithm with
∆t = 10−3. We define a block as stuck if its velocity is smaller than a parameter v0, its velocity is
decreasing, and the total force on it (not counting the friction force) is smaller than the maximum
static friction force F0, which we choose to be unity. If a block is stuck, its velocity is set equal
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to zero. An earthquake begins with the slip of the first block and ends when all blocks are stuck.
Blocks can become stuck and begin to slip again during an event. We take v0 = 10−5.

Initially we set u̇j = 0 for all j and assign small random displacements to all the blocks. We
then calculate the force on all the blocks and move each block according to (14.20). We continue
this iteration until all the blocks become stuck. We then move the substrate until the force on one
block exceeds unity so that one block initiates the next event. This way of moving the substrate
is called the zero velocity limit, which means that we have let ν = 0.

The main quantities of interest are P (s), the distribution of the number of blocks in an event,
and P (M), the distribution of the moment of the event, where the latter is defined as

M =
∑
i

dui, (14.21)

where the sum over i in (14.21) is over the blocks involved in an event and dui is the net dis-
placement of the blocks during the event. Do P (s) and P (M) exhibit scaling consistent with
Gutenberg-Richter? Other interesting questions are posed in the references (see Klein et al., Fer-
guson et al., and Mori and Kawamura).
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