
Chapter 16

Quantum Systems

©2005 by Harvey Gould, Jan Tobochnik, and Wolfgang Christian
6 July 2005

We discuss numerical solutions of the time-independent and time-dependent Schrödinger equation
and describe several Monte Carlo methods for estimating the ground state of quantum systems.

16.1 Introduction

So far we have simulated the microscopic behavior of physical systems using Monte Carlo methods
and molecular dynamics. In the latter method, the classical trajectory (the position and momen-
tum) of each particle is calculated as a function of time. However, in quantum systems the position
and momentum of a particle cannot be specified simultaneously. Because the description of micro-
scopic particles is intrinsically quantum mechanical, we cannot directly simulate their trajectories
on a computer (see Feynman).

Quantum mechanics does allow us to analyze probabilities, although there are difficulties
associated with such an analysis. Consider a simple probabilistic system described by the one-
dimensional diffusion equation (see Section 7.2)

∂P (x, t)

∂t
= D

∂2P (x, t)

∂x2
, (16.1)

where P (x, t) is the probability density of a particle being at position x at time t. One way to
convert (16.1) to a difference equation and obtain a numerical solution for P (x, t) is to make x and
t discrete variables. Suppose we choose a mesh size for x such that the probability is given at p
values of x. If we choose p to be order 103, a straightforward calculation of P (x, t) would require
approximately 103 data points for each value of t. In contrast, the corresponding calculation of
the dynamics of a single particle based on Newton’s second law would require one data point.

The limitations of the direct computational approach become even more apparent if there
are many degrees of freedom. For example, for N particles in one dimension, we would have to

694

CHAPTER 16. QUANTUM SYSTEMS 695

calculate the probability P (x1, x2, . . . , xN , t), where xi is the position of particle i. Because we
need to choose a mesh of p points for each xi, we need to specify Np values at each time t. For the
same level of precision, p will be proportional to the length of the system (for particles confined to
one dimension). Consequently, the calculation time and memory requirements grow exponentially
with the length of the system. For example, for 10 particles on a mesh of 100 points, we would
need to store 10100 numbers to represent P , which is already much more than any computer today
can store. In two and three dimensions the growth is even faster.

Although the direct computational approach is limited to systems with only a few degrees of
freedom, the simplicity of this approach will aid our understanding of the behavior of quantum
systems. After a summary of the general features of quantum mechanical systems in Section 16.2,
we consider this approach to solving the time-independent Schrödinger equation in Section 16.3
and 16.4. In Section 16.5, we use a half-step algorithm to generate wave packet solutions to the
time-dependent Schrödinger equation.

Because we have already learned that the diffusion equation (16.1) can be formulated as a
random walk problem, it might not surprise you that Schrödinger’s equation can be analyzed in a
similar way. Monte Carlo methods are introduced in Section 16.7 to obtain variational solutions of
the ground state. We introduce quantum Monte Carlo methods in Section 16.8 and discuss more
sophisticated quantum Monte Carlo methods in Sections 16.9 and 16.10.

16.2 Review of Quantum Theory

For simplicity, we consider a one-dimensional, nonrelativistic quantum system consisting of one
particle. The state of the system is completely characterized by the position space wave function
Ψ(x, t), which is interpreted as a probability amplitude. The probability P (x, t)∆x of the particle
being in a “volume” element ∆x centered about the position x at time t is equal to

P (x, t)∆x = |Ψ(x, t)|2∆x, (16.2)

where |Ψ(x, t)|2 = Ψ(x, t)Ψ∗(x, t) and Ψ∗(x, t) is the complex conjugate of Ψ(x, t). This interpre-
tation of Ψ(x, t) requires the use of normalized wave functions such that∫ ∞

−∞
Ψ∗(x, t)Ψ(x, t) dx = 1. (16.3)

If the particle is subjected to the influence of a potential energy function V (x, t), the evolution
of Ψ(x, t) is given by the time-dependent Schrödinger equation

i~
∂Ψ(x, t)

∂t
= − ~2

2m

∂2Ψ(x, t)

∂x2
+ V (x, t)Ψ(x, t), (16.4)

where m is the mass of the particle and ~ is Planck’s constant divided by 2π.

Physically measurable quantities, such as the momentum, have corresponding operators. The
expectation or average value of an observable A is given by

⟨A⟩ =
∫
Ψ∗(x, t)ÂΨ(x, t) dx, (16.5)

CHAPTER 16. QUANTUM SYSTEMS 696

where Â is the operator corresponding to the measurable quantity A. For example, the momentum
operator corresponding to the linear momentum p is p̂ = −i~∂/∂x in position space.

If the potential energy function is independent of time, we can obtain solutions of (16.4) of
the form

Ψ(x, t) = ϕ(x) e−iEt/~. (16.6)

A particle in the state (16.6) has a well-defined energy E. If we substitute (16.6) into (16.4), we
obtain the time-independent Schrödinger equation

− ~2

2m

d2ϕ(x)

dx2
+ V (x)ϕ(x) = E ϕ(x). (16.7)

Note that ϕ(x) is an eigenstate of the Hamiltonian operator,

Ĥ = − ~2

2m

∂2

∂x2
+ V (x), (16.8)

with the eigenvalue E. That is,
Ĥ ϕ(x) = E ϕ(x). (16.9)

In general, there are many eigenstates ϕn, each with eigenvalue, En, that satisfy (16.9) and the
boundary conditions imposed on the eigenstates by physical considerations.

The general form of Ψ(x, t) can be expressed as a superposition of the eigenstates of the
operator corresponding to any physical observable. For example, if Ĥ is independent of time, we
can write

Ψ(x, t) =
∑
n

cn ϕn(x) e
−iEnt/~, (16.10)

where Σ represents a sum over the discrete states and an integral over the continuum states. The
coefficients cn in (16.10) can be determined from the value of Ψ(x, t) at any time t. For example,
if we know Ψ(x, t = 0), we can use the orthonormality property of the eigenstates of any physical
operator to obtain

cn =

∫
ϕ∗
n(x)Ψ(x, 0) dx. (16.11)

The coefficient cn can be interpreted as the probability amplitude of a measurement of the total
energy yielding a particular value En.

There are three steps needed to solve (16.7) numerically. The first is to integrate (16.7) for
any given value of the energy, E, in a way similar to the approach we have used for numerically
solving other ordinary differential equations. This approach will usually not satisfy the boundary
conditions. The second step is to find the particular values of E that lead to solutions that satisfy
the boundary conditions. Finally, we need to normalize the eigenstate wave function using (16.3)
so that we can interpret the eigenstate as a probability amplitude.

We first discuss the solution of (16.7) without imposing any boundary conditions by treating
the solution to (16.7) as an initial value problem for the wave function and its derivative at some
value of x for a given value of E. We will use these solutions to develop our intuition about the
behavior of one-dimensional solutions to the Schrödinger equation.

CHAPTER 16. QUANTUM SYSTEMS 697

To use an ODE solver, we express the wave function rate in terms of the independent variable,
x,

dϕ

dx
= ϕ′ (16.12a)

dϕ′

dx
= −2m

~2
[E − V (x)]ϕ (16.12b)

dx

dx
= 1. (16.12c)

Because the time-independent Schrödinger equation is a second-order differential equation, two
initial conditions must be specified to obtain a solution. For simplicity, we first assume that the
wave function is zero at the starting point, xmin, and the derivative is nonzero. We also assume
that the range of values of x is finite and divide this range into intervals of width ∆x. We initially
consider potential energy functions V (x) such that V (x) = 0 for x < 0; V (x) changes abruptly at
x = 0 to V0, the value of the stepHeight parameter. An implementation of the numerical solution
of (16.12) is shown in Listing 16.1.

Listing 16.1: The Schroedinger class models the one-dimensional time independent Schrödinger
equation.

package org . opensourcephys i c s . s i p . ch16 ;
import org . opensourcephys i c s . numerics . * ;

public class Schroed inger implements ODE {
double energy = 0 ;
double [] phi ;
double [] x ;
double xmin , xmax ; // range o f va l u e s o f x
double [] s t a t e = new double [3] ; // s t a t e = phi , dphi /dx , x
ODESolver s o l v e r = new RK45MultiStep (this) ;
double s tepHeight = 0 ;
int numberOfPoints ;

public void i n i t i a l i z e () {
phi = new double [numberOfPoints] ;
x = new double [numberOfPoints] ;
double dx = (xmax−xmin)/ (numberOfPoints −1);
s o l v e r . s e tS t epS i z e (dx) ;

}

void s o l v e () {
for (int i = 0 ; i<numberOfPoints ; i++) { // zeros wave funct ion

phi [i] = 0 ;
}
s t a t e [0] = 0 ; // i n i t i a l ph i
s t a t e [1] = 1 . 0 ; // nonzero i n i t i a l dphi /dx
s t a t e [2] = xmin ; // i n i t i a l va lue o f x
for (int i = 0 ; i<numberOfPoints ; i++) {

phi [i] = s t a t e [0] ; // s t o r e s wave funct ion

CHAPTER 16. QUANTUM SYSTEMS 698

x [i] = s t a t e [2] ;
s o l v e r . s tep () ; // s t e p s Schroedinger equa t ion
i f (Math . abs (s t a t e [0]) >1 .0 e9) { // checks f o r d i v e r g i n g s o l u t i o n

break ; // l e a v e the loop
}

}
}

public double [] g e tS ta t e () {
return s t a t e ;

}

public void getRate (double [] s ta te , double [] r a t e) {
r a t e [0] = s t a t e [1] ;
r a t e [1] = 2.0*(− energy+eva lua t ePo t en t i a l (s t a t e [2])) * s t a t e [0] ;
r a t e [2] = 1 . 0 ;

}

public double eva lua t ePo t en t i a l (double x) { // p o t e n t i a l i s nonzero f o r x > 0
i f (x<0) {

return 0 ;
} else {

return s tepHeight ;
}

}
}

The solve method initializes the wave function and position arrays and sets the initial value
of dϕ/dx to an arbitrary nonzero value of unity. A loop is then used to compute values of ϕ until
the solution diverges or until x ≥ xmax.

SchroedingerApp in Listing 16.2 produces a graphical view of ϕ(x). We will use this program
in Problem 16.1 to study the behavior of the solution as we vary the height of the potential step.

Listing 16.2: SchroedingerApp solves the one-dimensional time-independent Schrödinger equation
for a given energy.

package org . opensourcephys i c s . s i p . ch16 ;
import org . opensourcephys i c s . c on t r o l s . * ;
import org . opensourcephys i c s . d i sp l ay . * ;
import org . opensourcephys i c s . frames . * ;

public class SchroedingerApp extends Abst rac tCa l cu la t i on {
PlotFrame frame = new PlotFrame ("x" , "phi" , "Wave function") ;
Schroed inger s ch roed inge r = new Schroed inger () ;

public SchroedingerApp () {
frame . setConnected (0 , true) ;
frame . setMarkerShape (0 , Dataset .NOMARKER) ;

}

CHAPTER 16. QUANTUM SYSTEMS 699

public void c a l c u l a t e () {
s ch roed inge r . xmin = con t r o l . getDouble ("xmin") ;
s ch roed inge r . xmax = con t r o l . getDouble ("xmax") ;
s ch roed inge r . s tepHeight = con t r o l . getDouble ("step height at x = 0") ;
s ch roed inge r . numberOfPoints = con t r o l . g e t In t ("number of points") ;
s ch roed inge r . energy = con t r o l . getDouble ("energy") ;
s ch roed inge r . i n i t i a l i z e () ;
s ch roed inge r . s o l v e () ;
frame . append (0 , s ch roed inge r . x , s ch roed inge r . phi) ;

}

public void r e s e t () {
c on t r o l . setValue ("xmin" , −5);
c on t r o l . setValue ("xmax" , 5) ;
c on t r o l . setValue ("step height at x = 0" , 1) ;
c on t r o l . setValue ("number of points" , 5 00) ;
c on t r o l . setValue ("energy" , 1) ;

}

public stat ic void main (St r ing [] a rgs) {
Calcu la t i onContro l . createApp (new SchroedingerApp () , a rgs) ;

}
}

Problem 16.1. Numerical solution of the time-independent Schrödinger equation

a. Sketch your guess for ϕ(x) for a potential step height of V0 = 3 and energies E = 1, 2, 3, 4, and
5.

b. Choose xmin = -10 and xmax = 10, and run SchroedingerApp with the parameters given in
part (a). How well do your predictions match the numerical solution? Is there any discontinuity
in ϕ or in the derivative dϕ/dx at x = 0? Describe the wave function for both x < 0 and x > 0.
Why does the wave function have a larger oscillatory amplitude when x > 0 than when x < 0
if the energy is greater than the potential step height?

c. Describe the behavior of the wave function as the energy approaches the potential step height.
Consider E in the range 2.5 to 3.5 in steps of 0.1.

d. Repeat part (b) with the initial condition ϕ = 1 and dϕ/dx = 0. Describe the differences, if
any, in ϕ(x).

Problem 16.1 demonstrates that the nature of the solution of (16.7) changes dramatically
depending on the relative values of the energy E and the potential energy. If E is greater than V0,
the wave function is oscillatory, whereas if E is less than or equal to V0, the wave function grows
exponentially. The differential equation solver may fail if the difference between the potential
energy and E is too large. There also is an exponentially decaying solution in the region where
E < V0, but this solution is difficult to detect.

Problem 16.2. Analytic solutions of the time-independent Schrödinger equation

CHAPTER 16. QUANTUM SYSTEMS 700

a. Find the analytic solution to (16.7) for the step potential for the cases: E > V0, E < V0, and
E = V0. We will use units such that m = ~ = 1 in all the problems in this chapter.

b. Run SchroedingerApp for the three cases to obtain the numerical solution of (16.7). When the
numercial solution shows spatial oscillations in a region of space, estimate the wavelength of the
oscillations and compare your numerical solution to the analytical results. When the numerical
solution shows exponential decay as a function of position, estimate the decay rate and compare
your numerical solution with the analytic solution.

The solutions that we have obtained so far do not satisfy any condition other than that
they solve (16.12). We have plotted only a portion of the wave function and the solutions can
be extended by increasing the number of points and the range of x over which the computation
is performed. Physically, these solutions are unrealistic because they cannot be normalized over
all of space. The normalization problem can be solved by using a linear combination of energy
eigenstates (16.10) with different values of E. This combination is called a wavepacket.

Although we used a fourth-order algorithm in Listing 16.1, simpler algorithms can be used.
Recall that the solution of (16.7) with V (x) = 0 can be expressed as a linear combination of sine and
cosine functions. The oscillatory nature of this solution leads us to expect that the Euler-Cromer
algorithm introduced in Chapter 3 will yield satisfactory results.

16.3 Bound State Solutions

We first consider potentials for which a particle is confined to a specific region of space. Such a
potential is known as the infinite square well and is described by

V (x) =

{
0 for |x| ≤ a

∞ for |x| > a
(16.13)

For this potential, an acceptable solution of (16.7) must vanish at the boundaries of the well. We
will find that the eigenstates, ϕn(x), can satisfy these boundary conditions only for specific values
of the energy En.

Problem 16.3. The infinite square well

a. Show analytically that the energy eigenvalues of the infinite square well are given by En =
n2π2~2/8ma2, where n is a positive integer. Also show that the normalized eigenstates have
the form

ϕn(x) =
1√
a
cos

nπx

2a
n = 1, 3, . . . (even parity) (16.14a)

ϕn(x) =
1√
a
sin

nπx

2a
. n = 2, 4, . . . (odd parity) (16.14b)

What is the parity of the ground state solution?

CHAPTER 16. QUANTUM SYSTEMS 701

b. We can solve (16.7) numerically for the infinite square well by setting stepHeight = 0. xmin =
−a, and xmax = +a in SchroedingerApp and requiring that ϕ(x = +a) = 0. What is the
condition for ϕ(x = −a) in the program? Choose a = 1 and calculate the first four energy
eigenvalues exactly using SchroedingerApp. Do the numerical and analytical solutions match?
Do the solutions satisfy the boundary conditions exactly? Are your numerical solutions nor-
malized?

Problem 16.4. Bound state solutions of the time-independent Schrödinger equation

a. Consider the potential energy function defined by

V (x) =

0 for −a ≤ x ≤ 0

V0 for 0 < x ≤ a

∞ for |x| > a.

(16.15)

As for the infinite square well, the eigenfunction is confined between infinite potential barriers
at x = ±a. In addition, there is a step potential at x = 0. Choose a = 5 and V0 = 1 and run
SchroedingerApp with an energy of E = 0.15. Repeat with an energy of E = 0.16. Why can
you conclude that an energy eigenvalue is bracketed by these two values?

b. Choose a strategy for determining the value of E such that the boundary conditions at x = +a
are satisfied. Determine the energy eigenvalue to four decimal places. Does your answer depend
on the number of points at which the wave function is computed?

c. Repeat the above procedure starting with energy values of 0.58 and 0.59 and find the energy
eigenvalue of the second bound state.

If you were persistent in doing all of Problem 16.4, you would have discovered two energy
eigenvalues, 0.1505 and 0.5857.

The procedure we used is known as the shooting algorithm. The allowed eigenvalues are im-
posed by the requirement that ϕn(x) → 0 at the boundaries. Although the shooting algorithm
usually yields an eigenvalue solution, we often wish to find specific eigenvalues, such as the eigen-
value E = 1.1195 corresponding to the third excited state for the potential in (16.15). Because the
energy of a wave function increases as the wavelength decreases, we can order the energy eigen-
values by counting the number of times the corresponding eigenstate crosses the x-axis, that is,
by the number of nodes. The ground state eigenstate has no nodes. Why? Why can we order
the eigenvalues by the number of nodes? The number of nodes can be used to narrow the energy
bracket in the shooting algorithm. For example, if we are searching for the third energy eigenvalue
and we observe 5 nodes, then the energy is too large. To find a specific quantum state, we automate
the shooting method as follows:

1. Choose a value of the energy E and count the number of nodes.

2. Increase E and repeat step 1 until the number of nodes is equal to the desired number.

CHAPTER 16. QUANTUM SYSTEMS 702

3. Decrease E and repeat step 1 until the number of nodes is one less than the desired number.
The desired value of the energy eigenvalue is now bracketed. We can further narrow the
energy by doing the following:

4. Set the energy to the bracket midpoint.

5. Initialize ϕ(x) at the left boundary and iterate ϕ(x) toward increasing x until ϕ diverges or
until the right boundary is reached.

6. If the quantum number is even (odd) and the last value of ϕ(x) in step 4 is negative (positive),
then the trial value of E is too large.

7. If the quantum number is even (odd) and the last value of ϕ(x) in step 4 is positive (negative),
then the trial value of E is too small.

8. Repeat steps 2–7 until the wave function satisfies the right-hand boundary condition to an
acceptable tolerance. This procedure is known as a binary search because every repetition
decreases the energy bracket by a factor of two.

Problem 16.5 asks you to write a program that finds specific eigenvalues using this procedure.

Problem 16.5. Shooting algorithm

a. Modify SchroedingerApp to find the eigenvalue associated with a given number of nodes. How
is the number of nodes related to the quantum number? Test your program for the infinite
square well. What is the value of ∆x need to determine E1 to two decimal places? Three
decimal places?

b. Add a method to normalize ϕ. Normalize and display the first five eigenstates.

c. Find the first five eigenstates and eigenvalues for the potential in (16.15). with a = 1 and
V − 0 = 1.

d. Does your result for E1 depend on the starting value of dϕ/dx?

Problem 16.6. Perturbation of the infinite square well

a. Determine the effect of a small perturbation on the eigenstates and eigenvalues of the infinite
square well. Place a small rectangular bump of half-width b and height Vb symmetrically about
x = 0 (see Fig. 16.1). Choose b ≪ a and determine how the ground state energy and eigenstate
change with Vb and b. What is the relative change in the ground state energy for Vb = 10,
b = 0.1 and Vb = 20, b = 0.1? with a = 1. Let ϕ0 denote the ground state eigenstate for
b = 0 and let ϕb denote the ground state eigenstate for b ̸= 0. Compute the value of the overlap
integral ∫ a

0

ϕb(x)ϕ0(x) dx. (16.16)

This integral would be unity if the perturbation were not present (and the eigenstate was
properly normalized). How is the change in the overlap integral related to the relative change
in the energy eigenvalue?

CHAPTER 16. QUANTUM SYSTEMS 703

-a -b ab x

Vb

V0

V

Figure 16.1: An infinite square well with a potential bump of height Vb in the middle.

b. Compute the ground state energy for Vb = 20 and b = 0.05. How does the value of E1 compare
to that found in part (a) for Vb = 10 and b = 0.1?

Because numerical solutions to the Schrödinger equation grow exponentially if V (x)−E > 0,
it may not be possible to obtain a numerical solution for ϕ(x) that satisfies the boundary conditions
if V (x) − E is large over an extended region of space. The reason is that energy can be specified
and ϕ can be computed only to finite accuracy. Problem 16.7 shows that we can sometimes solve
this problem using simpler boundary conditions if the potential is symmetric. In this case,

V (x) = V (−x), (16.17)

and ϕ(x) can be chosen to have definite parity. For even parity solutions, ϕ(−x) = ϕ(x); odd
parity solutions satisfy ϕ(−x) = −ϕ(x). The definite parity of ϕ(x) allows us to specify either ϕ
or ϕ′ at x = 0. Hence, the parity of ϕ determines one of the boundary conditions. For simplicity,
choose ϕ(0) = 1 and ϕ′(0) = 0 for even parity solutions, and ϕ(0) = 0 and ϕ′(0) = 1 for odd parity
solutions.

Problem 16.7. Symmetric potentials

a. Modify Schroedinger to make use of symmetric potential boundary conditions for the harmonic
oscillator:

V (x) =
1

2
x2. (16.18)

Start the solution at x = 0 using appropriate conditions for even and odd quantum numbers
and find the first four energy eigenvalues such that the wave function approaches zero for large
values of x. Because the computed ϕ(x) will diverge for sufficiently large x, we seek values of the
energy such that a small decrease in E causes the wave function to diverge in one direction, and
a small increase causes the wave function to diverge in the opposite direction. Initially choose
xmax = 5, so that the classically forbidden region is sufficiently large so that ϕ(x) can decay to
zero for the first few eigenstates. Increase xmax if necessary for the higher energy eigenvalues.
Is there any pattern in the values of the energy eignevalues you find?

CHAPTER 16. QUANTUM SYSTEMS 704

b. Repeat part (a) for the linear potential V (x) = |x|. Describe the differences between your results
for this potential and for the harmonic oscillator potential. The quantum mechanical treatment
of the linear potential can be used to model the energy spectrum of a bound quark-antiquark
system known as quarkonium.

c. Obtain a numerical solution of the anharmonic oscillator, V (x) = 1
2x

2 + bx4. In this case there
are no analytical solutions and numerical solutions are necessary for large values of b. How do
the ground state energy and eigenstate depend on b for small b?

Problem 16.8. Finite square well

The finite square well potential is given by

V (x) =

{
0 for |x| ≤ a

V0 for |x| > a
(16.19)

The input parameters are the well depth, V0, and the half-width of the well, a.

a. Choose V0 = 10 and a = 1. How do you expect the value of the ground state energy to compare
to its corresponding value for the infinite square well? Compute the ground state eigenvalue
and eigenstate by determining a value of E such that ϕ(x) has no nodes and is approximately
zero for large x. (See Problem (16.7a) for the procedure for finding the eigenvalues.)

b. Because the well depth is finite, ϕ(x) is nonzero in the classically forbidden region for which
E < V0 and x > |a|. Define the penetration distance as the distance from x = a to a point
where ϕ is ∼ 1/e ≈ 0.37 of its value at x = a. Determine the qualitative dependence of the
penetration distance on the magnitude of V0.

c. What is the total number of bound excited states? Why is the total number of bound states
finite?

As we have found, it is difficult to find bound state solutions of the time-independent Schrödinger
equation because the exponential solution allows numerical errors to dominate when V (x)−E > 0
is large. Because we want to easily generate eigenstates in subsequent sections, we have written a
general-purpose eigenstate solver that examines the maxima and minima of the solution as well as
the nodes to determine the eigenstate’s quantum number. The code for the Eigenstate class is in
the ch16 package. The EigenstateApp target class shows how the Eigenstate class is used.

Listing 16.3: The EigenstateApp program tests the Eigenstate class.

package org . opensourcephys i c s . s i p . ch16 ;
import org . opensourcephys i c s . frames . PlotFrame ;
import org . opensourcephys i c s . numerics . Function ;

public class EigenstateApp {
public stat ic void main (St r ing [] a rgs) {

PlotFrame drawingFrame = new PlotFrame ("x" , "|phi|" , "eigenstate") ;
int numberOfPoints = 300 ;
double

xmin = −5, xmax = +5;

CHAPTER 16. QUANTUM SYSTEMS 705

Eigens ta te e i g e n s t a t e = new Eigens ta te (new Poten t i a l () , numberOfPoints , xmin , xmax) ;
int n = 3 ; // quantum number
double [] phi = e i g e n s t a t e . g e tE ig en s ta t e (n) ;
double [] x = e i g e n s t a t e . getXCoordinates () ;
i f (e i g e n s t a t e . getErrorCode()==Eigens ta te .NOERROR) {

drawingFrame . setMessage ("energy = "+e i g en s t a t e . energy) ;
} else {

drawingFrame . setMessage ("eigenvalue did not converge") ;
}
drawingFrame . append (0 , x , phi) ;
drawingFrame . s e tV i s i b l e (true) ;
drawingFrame . s e tDe fau l tC lo seOperat ion (javax . swing . JFrame .EXIT ON CLOSE) ;

}
}
class Poten t i a l implements Function {

public double eva luate (double x) {
return (x*x) / 2 ;

}
}

The getEigenstate method in the Eigenstate class computes the eigenstate for the specified
quantum number and returns a zeroed wave function if the algorithm does not converge. We test
the validity of the Eigenstate class in Problem 16.9.

Problem 16.9. The Eigenstate class

a. Examine the code of the Eigenstate class. What “trick” is used to handle the divergence in
the forbidden region of deep wells?

b. Write a class that displays the eigenstates of the simple harmonic oscillator using the Calc-

ulation interface. Include input parameters that allow the user to vary the principal quantum
number and the number of points.

c. Use a spatial grid of 300 points with −5 < x < 5 and compare the known analytic solution for
the simple harmonic oscillator eigenstates to the numerical solution for the lowest three energy
eigenstates. What is the largest energy eigenvalue that can be computed to an accuracy of
1%? What causes the decreasing accuracy for larger quantum numbers? What if the domain is
increased to −50 < x < 50?

d. Describe the conditions under which the Eigenstate class fails and demonstrate this failure.
Improve the Eigenstate class to handle at least one failure mode.

16.4 Time Development of Eigenstate Superpositions

If the Hamiltonian is independent of time, the time development of the wave function, Ψ(x, t), can
be expressed as a linear superposition of energy eigenstates, ϕn(x), with eigenvalue En.

Ψ(x, t) =
∑
n

cn ϕn(x) e
−iEnt/~. (16.20)

CHAPTER 16. QUANTUM SYSTEMS 706

To understand the time dependence of Ψ(x, t), we begin by studying superpositions of analytic
solutions. The static getEigenstate method in the BoxEigenstate class generates these solutions
for the infinite square well.

Listing 16.4: The BoxEigenstate class generates analytic stationary state solutions for the infinite
square well.

package org . opensourcephys i c s . s i p . ch16 ;
public class BoxEigenstate {

stat ic double a = 1 ; // l en g t h o f box

private BoxEigenstate () {
// p r o h i b i t i n s t a n t i a t i o n because a l l methods are s t a t i c

}

stat ic double [] g e tE ig ens ta t e (int n , int numberOfPoints) {
double [] phi = new double [numberOfPoints] ;
n++; // quantum number
double norm = Math . s q r t (2/ a) ;
for (int i = 0 ; i<numberOfPoints ; i++) {

phi [i] = norm*Math . s i n ((n*Math . PI* i) / (numberOfPoints −1)) ;
}
return phi ;

}

stat ic double getEigenva lue (int n) {
n++;
return (n*n*Math . PI*Math . PI)/2/ a/a ; // hbar = 1 , mass = 1

}
}

To visualize the evolution of Ψ(x, t) in (16.20), we define a class that stores the energy eigen-
states, ϕn(x), the real and imaginary parts of the expansion coefficients, cn, and the eigenvalues,
En. As the system evolves, the eigenstates are added together as in (16.20) using the expansion
coefficients. The BoxSuperposition class shown in Listing 16.5 creates such a wave function for
the infinite square well. Later we will modify this class to study other potentials.

Listing 16.5: The BoxSuperposition class models the time dependence of the wave function of an
infinite square well using a superposition of eigenstates.

package org . opensourcephys i c s . s i p . ch16 ;
public class BoxSuperpos i t ion {

double [] r e a lCoe f ;
double [] imagCoef ;
double [] [] s t a t e s ; // e i g en f unc t i on s
double [] e i g enva lu e s ; // e i g enva l u e s
double [] x , r e a lPs i , imagPsi ;
double [] zeroArray ;

public BoxSuperpos i t ion (int numberOfPoints , double [] r ea lCoe f , double [] imagCoef) {
i f (r ea lCoe f . l ength !=imagCoef . l ength) {

CHAPTER 16. QUANTUM SYSTEMS 707

throw new I l l ega lArgumentExcept ion ("Real and imaginary coefficients must have equal number of elements.") ;
}
this . r e a lCoe f = rea lCoe f ;
this . imagCoef = imagCoef ;
int ns t a t e s = rea lCoe f . l ength ;
// de lay a l l o c a t i o n o f arrays f o r e i g e n s t a t e s
s t a t e s = new double [n s t a t e s] [] ; // e i g en f unc t i on s
e i g enva lu e s = new double [n s t a t e s] ; // e i g enva l u e s
r e a lP s i = new double [numberOfPoints] ;
imagPsi = new double [numberOfPoints] ;
zeroArray = new double [numberOfPoints] ;
x = new double [numberOfPoints] ;
double dx = BoxEigenstate . a /(numberOfPoints −1);
double xo = 0 ;
for (int j = 0 , n = numberOfPoints ; j<n ; j++) {

x [j] = xo ;
xo += dx ;

}
for (int n = 0 ; n<ns t a t e s ; n++) {

s t a t e s [n] = BoxEigenstate . g e tE ig en s ta t e (n , numberOfPoints) ;
e i g enva lu e s [n] = BoxEigenstate . getEigenva lue (n) ;

}
update (0) ; // compute the superpos i t on at t = 0

}

void update (double time) {
// s e t r e a l and imaginary par t s o f wave func t i on to zero
System . arraycopy (zeroArray , 0 , r e a lPs i , 0 , r e a lP s i . l ength) ;
System . arraycopy (zeroArray , 0 , imagPsi , 0 , imagPsi . l ength) ;
for (int i = 0 , n s t a t e s = rea lCoe f . l ength ; i<ns t a t e s ; i++) {

double [] phi = s t a t e s [i] ;
double re = rea lCoe f [i] ;
double im = imagCoef [i] ;
double s i n = Math . s i n (time* e i g enva lu e s [i]) ;
double cos = Math . cos (time* e i g enva lu e s [i]) ;
for (int j = 1 , n = phi . length −1; j<n ; j++) {

r e a lP s i [j] += (re * cos−im* s i n)* phi [j] ;
imagPsi [j] += (im* cos+re * s i n)* phi [j] ;

}
}

}
}

The BoxSuperpositionApp class in Listing 16.6 implements the eigenstate superposition and
displays the wave function by extending the AbstractAnimation class and implementing the
doStep method.

Listing 16.6: BoxSuperpositionApp shows the evolution of a particle in a box.

package org . opensourcephys i c s . s i p . ch16 ;
import org . opensourcephys i c s . c on t r o l s . * ;

CHAPTER 16. QUANTUM SYSTEMS 708

import org . opensourcephys i c s . frames . ComplexPlotFrame ;

public class BoxSuperpositionApp extends AbstractS imulat ion {
ComplexPlotFrame psiFrame = new ComplexPlotFrame ("x" , "|Psi|" , "Time dependent wave function") ;
BoxSuperpos it ion supe rpo s i t i on ;
double time , dt ;

public BoxSuperpositionApp () {
psiFrame . l imitAutosca leY (−1 , 1) ;

}

public void i n i t i a l i z e () {
time = 0 ;
psiFrame . setMessage ("t = "+decimalFormat . format (time)) ;
dt = con t r o l . getDouble ("dt") ;
double [] r e = (double []) c on t r o l . getObject ("real coef") ;
double [] im = (double []) c on t r o l . getObject ("imag coef") ;
int numberOfPoints = con t r o l . g e t In t ("number of points") ;
s up e rpo s i t i on = new BoxSuperpos i t ion (numberOfPoints , re , im) ;
psiFrame . append (supe rpo s i t i on . x , s up e rpo s i t i on . r ea lPs i , s up e rpo s i t i on . imagPsi) ;

}

public void doStep () {
time += dt ;
s upe rpo s i t i on . update (time) ;
psiFrame . c learData () ;
psiFrame . append (supe rpo s i t i on . x , s up e rpo s i t i on . r ea lPs i , s up e rpo s i t i on . imagPsi) ;
psiFrame . setMessage ("t = "+decimalFormat . format (time)) ;

}

public void r e s e t () {
c on t r o l . setValue ("dt" , 0 . 0 0 5) ;
c on t r o l . setValue ("real coef" , new double [] {0 .707 , 0 , 0 . 7 0 7 }) ;
c on t r o l . setValue ("imag coef" , new double [] {0 , 0 , 0}) ;
c on t r o l . setValue ("number of points" , 5 0) ;
i n i t i a l i z e () ;

}

public stat ic void main (St r ing [] a rgs) {
Simulat ionContro l . createApp (new BoxSuperpositionApp ()) ;

}
}

Because wave functions have real and imaginary components, the BoxSuperpositionApp class
uses a ComplexPlotFrame for plotting. The ComplexPlotFrame renders data using an envelope
whose height is proportional to the magnitude and the region between the envelope is colored from
red to blue to show the phase. A more traditional plotting style showing the real and imaginary
parts of the wave function is available from the frame’s Tools menu. (Also see Appendix 16A.) We
use BoxSuperpositionApp to study the periodicity of the wave function in Problems 16.10 and

CHAPTER 16. QUANTUM SYSTEMS 709

16.11.

Problem 16.10. Time-dependent wavefunction for the infinite square well

a. Add a second visualization to the BoxSuperpositionApp class that displays the probability
density Ψ(x, t).

b. Change the coefficient array so that the particle is in the ground state. Show that the wave
function changes in time, but that the probability density does not. At what times does the
ground state wave function return to its initial condition? Find the corresponding times for the
first and second excited states.

c. Choose the coefficient array so that the particle is in a 50:50 superposition of the ground state
and the first excited state. At what times does the wave function return to its initial condition?
After what time does the probability density return to its initial condition?

d. Change the coefficient array so that the particle is in a 50:50 superposition of the first and
second excited states. After what time does the wave function return to its initial condition?
After what time does the probability density return to its initial condition?

e. Will the initial wave function always revive, that is, return to its initial condition? Explain.

Problem 16.11. Time-dependent wavefunction for the simple harmonic oscillator

a. Modify BoxSuperpositionApp and BoxSuperposition to superimpose the eigenstates of the
simple harmonic oscillator using the Eigenstate class to compute the eigenstates. What is
the period of the ground state and the first excited state wave functions and the probability
density?

b. Change the coefficient array so that the particle is in a 50:50 superposition of the ground state
and the first excited state. At what times does the wave function return to its initial condition?
At what times does the probability density return to its initial condition? Compare these times
with the period of the classical oscillator.

c. Repeat part (b) for a 50:50 superposition of the first and second excited states.

Problem 16.12. Linear potential

Does the linear potential, V (x) = |x|, exhibit periodicity if the particle is in a superposition state?
Test your hypothesis using numerical solutions to the Schrödinger equation.

As we have seen, the evolution of an arbitrary wave function can be found by expanding the
initial state in terms of the energy eigenstates. From the orthogonality property of eigenstates, it
is easy to show that

cn =

∫ ∞

−∞
ϕ∗
n(x)Ψ(x, 0)dx. (16.21)

This operation is known as a projection of Ψ onto ϕn.

CHAPTER 16. QUANTUM SYSTEMS 710

Problem 16.13. Projections

a. Add a projection method to the BoxSuperpositionApp class using the signature:

double [] p r o j e c t i o n (int n , double [] r ea lPhi , double [] imagPhi)

The projection method’s arguments are the quantum number, the real component of the wave
function, and the imaginary component of the wave function. The method returns a two com-
ponent array containing the real and imaginary parts of the projection of the wave function on
the nth eigenstate.

b. Test your projection method by projecting an eigenstate onto another eigenstate. That is, verify
the orthogonality condition,

δnm =

∫ ∞

−∞
ϕm(x)ϕn(x)dx. (16.22)

c. Compute the expansion coefficients for a particle in a box using the following initial Gaussian
wave function:

Ψ(x, 0) = e−64x2

. (16.23)

Assume a box width a = 1. Plot the amplitude of the resulting coefficients as a function of the
quantum number n. How does the shape of this plot depend on the width of the Gaussian wave
function?

d. Use the coefficients from part (c) to determine the evolution of the wave function. Does the
wave function remain real? Does the initial state revive?

e. Repeat parts (c) and (d) using the initial wave function

Ψ(x, 0) =

{
2 |x| ≤ 1/8

0, |x| > 1/8.
(16.24)

Problem 16.14. Coherent states

Because the energy eigenvalues of the simple harmonic oscillator are equally spaced, there exist
wave functions known as coherent states whose probability density propagates quasi-classically.

a. Include a sufficient number of expansion coefficients for V (x) = 10x2 to model an initial Gaus-
sian wave function centered at the origin.

Ψ(x, 0) = e−16x2

. (16.25)

Describe the evolution.

b. Repeat part (a) with

Ψ(x, 0) = e−16(x−2)2 . (16.26)

CHAPTER 16. QUANTUM SYSTEMS 711

c. Show that the wave functions in parts (a) and (b) change their width but not their Gaussian
envelope. Construct a wave function with the following expansion coefficients and observe its
behavior.

c2n =
⟨n⟩n

n!
e−⟨n⟩. (16.27)

The expectation of the number of quanta, ⟨n⟩, is given by

⟨n⟩ = ⟨E⟩ − 1

2
~ω, (16.28)

where ⟨E⟩ is the energy expectation value of the coherent state.

The expansion of an arbitrary wave function in terms of a set of eigenstates is closely related to
Fourier analysis. Because the eigenstates of a particle in a box are sinusoidal functions, we could
have used the fast Fourier transform algorithm (FFT) to compute the projection coefficients.
Because these coefficients are calculated only once in Problem 16.14, evaluating (16.21) directly is
reasonable. We will use the FFT to study wave functions in momentum space and to implement
the operator splitting method for time evolution in Section 16.6.

16.5 The Time-Dependent Schrödinger Equation

Although the numerical solution of the time-independent Schrödinger equation (16.7) is straight-
forward for one particle, the numerical solution of the time-dependent Schrödinger equation (16.4)
is not as simple. A naive approach to its numerical solution can be formulated by introduc-
ing a grid for the time coordinate and a grid for the spatial coordinate. We use the notation
tn = t0 + n∆t, xs = x0 + s∆x, and Ψ(xs, tn). The idea is to relate Ψ(xs, tn+1) to the value
of Ψ(xs, tn) for each value of xs. An example of an algorithm that solves the Schrödinger-like
equation ∂Ψ/∂t = ∂2Ψ/∂x2 to first-order in ∆t is given by

1

∆t

[
Ψ(xs, tn+1)−Ψ(xs, tn)

]
=

1

(∆x)2
[
Ψ(xs+1, tn)− 2Ψ(xs, tn) + Ψ(xs−1, tn)

]
. (16.29)

The right-hand side of (16.29) represents a finite difference approximation to the second derivative
of Ψ with respect to x. Equation (16.29) is an example of an explicit scheme, because given Ψ at
time tn, we can compute Ψ at time tn+1. Unfortunately, this explicit approach leads to unstable
solutions, that is, the numerical value of Ψ diverges from the exact solution as Ψ evolves in time.

One way to avoid the instability is to retain the same form as (16.29), but to evaluate the
spatial derivative on the right side of (16.29) at time tn+1 rather than time tn:

1

∆t

[
Ψ(xs, tn+1)−Ψ(xs, tn)

]
=

1

(∆x)2
[Ψ(xs+1, tn+1)− 2Ψ(xs, tn+1) + Ψ(xs−1, tn+1)

]
. (16.30)

Equation (16.30) is an implicit method because the unknown function Ψ(xs, tn+1) appears on both
sides. To obtain Ψ(xs, tn+1), it is necessary to solve a set of linear equations at each time step.
More details of this approach and the demonstration that (16.30) leads to stable solutions can be
found in the references.

CHAPTER 16. QUANTUM SYSTEMS 712

Visscher and others have suggested an alternative approach in which the real and imaginary
parts of Ψ are treated separately and defined at different times. The algorithm ensures that the
total probability remains constant. If we let

Ψ(x, t) = R(x, t) + i I(x, t), (16.31)

then Schrödinger’s equation, i∂Ψ(x, t)/∂t = ĤΨ(x, t), becomes (~ = 1 as usual)

∂R(x, t)

∂t
= Ĥ I(x, t) (16.32a)

∂I(x, t)

∂t
= −Ĥ R(x, t). (16.32b)

A stable method of numerically solving (16.32) is to use a form of the half-step method (see
Appendix 3A). The resulting difference equations are

R(x, t+∆t) = R(x, t) + Ĥ I(x, t+
1

2
∆t)∆t (16.33a)

I(x, t+
3

2
∆t) = I(x, t+

1

2
∆t)− Ĥ R(x, t)∆t, (16.33b)

where the initial values are given by R(x, 0) and I(x, 1
2∆t). Visscher has shown that this algorithm

is stable if
−2~
∆t

≤ V ≤ 2~
∆t

− 2~2

(m∆x)2
, (16.34)

where the inequality (16.34) holds for all values of the potential V .

The appropriate definition of the probability density P (x, t) = R(x, t)2+I(x, t)2 is not obvious,
because R and I are not defined at the same time. The following choice conserves the total
probability:

P (x, t) = R(x, t)2 + I(x, t+
1

2
∆t) I(x, t− 1

2
∆t) (16.35a)

P (x, t+
1

2
∆t) = R(t+∆t)R(x, t) + I(x, t+

1

2
∆t)2. (16.35b)

An implementation of (16.33) is given in the TDHalfStep class in Listing 16.7. The real part
of the wave function first is updated for all positions, and then the imaginary part is updated using
the new values of the real part.

Listing 16.7: The TDHalfStep class solves the one-dimensional time-dependent Schrödinger equa-
tion.

package org . opensourcephys i c s . s i p . ch16 ;
public class TDHalfStep {

double [] x , r e a lPs i , imagPsi , p o t e n t i a l ;
double dx , dx2 ;
double dt = 0 . 0 0 1 ; // why not an input parameter? anyway i t s determined below

public TDHalfStep (GaussianPacket packet , int numberOfPoints , double xmin , double xmax) {

CHAPTER 16. QUANTUM SYSTEMS 713

r e a lP s i = new double [numberOfPoints] ;
imagPsi = new double [numberOfPoints] ;
p o t e n t i a l = new double [numberOfPoints] ;
x = new double [numberOfPoints] ;
dx = (xmax−xmin)/ (numberOfPoints −1);
dx2 = dx*dx ;
double x0 = xmin ;
for (int i = 0 , n = r e a lP s i . l ength ; i<n ; i++) {

x [i] = x0 ;
p o t e n t i a l [i] = getV (x0) ;
r e a lP s i [i] = packet . getReal (x0) ;
imagPsi [i] = packet . getImaginary (x0) ;
x0 += dx ;

}
dt = getMaxDt () ;
// advances the imaginary par t by 1/2 s t ep at s t a r t
for (int i = 1 , n = r e a lP s i . length −1; i<n ; i++) {

// de l taRe = change in r e a l par t o f p s i in 1/2 s t ep
double deltaRe = po t en t i a l [i]* r e a lP s i [i]−0.5*(r e a lP s i [i +1]−2* r e a lP s i [i]+ r e a lP s i [i −1])/dx2 ;
imagPsi [i] −= deltaRe *dt /2 ;

}
}

double getMaxDt () {
double dt = Double .MAXVALUE;
for (int i = 0 , n = po t en t i a l . l ength ; i<n ; i++) {

i f (p o t e n t i a l [i]<0) {
dt = Math . min (dt , −2/po t e n t i a l [i]) ;

}
double a = po t en t i a l [i]+2/dx2 ;
i f (a>0) {

dt = Math . min (dt , 2/a) ;
}

}
return dt ;

}

double s tep () {
for (int i = 1 , n = imagPsi . length −1; i<n ; i++) {

// don ' t l i k e no ta t i on imH and reH . H i s r e a l
double imH = po t en t i a l [i]* imagPsi [i]−0.5*(imagPsi [i +1]−2* imagPsi [i]+ imagPsi [i −1])/dx2 ;
r e a lP s i [i] += imH*dt ;

}
for (int i = 1 , n = r e a lP s i . length −1; i<n ; i++) {

double reH = po t en t i a l [i]* r e a lP s i [i]−0.5*(r e a lP s i [i +1]−2* r e a lP s i [i]+ r e a lP s i [i −1])/dx2 ;
imagPsi [i] −= reH*dt ;

}
return dt ;

}

CHAPTER 16. QUANTUM SYSTEMS 714

public double getV (double x) {
return 0 ; // change t h i s s ta tement to model o ther p o t e n t i a l s

}
}

Before we can use the TDHalfStep class, we need to choose an initial wave function. A
convenient form is the Gaussian wave packet with a width w centered about x0 given by

Ψ(x, 0) =

(
1

2πw2

)1/4

eik0(x−x0) e−(x−x0)
2/4w2

. (16.36)

The expectation value of the initial velocity of the wave packet is ⟨v⟩ = p0/m = ~k0/m. Note that
the wave function has a nonzero momentum expectation value, which is known as a momentum
boost. An implementation of (16.36) is shown in the GaussianPacket class. The constructor is
passed the width, center, and momentum of the packet. Real and imaginary values can then be
calculated at any x to fill the wave function arrays.

Listing 16.8: The GaussianPacket class creates a wave function with a Gaussian probability
distribution and a momentum boost.

package org . opensourcephys i c s . s i p . ch16 ;
public class GaussianPacket {

double w, x0 , p0 ;
double w42 ;
double norm ;

public GaussianPacket (double width , double center , double momentum) {
w = width ;
w42 = 4*w*w;
x0 = cente r ;
p0 = momentum ;
norm = Math . pow(2*Math . PI*w*w, −0.25) ;

}

public double getReal (double x) {
return norm*Math . exp(−(x−x0)* (x−x0)/w42)*Math . cos (p0 *(x−x0)) ;

}

public double getImaginary (double x) {
return norm*Math . exp(−(x−x0)* (x−x0)/w42)*Math . s i n (p0 *(x−x0)) ;

}
}

To start the half-step algorithm, we need the value of I(x, t = 1
2∆t) and R(x, t = 0). To obtain

I(x, t = 1
2∆t), we use the real component of the wave function to perform a half step.

I(x, t+
1

2
∆t) = I(x, t)− Ĥ R(x, t)

∆t

2
(16.37)

The normalization factor must be computed after we correct the initial wave function using (16.37).
For completeness, we list the TDHalfStepApp target class.

CHAPTER 16. QUANTUM SYSTEMS 715

Listing 16.9: The TDHalfStepApp class solves the time-independent Schrödinger equation and
displays the wave function.

package org . opensourcephys i c s . s i p . ch16 ;
import org . opensourcephys i c s . c on t r o l s . * ;
import org . opensourcephys i c s . frames . ComplexPlotFrame ;

public class TDHalfStepApp extends AbstractS imulat ion {
ComplexPlotFrame psiFrame = new ComplexPlotFrame ("x" , "|Psi|" , "Wave function") ;
TDHalfStep wavefunct ion ;
double time ;

public TDHalfStepApp () {
psiFrame . l imitAutosca leY (−1 , 1) ; // do not au t o s ca l e w i th in t h i s y−range .

}

public void i n i t i a l i z e () {
time = 0 ;
psiFrame . setMessage ("t="+0);
double xmin = con t r o l . getDouble ("xmin") ;
double xmax = con t r o l . getDouble ("xmax") ;
int numberOfPoints = con t r o l . g e t In t ("number of points") ;
double width = con t r o l . getDouble ("packet width") ;
double x0 = con t r o l . getDouble ("packet offset") ;
double momentum = con t r o l . getDouble ("packet momentum") ;
GaussianPacket packet = new GaussianPacket (width , x0 , momentum) ;
wavefunct ion = new TDHalfStep (packet , numberOfPoints , xmin , xmax) ;
psiFrame . c learData () ; // removes o ld data
psiFrame . append (wavefunct ion . x , wavefunct ion . r ea lPs i , wavefunct ion . imagPsi) ;

}

public void doStep () {
time += wavefunct ion . s tep () ;
psiFrame . c learData () ;
psiFrame . append (wavefunct ion . x , wavefunct ion . r ea lPs i , wavefunct ion . imagPsi) ;
psiFrame . setMessage ("t="+decimalFormat . format (time)) ;

}

public void r e s e t () {
c on t r o l . setValue ("xmin" , −20);
c on t r o l . setValue ("xmax" , 2 0) ;
c on t r o l . setValue ("number of points" , 5 00) ;
c on t r o l . setValue ("packet width" , 1) ;
c on t r o l . setValue ("packet offset" , −15);
c on t r o l . setValue ("packet momentum" , 2) ;
s e tStepsPerDi sp lay (1 0) ; // mu l t i p l e computat ions per animation s t ep
enableStepsPerDisp lay (true) ;
i n i t i a l i z e () ;

}

CHAPTER 16. QUANTUM SYSTEMS 716

public stat ic void main (St r ing [] a rgs) {
Simulat ionContro l . createApp (new TDHalfStepApp ()) ;

}
}

Problem 16.15. Evolution of a wave packet

a. Add an array to TDHalfStepApp that saves the imaginary part of the wave function at the
previous time step so that the probability density can be computed using (16.35). Show that
the probability is conserved.

b. Use TDHalfStepApp to follow the motion of a wave packet in a potential-free region. Let
x0 = −15, k0 = 2, w = 1, dx = 0.4, and dt = 0.1. Suitable values for the minimum and
maximum values of x on the grid are xmin = −20 and xmax = 20. What is the shape of the
wave packet at different times? Does the shape of the wave packet depend on your choice of
the parameters k0 and w?

c. Modify TDHalfStepApp so that the quantities x0(t) and w(t), the position and width of the
wave packet as a function of time, can be measured directly. What is a reasonable definition of
w(t)? What is the qualitative dependence of x0 and w on t? How do your results change if the
initial width of the packet is reduced by a factor of four?

Problem 16.16. Evolution of wave packet incident on a potential step

a. Use TDHalfStepApp with a step potential beginning at x = 0 with height V0 = 2. Choose
x0 = −10, k0 = 2, w = 1, dx = 0.4, dt = 0.1, xmin = −20, and xmax = 20. Describe the
motion of the wave packet. Does the shape of the wave packet remain a Gaussian for all t?
What happens to the wave packet at x = 0? Determine the height and width of the reflected
and transmitted wave packets, the time ti for the incident wave to reach the barrier at x = 0,
and the time tr for the reflected wave to return to x = x0. Is tr = ti? If these times are not
equal, explain the reason for the difference.

b. Repeat the analysis in part (a) for a step potential of height V0 = 10. Is tr ≈ ti in this case?

c. What is the motion of a classical particle with a kinetic energy corresponding to the central
wave vector k = k0?

Problem 16.17. Scattering of a wave packet from a potential barrier

a. Consider a potential barrier of the form

V (x) =

0 x < 0

V0 0 ≤ x ≤ a

0 x > a

(16.38)

Generate a series of snapshots that show the wave packet approaching the barrier and then
interacting with it to generate reflected and transmitted packets. Choose V0 = 2 and a = 1 and

CHAPTER 16. QUANTUM SYSTEMS 717

consider the behavior of the wave packet for k0 = 1, 1.5, 2, and 3. Does the width of the packet
increase with time? How does the width depend on k0? For what values of k0 is the motion of
the packet in qualitative agreement with the motion of a corresponding classical particle?

b. Consider a square well with V0 = −2 and consider the same questions as in part (a).

Problem 16.18. Evolution of two wave packets

Modify GaussianPacket in Listing 16.8 to include two wave packets with identical widths and
speeds, with the sign of k0 chosen so that the two wave packets approach each other. Choose their
respective values of x0 so that the two packets are initially well separated. Let V = 0 and describe
what happens when you determine their time dependence. Do the packets influence each other?
What do your results imply about the existence of a superposition principle?

16.6 Fourier Transformations and Momentum Space

The position space wave function, Ψ(x, t), is only one of many possible representations of a quantum
mechanical state. A quantum system also is completely characterized by the momentum space
wave function, Φ(p, t). The probability P (p, t)∆p of the particle being in a “volume” element ∆p
centered about the momentum p at time t is equal to

P (p, t)∆p = |Φ(p, t)|2∆p. (16.39)

Because either a position space or a momentum space representation provides a complete descrip-
tion of the system, it is possible to transform the wave function from one space to another as:

Φ(p, t) =
1√
2π~

∫ ∞

−∞
Ψ(x, t)e−ipx/~dx, (16.40)

Ψ(x, t) =
1√
2π~

∫ ∞

−∞
Φ(p, t)eipx/~dp. (16.41)

The momentum and position space transformations, (16.40) and (16.41), are Fourier integrals.
Because a computer stores a wave function on a finite grid, these transformations simplify to the
familiar Fourier series (see Section 9.3):

Φm =

N/2∑
n=−N/2

Ψne
−ipmxn/~, (16.42)

Ψn =
1

N

N/2∑
m=−N/2

Φmeipmxn/~, (16.43)

where Φm = Φ(pm) and Ψn = Ψ(xn). We have not explicitly shown the time dependence in (16.42)
and (16.43).

We now use the FFTApp program introduced in Section 9.3 to transform a wave function
between position and momentum space. Note that the wavenumber 2π/λ (or 2π/T in the time

CHAPTER 16. QUANTUM SYSTEMS 718

domain) in classical physics has the same numerical value as momentum in quantum mechanics
p = h/λ = 2π~/λ in units such that ~ = 1. Consequently, we can use the getWrappedOmega and
getNaturalOmega methods in the FFT class to generate arrays containing momentum values for a
transformed position space wave function.

The FFTApp program in Listing 9.7 transforms N complex data points using an input array
that has length 2N . The real part of the jth data point is stored in array element 2j and the
imaginary part is stored in element 2j + 1. The FFT class transforms this array and maintains the
same ordering of real and imaginary parts. However, the momenta (wavenumbers) are in warp-
around order starting with the zero momentum coefficients in the first two elements and switching
to negative momenta half way through the array. The toNaturalOrder class sorts the array in
order of increasing momentum. We use the FFTApp class in Problem 16.19.

Problem 16.19. Transforming to momentum space

a. The FFTApp class initializes the wave function grid using the following complex exponential:

Ψn = Ψ(n∆x) = ein∆x = cosn∆x+ i sinn∆x. (16.44)

Use FFTApp to show that a complex exponential has a definite momentum if the grid contains
an integer number of wavelengths. In other words, show that there is only one nonzero Fourier
component.

b. How small a wavelength (or how large a momentum) can be modeled if the spatial grid has N
points and extends over a distance L?

c. Where do the maximum, zero, and minimum values of the momentum occur in wrap-around
order?

After the transformation, the momentum space wave function is stored in an array. The array
elements can be assigned a momentum value using the de Broglie relation p = h/λ. The longest
wavelength that can exist on the grid is equal to the grid dimension, L = (N − 1)∆x, and this
wave has a momentum of

p0 =
h

L
. (16.45)

Points on the momentum grid have momentum values with integer multiples of p0.

Problem 16.20. Momentum visualization

Add a ComplexPlotFrame to the FFTApp program to show the momentum space wave function of
a position space Gaussian wave packet. Add a user interface to control the width of the Gaussian
wave packet and verify the Heisenberg uncertainty relation, ∆x∆p ≥ ~/2. Shift the center of the
position space wavepacket and explain the change in the resulting momentum space wave function.

Problem 16.21. Momentum time evolution

Modify TDHalfStepApp so that it displays the momentum space wave function in addition to the
position space wave function. Describe the momentum space evolution of a Gaussian packet for
the infinite square well and a simple harmonic oscillator potential. What evidence of classical-like
behavior do you observe?

CHAPTER 16. QUANTUM SYSTEMS 719

The FFT can be used to implement a fast and accurate method for solving Schrödinger’s
equation. We start by writing (16.4) in operator notation as

i~
∂Ψ(x, t)

∂t
= ĤΨ(x, t) = (T̂ + V̂)Ψ(x, t) (16.46)

where Ĥ, T̂ , and V̂ are the Hamiltonian, kinetic energy, and potential energy operators, respec-
tively. The formal solution to (16.46) is

Ψ(x, t) = e−iĤ(t−t0)/~Ψ(x, t0) = e−i(T̂+V̂)(t−t0)/~Ψ(x, t0). (16.47)

The time evolution operator, Û , is defined as

Û = e−iĤ(t−t0)/~ = e−i(T̂+V̂)(t−t0)/~. (16.48)

It might be tempting to express the time evolution operator as

Û = e−iT̂∆t/~e−iV̂∆t/~, (16.49)

but (16.49) is valid only for ∆t ≡ t− t0 << 1, because T̂ and V̂ do not commute. A more accurate
approximation (accurate to second order in ∆t) is obtained by using the following symmetric
decomposition

Û = e−iV̂∆t/2~e−iT̂∆t/~e−iV̂∆t/2~. (16.50)

The key to using (16.50) to solve (16.46) is to use the position space wave function when

applying e−iV̂∆t/2~ and to use the momentum space wave function when applying e−iT̂∆t/2~. In
position space, the potential energy operator is equivalent to simply multiplying by the potential
energy function. That is, the effect of the first and last terms in (16.50) is to multiply points on
the position grid by a phase factor that is proportional to the potential energy:

Ψ̃j = e−iV (xj)∆t/2~Ψj . (16.51)

Because the kinetic energy operator in position space involves partial derivatives, it is conve-
nient to transform both the operator and the wave function to momentum space. In momentum
space the kinetic energy operator is equivalent to multiplying by the kinetic energy p2/2m. The
middle term in (16.50) operates by multiplying points on the momentum grid by a phase factor
that is proportional to the kinetic energy:

Φ̃j = e−ip2
j∆t/2mΦj . (16.52)

The split-operator algorithm jumps back and forth between position and momentum space
to propagate the wave function. The algorithm starts in position space where each grid value,
Ψj = Ψ(xj , t) is multiplied by (16.51). The wave function is then transformed to momentum space
where every momentum value, Φj , is multiplied by (16.52). It is then transformed back to position
space where (16.51) is applied a second time. A single time step can therefore be written as

Ψ(x, t+∆t) = e−iV (x)∆t/2~F−1[e−ip2∆t/2mF [e−iV (x)∆t/2~Ψ(x, t)]], (16.53)

where F is the Fourier transform to momentum space and F−1 is its inverse.

CHAPTER 16. QUANTUM SYSTEMS 720

Problem 16.22. Split-operator algorithm

a. Write a program to implement the split operator algorithm. It is necessary to evaluate the
exponential phase factors only once when implementing the split-operator algorithm. Store the
complex exponentials in arrays that match the x values on the spatial grid and the p values on
the momentum grid. Use wrap-around order when storing the momentum phase factors because
the FFT class inverse transformation assumes that data are in wrap-around order. You can use
the getWrappedOmega method in the FFT to obtain the momenta in this ordering.

b. Compare the evolution of a Gaussian wave packet using the split-operator and half-step algo-
rithms using identical grids. How does the finite grid size affect each algorithm?

c. Compare the computation speed of the split-operator and half-step algorithms using a Gaussian
wave packet in a square well. Disable plotting and other non-essential computation when
comparing the speeds.

Problem 16.23. Split-operator accuracy

The split-operator and half-step algorithms fail if the time step is too large. Use both algorithms
to evolve a simple harmonic oscillator coherent state (see Problem 16.14). Describe the error that
occurs if the time step becomes too large.

16.7 Variational Methods

One way of obtaining a good approximation to the ground state energy is to use a variational
method. This approach has numerous applications in chemistry, atomic and molecular physics,
nuclear physics, and condensed matter physics. Consider a system whose Hamiltonian operator Ĥ
is given by (16.8). According to the variational principle, the expectation value of the Hamiltonian
for an arbitrary trial wave function Ψ is greater than or equal to the ground state energy E0. That
is,

⟨H⟩ = E[Ψ] =

∫
Ψ∗(x)ĤΨ(x) dx∫
Ψ∗(x)Ψ(x) dx

≥ E0, (16.54)

where E0 is the exact ground state energy of the system. We assume that the wave function is
continuous and bounded. The inequality (16.54) reduces to an equality only if Ψ is an eigenstate
of Ĥ with the eigenvalue E0. For bound states, Ψ may be assumed to be real without loss of
generality so that Ψ∗ = Ψ and thus |Ψ(x)|2 = Ψ(x)2. This assumption implies that we do not
need to store two values representing the real and imaginary parts of Ψ.

The inequality (16.54) is the basis of the variational method. The procedure is to choose a
physically reasonable form for the trial wave function Ψ(x) that depends on one or more parameters.
The expectation value E[Ψ] is computed, and the parameters are varied until a minimum of E[Ψ]
is obtained. This value of E[Ψ] is an upper bound to the true ground state energy. Often forms of
Ψ are chosen so that the integrals in (16.54) can be done analytically. To avoid this restriction we
can use numerical integration methods.

In most applications of the variational method the integrals in (16.54) are multidimensional
and Monte Carlo integration methods are essential. For this reason we will use Monte Carlo

CHAPTER 16. QUANTUM SYSTEMS 721

integration in the following, even though we will consider only one and two body problems. Because
it is inefficient to simply choose points at random to compute E[Ψ], we rewrite (16.54) in a form
that allows us to use importance sampling. We write

E[Ψ] =

∫
Ψ(x)2EL(x) dx∫

Ψ(x)2 dx
, (16.55)

where EL is the local energy,

EL(x) =
ĤΨ(x)

Ψ(x)
, (16.56)

which can be calculated analytically using the trial wave function. The form of (16.55) is that of
a weighted average with the weight equal to the normalized probability density Ψ(x)2/

∫
Ψ(x)2 dx.

As discussed in Section 11.6, we can sample values of x using the distribution Ψ(x)2 so that the
Monte Carlo estimate of E[Ψ] is given by the sum

E[Ψ] = lim
n→∞

1

n

n∑
i=1

EL(xi), (16.57)

where n is the number of times that x is sampled from Ψ2. How can we sample from Ψ2? In general,
it is not possible to use the inverse transform method (see Section 11.5) to generate a nonuniform
distribution. A convenient alternative is the Metropolis method which has the advantage that only
an unnormalized Ψ2 is needed for the proposed move.

Problem 16.24. Ground state energy of several one-dimensional systems

a. It is useful to test the variational method on an exactly solvable problem. Consider the one-
dimensional harmonic oscillator with V (x) = x2/2. Choose the trial wave function to be

Ψ(x) ∝ e−λx2

, with λ the variational parameter. Generate values of x chosen from a normalized
Ψ2(x) using the inverse transform method, and verify that λ = 1/2 yields the smallest upper
bound, by considering λ = 1/2 and four other values of λ near 1/2. Another way to generate a
Gaussian distribution is to use the Box-Muller method discussed in Section 11.5.

b. Repeat part (a) using the Metropolis method to generate x distributed according to Ψ(x)2 ∝
e−2λx2

and evaluate (16.57). As discussed in Section 11.7, the Metropolis method can be
summarized by the following steps:

i. Choose a trial position xtrial = xn+δn, where δn is a uniform random number in the interval
[−δ, δ].

ii. Compute w = p(xtrial)/p(xn), where in this case p(x) = e−2λx2

.

iii. If w ≥ 1, accept the change and let xn+1 = xtrial.

iv. If w < 1, generate a random number r and let xn+1 = xtrial if r ≤ w.

v. If the trial change is not accepted, then let xn+1 = xn.

CHAPTER 16. QUANTUM SYSTEMS 722

Remember that it is necessary to wait for equilibrium (convergence to the distribution Ψ2)
before computing the average value of EL. Look for a systematic trend in ⟨EL⟩ over the course
of the random walk. Choose a step size δ that gives a reasonable value for the acceptance ratio.
How many trials are necessary to obtain ⟨EL⟩ to within 1% accuracy compared to the exact
analytic result?

c. Instead of finding the minimum of ⟨EL⟩ as a function of the various variational parameters,
minimize the quantity

σ2
L = ⟨E2

L⟩ − ⟨EL⟩2. (16.58)

Verify that the exact minimum value of σ2
L[Ψ] is zero, whereas the exact minimum value of

EL[Ψ] is unknown in general.

d. Consider the anharmonic potential V (x) = 1
2x

2 + bx4. Plot V (x) as a function of x for b = 1/8.
Use first-order perturbation theory to calculate the lowest order change in the ground state
energy due to the x4 term. Then choose a reasonable form for your trial wave function and use
your Monte Carlo program to estimate the ground state energy. How does your result compare
with first-order perturbation theory?

e. Consider the anharmonic potential of part (d) with b = −1/8. Plot V (x). Use first-order
perturbation theory to calculate the lowest order change in the ground state energy due to the
x4 term, and then use your program to estimate E0. Do your Monte Carlo estimates for the
ground state energy have a lower bound? Why or why not?

f. Modify your program so that it can be applied to the ground state of the hydrogen atom. In
this case we have V (r) = −e2/r, where e is the magnitude of the charge on the electron. The
element of integration dx in (16.55) is replaced by 4πr2 dr. Choose Ψ ∝ e−r/a, where a is the
variational parameter. Measure lengths in terms of the Bohr radius ~2/me2 and energy in terms
of the Rydberg me4/2~2. In these units µ = e2 = ~ = 1. Find the optimal value of a. What is
the corresponding energy?

g. Consider the Yukawa or screened Coulomb potential for which V (r) = −e2e−αr/r, where α >
0. In this case the ground state and wave function can only be obtained numerically. For
α = 0.5 and α = 1.0 the most accurate numerical estimates of E0 are −0.14808 and −0.01016,
respectively. What is a good choice for the form of the trial wave function? How close can you
come to these estimates?

Problem 16.25. Variational estimate of the ground state of Helium

Helium has long served as a testing ground for atomic trial wave functions. Consider the ground
state of the helium atom with the interaction

V (r1, r2) = −2e2
(1

r1
+

1

r2

)
+

e2

r12
, (16.59)

where r12 is the separation between the two electrons. Assume that the nucleus is fixed and ignore
relativistic effects. Choose Ψ(r1, r2) = Ae−Zeff (r1+r2)/a0 , where Zeff is a variational parameter.
Estimate the upper bound to the ground state energy based on this functional form of Ψ.

Our discussion of variational Monte Carlo methods has been only introductory in nature. One
important application of variational Monte Carlo methods is to optimize a given trial wave function
which is then used to “guide” the Monte Carlo methods discussed in Sections 16.8 and 16.9.

CHAPTER 16. QUANTUM SYSTEMS 723

16.8 Random Walk Solutions of the Schrödinger Equation

We now introduce a Monte Carlo approach based on expressing the Schrödinger equation in imag-
inary time. This approach follows that of Anderson (see references). We will then discuss several
other quantum Monte Carlo methods. We will see that although the systems of interest are quan-
tum mechanical, we can convert them to systems for which we can use classical Monte Carlo
methods.

To understand how we can interpret the Schrödinger equation in terms of a random walk in
imaginary time, we substitute τ = it/~ into the time-dependent Schrödinger equation for a free
particle and write (in one dimension)

∂Ψ(x, τ)

∂τ
=

~2

2m

∂2∂(x, τ)

∂x2
. (16.60)

Note that (16.60) is identical in form to the diffusion equation (16.1). Hence, we can interpret the
wave function Ψ as a probability density with a diffusion constant D = ~2/2m.

From our discussion in Chapter 7, we know that we can use the formal similarity between the
diffusion equation and the imaginary-time free particle Schrödinger equation to solve the latter by
replacing it by an equivalent random walk problem. To understand how we can interpret the role
of the potential energy term in the context of random walks, we write Schrödinger’s equation in
imaginary time as

∂Ψ(x, τ)

∂τ
=

~2

2m

∂2Ψ(x, τ)

∂x2
− V (x)Ψ(x, τ). (16.61)

If we were to ignore the first-term (the diffusion term) on the right side of (16.61), the result would
be a first-order differential equation corresponding to a decay or growth process depending on the
sign of V . We can obtain the solution to this first-order equation by replacing it by a random
decay or growth process, for example, radioactive decay. These considerations suggest that we can
interpret (16.61) as a combination of diffusion and branching processes. In the latter, the number
of walkers increases or decreases at a point x depending on the sign of V (x). The walkers do not
interact with each other because the Schrödinger equation (16.61) is linear in Ψ. Note that it is
Ψ∆x and not Ψ2∆x that corresponds to the probability distribution of the random walkers. This
probabilistic interpretation requires that Ψ be nonnegative and real.

We now use this probabilistic interpretation of (16.61) to develop an algorithm for determining
the ground state wave function and energy. The general solution of Schrödinger’s equation can be
written for imaginary time τ as (see (16.10))

Ψ(x, τ) =
∑
n

cn ϕn(x) e
−Enτ . (16.62)

For sufficiently large τ , the dominant term in the sum in (16.62) comes from the term representing
the eigenvalue of lowest energy. Hence we have

Ψ(x, τ → ∞) = c0 ϕ0(x) e
−E0τ . (16.63)

From (16.63) we see that the spatial dependence of Ψ(x, τ → ∞) is proportional to the ground
state eigenstate ϕ0(x). If E0 > 0, we also see that Ψ(x, τ) and hence the population of walkers will

CHAPTER 16. QUANTUM SYSTEMS 724

eventually decay to zero unless E0 = 0. This problem can be avoided by measuring E0 from an
arbitrary reference energy Vref , which is adjusted so that an approximate steady state distribution
of random walkers is obtained.

Although we could attempt to fit the τ -dependence of the computed probability distribution
of the random walkers to (16.63) and thereby extract E0, it is more convenient to compute E0

directly from the relation

E0 = ⟨V ⟩ =
∑

niV (xi)∑
ni

, (16.64)

where ni is the number of walkers at xi at time τ . An estimate for E0 can be found by averaging the
sum in (16.64) for several values of τ once a steady state distribution of random walkers has been
reached. To derive (16.64), we rewrite (16.61) and (16.63) by explicitly introducing the reference
potential Vref :

∂Ψ(x, τ)

∂τ
=

~2

2m

∂2Ψ(x, τ)

∂x2
−
[
V (x)− Vref

]
Ψ(x, τ), (16.65)

and
Ψ(x, τ) ≈ c0ϕ0(x) e

−(E0−Vref)τ . (16.66)

We first integrate (16.65) with respect to x. Because ∂Ψ(x, τ)/∂x vanishes in the limit |x| → ∞,∫
(∂2Ψ/∂x2)dx = 0, and hence∫

∂Ψ(x, τ)

∂τ
dx = −

∫
V (x)Ψ(x, τ) dx+ Vref

∫
Ψ(x, τ) dx. (16.67)

If we differentiate (16.66) with respect to τ , we obtain the relation

∂Ψ(x, τ)

∂τ
= (Vref − E0)Ψ(x, τ). (16.68)

We then substitute (16.68) for ∂Ψ/∂τ into (16.67) and find∫
(Vref − E0)Ψ(x, τ) dx = −

∫
V (x)Ψ(x, τ) dx+ Vref

∫
Ψ(x, τ) dx. (16.69)

If we cancel the terms proportional to Vref in (16.69), we find that

E0

∫
Ψ(x, τ) dx =

∫
V (x),Ψ(x, τ) dx, (16.70)

or

E0 =

∫
V (x)Ψ(x, τ) dx∫

Ψ(x, τ) dx
. (16.71)

The desired result (16.64) follows by making the connection between Ψ(x)∆x and the density of
walkers between x and x+∆x.

Although the derivation of (16.64) is somewhat involved, the random walk algorithm is
straightforward. A simple implementation of the algorithm is as follows:

1. Place a total of N0 walkers at the initial set of positions xi, where the xi need not be on a
grid.

CHAPTER 16. QUANTUM SYSTEMS 725

2. Compute the reference energy, Vref =
∑

i Vi/N0.

3. Randomly move the first walker to the right or left by a fixed step length ∆s. The step
length ∆s is related to the time step ∆τ by (∆s)2 = 2D∆τ . (D = 1/2 in units such that
~ = m = 1.)

4. Compute ∆V = V (x) − Vref and a random number r in the unit interval. If ∆V > 0 and
r < ∆V∆τ , then remove the walker. If ∆V < 0 and r < −∆V∆τ , then add another walker
at x. Otherwise, just leave the walker at x. This procedure is accurate only in the limit of
∆τ << 1. A more accurate procedure consists of computing Pb = e−∆V∆τ − 1 = n + f ,
where n is the integer part of Pb, and f is the fractional part. We then make n copies of the
walker, and if f > r, we make one more copy.

5. Repeat steps 3 and 4 for each of the N0 walkers and compute the mean potential energy
(16.71) and the actual number of random walkers. The new reference potential is given by

Vref = ⟨V ⟩ − a

N0∆τ
(N −N0), (16.72)

where N is the new number of random walkers and ⟨V ⟩ is their mean potential energy. The
average of V is an estimate of the ground state energy. The parameter a is adjusted so that
the number of random walkers N remains approximately constant.

6. Repeat steps 3–5 until the estimates of the ground state energy ⟨V ⟩ have reached a steady
state value with only random fluctuations. Average ⟨V ⟩ over many Monte Carlo steps to
compute the ground state energy. Do a similar calculation to estimate the distribution of
random walkers.

The QMWalk class implements this algorithm for the harmonic oscillator potential. Initially, the
walkers are randomly distributed within a distance initialWidth of the origin. The program also
estimates the ground state wavefunction by accumulating the spatial distribution of the walkers
at discrete intervals of position. The input parameters are the desired number of walkers N0, the
number of position intervals to accumulate data for the ground state wavefunction numberOfBins,
and the step size ds. We also use ds for the interval size in the wavefunction computation. The
program computes the current number of walkers, the estimate of the ground state energy, and
the value of Vref . The unnormalized ground state wavefunction also is plotted.

Listing 16.10: The QMWalk class calculates the ground state of the simple harmonic oscillator using
the random walk Monte Carlo algorithm.

package org . opensourcephys i c s . s i p . ch16 ;
public class QMWalk {

int numberOfBins = 1000 ; // number o f b in s to accumulate data f o r wave func t i on
double [] x ; // p o s i t i o n s o f wa l ker s
double [] phi0 ; // es t imate o f ground s t a t e wave func t i on
double [] xv ; // x va l u e s f o r computing phi0
int N0 ; // de s i r ed number o f wa l ker s
int N; // ac t ua l number o f wa l ker s
double ds ; // s t ep s i z e
double dt ; // time i n t e r v a l

CHAPTER 16. QUANTUM SYSTEMS 726

double vave = 0 ; // mean p o t e n t i a l
double v r e f = 0 ; // r e f e r ence p o t e n t i a l
double eAccum = 0 ; // accumulat ion o f energy va l u e s
double xmin ; // minimum x
int mcs ;

public void i n i t i a l i z e () {
N0 = N;
x = new double [2* numberOfBins] ;
phi0 = new double [numberOfBins] ;
xv = new double [numberOfBins] ;
xmin = −ds*numberOfBins / 2 . 0 ; // minimum l o c a t i o n f o r computing phi0
double binEdge = xmin ;
for (int i = 0 ; i<numberOfBins ; i++) {

xv [i] = binEdge ;
binEdge += ds ;

}
double i n i t i a lWid th = 1 ; // i n i t i a l width f o r l o c a t i o n o f wa l ker s
for (int i = 0 ; i<N; i++) {

x [i] = (2*Math . random()−1)* i n i t i a lWid th ; // i n i t i a l random l o c a t i o n o f wa l ker s
v r e f += po t en t i a l (x [i]) ;

}
vave = 0 ;
v r e f = 0 ;
eAccum = 0 ;
mcs = 0 ;
dt = ds*ds ;

}

void walk () {
double vsum = 0 ;
for (int i = N−1; i>=0; i−−) {

i f (Math . random()<0.5) { // move walker
x [i] += ds ;

} else {
x [i] −= ds ;

}
double pot = po t en t i a l (x [i]) ;
double dv = pot−v r e f ;
vsum += pot ;
i f (dv<0) { // dec ide to add or d e l e t e wa lker

i f (N==0 | |(Math . random()<−dv*dt)&&(N<x . l ength)) {
x [N] = x [i] ; // new walker at the curren t l o c a t i o n
vsum += pot ; // add energy o f new walker
N++;

}
} else {

i f ((Math . random()<dv*dt)&&(N>0)) {
N−−;
x [i] = x [N] ; // r e l a b e l l a s t wa lker to d e l e t e d walker index

CHAPTER 16. QUANTUM SYSTEMS 727

vsum −= pot ; // s u b s t r a c t energy o f d e l e t e d walker
}

}
}
vave = (N==0) ? 0 // i f no wa lker s p o en t i a l = 0

: vsum/N;
v r e f = vave−(N−N0)/N0/dt ;
mcs++;

}

void doMCS() {
walk () ;
eAccum += vave ;
for (int i = 0 ; i<N; i++) {

int bin = (int) Math . f l o o r ((x [i]−xmin)/ ds) ; // c a l c u l a t e b in index
i f (bin>=0&&bin<numberOfBins) {

phi0 [bin]++;
}

}
}

void resetData () {
for (int i = 0 ; i<numberOfBins ; i++) {

phi0 [i] = 0 ;
}
eAccum = 0 ;
mcs = 0 ;

}

public double po t en t i a l (double x) {
return 0 .5* x*x ;

}
}

Listing 16.11: The QMWalkApp class computes and displays the result of a random walk Monte
Carlo calculation.

package org . opensourcephys i c s . s i p . ch16 ;
import org . opensourcephys i c s . c on t r o l s . * ;
import org . opensourcephys i c s . frames . PlotFrame ;

public class QMWalkApp extends AbstractS imulat ion {
PlotFrame phiFrame = new PlotFrame ("x" , "Phi_0" , "Phi_0(x)") ;
QMWalk qmwalk = new QMWalk() ;

public void i n i t i a l i z e () {
qmwalk .N = con t r o l . g e t In t ("initial number of walkers") ;
qmwalk . ds = con t r o l . getDouble ("step size ds") ;
qmwalk . numberOfBins = con t r o l . g e t In t ("number of bins for wavefunction") ;
qmwalk . i n i t i a l i z e () ;

CHAPTER 16. QUANTUM SYSTEMS 728

}

public void doStep () {
qmwalk .doMCS() ;
phiFrame . c learData () ;
phiFrame . append (0 , qmwalk . xv , qmwalk . phi0) ;
phiFrame . setMessage ("E = "+decimalFormat . format (qmwalk . eAccum/qmwalk . mcs)+" N = "+qmwalk .N) ;

}

public void r e s e t () {
c on t r o l . setValue ("initial number of walkers" , 5 0) ;
c on t r o l . setValue ("step size ds" , 0 . 1) ;
c on t r o l . setValue ("number of bins for wavefunction" , 1 00) ;
enab leStepsPerDisp lay (true) ;

}

public void resetData () {
qmwalk . resetData () ;
phiFrame . c learData () ;
phiFrame . r epa in t () ;

}

public stat ic void main (St r ing [] a rgs) {
Simulat ionContro l c on t r o l = Simulat ionContro l . createApp (new QMWalkApp()) ;
c on t r o l . addButton ("resetData" , "Reset Data") ;

}
}

Problem 16.26. Ground state of the harmonic and anharmonic oscillators

a. Use QMWalk and QMWalkApp to estimate the ground state energy E0 and the corresponding
eigenstate for V (x) = x2/2. Choose the desired number of walkers N0 = 50, the step length
ds = 0.1, and numberOfBins = 100. Place the walkers at random within the range −1 ≤ x ≤ 1.
Compare your Monte Carlo estimate for E0 to the exact result E0 = 0.5.

b. Reset your data averages after the averages seemed to have converged and compute the averages
again. How many Monte Carlo steps per walker are needed for 1% accuracy in E0? Plot the
probability distribution of the random walkers and compare it to the exact result for the ground
state wave function.

c. Modify QMWalk so that more than one copy of the walker can be created at each step (see step 4
on page 725). How much better does the algorithm work now? Can you use a larger step size
or fewer Monte Carlo steps to obtain the same accuracy?

d. Obtain a numerical solution of the anharmonic oscillator with

V (x) =
1

2
x2 + bx3. (16.73)

CHAPTER 16. QUANTUM SYSTEMS 729

Consider b = 0.1, 0.2, and 0.5. A calculation of the effect of the x3 term is necessary for the
study of the anharmonicity of the vibrations of a physical system, for example, the vibrational
spectrum of diatomic molecules.

Problem 16.27. Ground state of a square well

a. Modify QMWalkApp to find the ground state energy and wave function for the finite square well
potential (16.13) with a = 1 and V0 = 5. Choose N0 = 100, ds = 0.1, and numberOfBins = 100.
Place the walkers at random within the range −1.5 ≤ x ≤ 1.5.

b. Increase V0 and find the ground state energy as a function of V0. Use your results to estimate
the limiting value of the ground state energy for V0 → ∞.

Problem 16.28. Ground state of a cylindrical box

Compute the ground state energy and wave function of the circular potential

V (r) =

{
0 r ≤ 1

−V0, r > 1.
(16.74)

where r2 = x2 + y2. Modify QMWalkApp by using Cartesian coordinates in two dimensions, for
example, add an array to store the positions of the y coordinates of the walkers. What happens if
you begin with an initial distribution of walkers that is not cylindrically symmetric?

16.9 Diffusion Quantum Monte Carlo

We now discuss an improvement of the random walk algorithm known as diffusion quantum Monte
Carlo. Although some parts of the discussion might be difficult to follow initially, the algorithm
is straightforward. Your understanding of the method will be enhanced by writing a program to
implement the algorithm and then reading the following derivation again.

To provide some background, we introduce the concept of a Green’s function or propagator
defined by

Ψ(x, τ) =

∫
G(x, x′, τ)Ψ(x, 0) dx′. (16.75)

From the form of (16.75) we see that G(x, x′, τ) “propagates” the wave function from time zero to
time τ . If we operate on both sides of (16.75) with first (∂/∂τ) and then with (H − Vref), we can
verify that G satisfies the equation

∂G

∂τ
= −(Ĥ − Vref)G, (16.76)

which is the same form as the imaginary time Schrödinger equation (16.65). It is easy to verify
that G(x, x′, τ) = G(x′, x, τ). A formal solution of (16.76) is

G(τ) = e−(Ĥ−Vref)τ , (16.77)

CHAPTER 16. QUANTUM SYSTEMS 730

where the meaning of the exponential of an operator is given by its Taylor series expansion.

The difficulty with (16.77) is that the kinetic and potential energy operators T̂ and V̂ in Ĥ
do not commute. For this reason, if we want to write the exponential in (16.77) as a product of
two exponentials, we can only approximate the exponential for short times ∆τ . To first order in
∆τ (higher order terms involve the commutator of V̂ and Ĥ), we have

G(∆τ) ≈ GbranchGdiffusion (16.78)

= e−(V−Vref)∆τ e−T̂∆τ , (16.79)

where Gdiffusion ≡ e−T̂∆τ and Gbranch ≡ e−(V̂−Vref)∆τ correspond to the two random processes:
diffusion and branching. From (16.76) we see that Gdiffusion and Gbranch satisfy the differential
equations:

∂Gdiffusion

∂τ
= −T̂Gdiffusion =

~2

2m

∂2Gdiffusion

∂x2
(16.80)

∂Gbranch

∂τ
= (Vref − V̂)Gbranch. (16.81)

The solutions to (16.79)–(16.81) that are symmetric in x and x′ are

Gdiffusion(x, x
′,∆τ) = (4πD∆τ)−1/2e−(x−x′)2/4D, (16.82)

with D ≡ ~2/2m, and

Gbranch(x, x
′,∆τ) = e−

(
1
2 [V (x)+V (x′)]−Vref

)
∆τ . (16.83)

From the form of (16.82) and (16.83), we can see that the diffusion quantum Monte Carlo
method is similar to the random walk algorithm discussed in Section 16.8. An implementation of
the diffusion quantum Monte Carlo method in one dimension can be summarized as follows:

1. Begin with a set of N0 random walkers. There is no lattice so the positions of the walkers
are continuous. It is advantageous to choose the walkers so that they are in regions of space
where the wave function is known to be large.

2. Choose one of the walkers and displace it from x to x′. The new position is chosen from a
Gaussian distribution with a variance 2D∆τ and zero mean. This change corresponds to the
diffusion process given by (16.82).

3. Weight the configuration x′ by

w(x → x′,∆τ) = e−
(

1
2 [V (x)+V (x′)]−Vref

)
∆τ . (16.84)

One way to do this weighting is to generate duplicate random walkers at x′. For example, if
w ≈ 2, we would have two walkers at x′ where previously there had been one. To implement
this weighting (branching) correctly, we must make an integer number of copies that is equal
on the average to the number w. A simple way to do so is to take the integer part of w + r,
where r is a uniform random number in the unit interval. The number of copies can be any
nonnegative integer including zero. The latter value corresponds to a removal of a walker.

CHAPTER 16. QUANTUM SYSTEMS 731

4. Repeat steps 2 and 3 for all members of the ensemble, thereby creating a new ensemble at a
later time ∆τ . One iteration of the ensemble is equivalent to performing the integration

Ψ(x, τ) =

∫
G(x, x′,∆τ)Ψ(x′, τ −∆τ) dx′. (16.85)

5. The quantity of interest Ψ(x, τ) will be independent of the original ensemble Ψ(x, 0) if a
sufficient number of Monte Carlo steps are taken. As before, we must ensure that N(τ), the
number of walkers at time τ , is kept close to the desired number N0.

Now we can understand how the simple random walk algorithm discussed in Section 16.8 is
an approximation to the diffusion quantum MC algorithm. First, the Gaussian distribution gives
the exact distribution for the displacement of a random walker in a time ∆τ , in contrast to the
fixed step size in the simple random walk algorithm which gives the average displacement of a
walker. Hence, there are no systematic errors due to the finite step size. Second, if we expand the
exponential in (16.83) to first order in ∆τ and set V (x) = V (x′), we obtain the branching rule used
previously. (We use the fact that the uniform distribution r is the same as the distribution 1− r.)
However, the diffusion quantum MC algorithm is not exact because the branching is independent
of the position reached by diffusion, which is only true in the limit ∆τ → 0. This limitation is
remedied in the Green’s function Monte Carlo method where a short time approximation is not
made (see the articles on Green’s function Monte Carlo in the references).

One limitation of the two random walk methods we have discussed is that they can become
very inefficient. This inefficiency is due in part to the branching process. If the potential becomes
large and negative (as it is for the Coulomb potential when an electron approaches a nucleus), the
number of copies of a walker will become very large. It is possible to improve the efficiency of these
algorithms by introducing an importance sampling method. The idea is to use an initial guess
ΨT (x) for the wave function to guide the walkers toward the more important regions of V (x).
To implement this idea, we introduce the function f(x, τ) = Ψ(x, τ)ΨT (x). If we calculate the
quantity ∂f/∂t − D∂2f/∂x2, and use (16.65), we can show that f(x, τ) satisfies the differential
equation:

∂f

∂τ
= D

∂2f

∂x2
−D

∂
[
fF (x)

]
∂x

− [EL(x)− Vref]f, (16.86)

where

F (x) =
2

ΨT

∂ΨT

∂x
, (16.87)

and the local energy EL(x) is given by

EL(x) =
Ĥ∂T
ΨT

= V (x)− D

ΨT

∂2ΨT

∂x2
. (16.88)

The term in (16.86) containing F corresponds to a drift in the walkers away from regions where
|ΨT |2 is small (see Problem 7.43).

To incorporate the drift term into Gdiffusion, we replace (x − x′)2 in (16.82) by the term(
x− x′ −D∆τF (x′)

)2
, so that the diffusion propagator becomes

Gdiffusion(x, x
′,∆τ) = (4πD∆τ)−1/2e−

(
x−x′−D∆τF (x′)

)2
/4D∆τ . (16.89)

CHAPTER 16. QUANTUM SYSTEMS 732

However, this replacement destroys the symmetry between x and x′. To restore it, we use the
Metropolis algorithm for accepting the new position of a walker. The acceptance probability p is
given by

p =
|ΨT (x

′)|2 Gdiffusion(x, x
′,∆τ)

|ΨT (x)|2 Gdiffusion(x′, x,∆τ)
. (16.90)

If p > 1, we accept the move; otherwise, we accept the move if r ≤ p. The branching step is
achieved by using (16.83) with V (x) + V (x′) replaced by EL(x) +EL(x

′), and ∆τ replaced by an
effective time step. The reason for the use of an effective time step in (16.83) is that some diffusion
steps are rejected. The effective time step to be used in (16.83) is found by multiplying ∆τ by the
average acceptance probability. It can be shown (see Hammond et al.) that the mean value of the
local energy is an unbiased estimator of the ground state energy.

Another possible improvement is to periodically replace branching (which changes the number
of walkers) with a weighting of the walkers. At each weighting step, each walker is weighted by
Gbranch, and the total number of walkers remains constant. After n steps, the kth walker receives

a weight Wk = Πn
i=1G

(i,k)
branch, where G

(i,k)
branch is the branching factor of the kth walker at the ith

time step. The contribution to any average quantity of the kth walker is weighted by Wk.

Problem 16.29. Diffusion Quantum Monte Carlo

a. Modify QMWalkApp to implement the diffusion quantum Monte Carlo method for the systems
considered in Problems 16.26 or 16.27. Begin with N0 = 100 walkers and ∆τ = 0.01. Use at
least three values of ∆τ and extrapolate your results to ∆τ → 0. Reasonable results can be
obtained by adjusting the reference energy every 20 Monte Carlo steps with a = 0.1.

b. Write a program to apply the diffusion quantum Monte Carlo method to the hydrogen atom.
In this case a configuration is represented by three coordinates.

c.∗ Modify your program to include weights in addition to changing walker populations. Redo
part (a) and compare your results.

∗Problem 16.30. Importance sampling

a. Derive the partial differential equation (16.86) for f(x, τ).

b. Modify QMWalkApp to implement the diffusion quantum Monte Carlo method with importance

sampling. Consider the harmonic oscillator problem with the trial wave function ΨT = e−λx2

.
Compute the statistical error associated with the ground state energy as a function of λ. How
much variance reduction can you achieve relative to the naive diffusion quantum Monte Carlo
method? Then consider another form of ΨT that does not have a form identical to the exact
ground state. Try the hydrogen atom with ΨT = e−λr.

CHAPTER 16. QUANTUM SYSTEMS 733

16.10 Path Integral Quantum Monte Carlo

The Monte Carlo methods we have discussed so far are primarily useful for estimating the ground
state energy and wave function, although it also is possible to find the first few excited states with
some effort. In this section we discuss a Monte Carlo method that is of particular interest for
computing the thermal properties of quantum systems.

We recall (see Section 7.10) that classical mechanics can be formulated in terms of the principle
of least action. That is, given two points in space-time, a classical particle chooses the path that
minimizes the action given by

S =

∫ x,t

x0,0

Ldt. (16.91)

The Lagrangian L is given by L = T − V . Quantum mechanics also can be formulated in terms of
the action (cf. Feynman and Hibbs). The result of this path integral formalism is that the real-time
propagator G can be expressed as

G(x, x0, t) = A
∑
paths

eiS/~, (16.92)

where A is a normalization factor. The sum in (16.92) is over all paths between (x0, 0) and (x, t),
not just the path that minimizes the classical action. The presence of the imaginary number i in
(16.92) leads to interference effects. As before, the propagator G(x, x0, t) can be interpreted as the
probability amplitude for a particle to be at x at time t given that it was at x0 at time zero. G
satisfies the equation (see (16.75))

Ψ(x, t) =

∫
G(x, x0, t)Ψ(x0, 0) dx0 (t > 0). (16.93)

Because G satisfies the same differential equation as Ψ in both x and x0, G can be expressed as

G(x, x0, t) =
∑
n

ϕn(x)ϕn(x0)e
−iEnt/~, (16.94)

where the ϕn are the eigenstates of H. For simplicity, we set ~ = 1 in the following. As before, we
substitute τ = it into (16.94), and obtain

G(x, x0, τ) =
∑
n

ϕn(x)ϕn(x0) e
−τEn . (16.95)

We first consider the ground state. In the limit τ → ∞, we have

G(x, x, τ) → ϕ0(x)
2 e−τE0 . (τ → ∞) (16.96)

From the form of (16.96) and (16.92), we see that we need to compute G and hence S to estimate
the properties of the ground state.

To compute S, we convert the integral in (16.91) to a sum. The Lagrangian for a single particle
of unit mass in terms of τ becomes

L = −1

2

(dx
dτ

)2

− V (x) = −E. (16.97)

CHAPTER 16. QUANTUM SYSTEMS 734

We divide the imaginary time interval τ into N equal steps of size ∆τ and write E as

E(xj , τj) =
1

2

(xj+1 − xj)
2

(∆τ)2
+ V (xj), (16.98)

where τj = j∆τ , and xj is the corresponding displacement. The action becomes

S = −i∆τ
N−1∑
j=0

E(xj , τj) = −i∆τ
[N−1∑

j=0

1

2

(xj+1 − xj)
2

(∆τ)2
+ V (xj)

]
, (16.99)

and the probability amplitude for the path becomes

eiS = e∆τ [
∑N−1

j=0
1
2 (xj+1−xj)

2/(∆τ)2+V (xj)]. (16.100)

Hence, the propagator G(x, x0, N∆τ) can be expressed as

G(x, x0, N∆τ) = A

∫
dx1 · · · dxN−1 e

∆τ [
∑N−1

j=0
1
2 (xj+1−xj)

2/(∆τ)2+V (xj)], (16.101)

where x ≡ xN and A is an unimportant constant.

From (16.101) we see that G(x, x0, N∆τ) has been expressed as a multidimensional integral
with the displacement variable xj associated with the time τj . The sequence x0, x1, · · · , xN defines
a possible path, and the integral in (16.101) is over all paths. Because the quantity of interest is
G(x, x,N∆τ) (see (16.96)), we adopt the periodic boundary condition, xN = x0. The choice of x
in the argument of G is arbitrary for finding the ground state energy, and the use of the periodic
boundary conditions implies that no point in the closed path is unique. It is thus possible (and
convenient) to rewrite (16.101) by letting the sum over j go from 1 to N :

G(x0, x0, N∆τ) = A

∫
dx1 · · · dxN−1 e

−∆τ [
∑N

j=1
1
2 (xj−xj−1)

2/(∆τ)2+V (xj)], (16.102)

where we have written x0 instead of x because the xj that is not integrated over is xN = x0.

The result of this analysis is to convert a quantum mechanical problem for a single particle into
a statistical mechanics problem for N “atoms” on a ring connected by nearest neighbor “springs”
with spring constant 1/(∆τ)2. The label j denotes the order of the atoms in the ring.

Note that the form of (16.102) is similar to the form of the Boltzmann distribution. Because
the partition function for a single quantum mechanical particle contains terms of the form e−βEn

and (16.95) contains terms proportional to e−τEn , we make the correspondence β = τ = N∆τ .
We shall see in the following how we can use this identity to simulate a quantum system at a finite
temperature.

We can use the Metropolis algorithm to simulate the motion of N “atoms” on a ring. Of
course, these atoms are a product of our analysis just as were the random walkers we introduced
in diffusion Monte Carlo and should not be confused with real particles. A possible path integral
algorithm can be summarized as follows:

1. Choose N and ∆τ such that N∆τ >> 1 (the zero temperature limit). Also choose δ, the
maximum trial change in the displacement of an atom, and mcs, the total number of Monte
Carlo steps per atom.

CHAPTER 16. QUANTUM SYSTEMS 735

2. Choose an initial configuration for the displacements xj that is close to the approximate
shape of the ground state probability amplitude.

3. Choose an atom j at random and a trial displacement xj → xj + (2r − 1)δ, where r is a
uniform random number in the unit interval. Compute the change ∆E in the energy E,
where ∆E is given by

∆E =
1

2

[xj+1 − xj

∆τ

]2
+

1

2

[xj − xj−1

∆τ

]2
+ V (xj)

− 1

2

[xj+1 − xj

∆τ

]2
− 1

2

[xj − xj−1

∆τ

]2
− V (xj) (16.103)

If ∆E < 0, accept the change; otherwise, compute the probability p = e−∆τ∆E and a random
number r in the unit interval. If r ≤ p, then accept the move; otherwise reject the trial move.

4. Divide the possible x values into equal size bins of width ∆x. Update P (x), that is, let
P (x = xj) → P (x = xj) + 1, where x is the displacement of the atom chosen in step 3 after
step 3 is completed. Do this update even if the trial move was rejected.

5. Repeat steps 3 and 4 until a sufficient number of Monte Carlo steps per atom has been
obtained. (Do not take data until the memory of the initial path is lost and the system has
reached “equilibrium.”)

Normalize the probability density P (x) by dividing by the product of N and mcs. The ground
state energy E0 is given by

E0 =
∑
x

P (x)[T (x) + V (x)], (16.104)

where T (x) is the kinetic energy as determined from the virial theorem,⟨
2T (x)

⟩
=

⟨
x
dV

dx

⟩
, (16.105)

which is discussed in many texts (see Griffiths for example). It also is possible to compute T from
averages over (xj−xj−1)

2, but the virial theorem yields a smaller variance. The ground state wave
function ϕ(x) is obtained from the normalized probability P (x)∆x by dividing by ∆x and taking
the square root.

We also can find the thermodynamic properties of a particle that is connected to a heat bath at
temperature T = 1/β by not taking the β = N∆τ → ∞ limit. To obtain the ground state, which
corresponds to the zero temperature limit (β >> 1), we had to make N∆τ as large as possible.
However, we need ∆τ to be as small as possible to approximate the continuum time limit. Hence,
to obtain the ground state we need a large number of time intervals N . For the finite temperature
simulation, we can use smaller values of N for the same level of accuracy as the zero temperature
simulation.

The path integral method is very flexible and can be generalized to higher dimensions and
many mutually interacting particles. For three dimensions, xj is replaced by the three-dimensional
displacement rj . Each real particle is represented by a ring of N “atoms” with a spring-like
potential connecting each atom within a ring. Each atom in each ring also interacts with the

CHAPTER 16. QUANTUM SYSTEMS 736

atoms in the other rings through an interparticle potential. If the quantum system is a fluid
where indistinguishability is important, then we must consider the effect of exchange by treating
the quantum system as a classical polymer system where the “atoms” represent the monomers
of a polymer, and where polymers can split up and reform. Chandler and Wolynes discuss how
the quantum mechanical effects due to exchanging identical particles can be associated with the
chemical equilibrium of the polymers. They also discuss Bose condensation using path integral
techniques.

Problem 16.31. Path integral calculation

a. Write a program to implement the path integral algorithm for the one-dimensional harmonic
oscillator potential with V (x) = x2/2. Use the structure of your Monte Carlo Lennard-Jones
program from Chapter 15 as a guide.

b. Let N∆τ = 15 and consider N = 10, 20, 40, and 80. Equilibrate for at least 2000 Monte
Carlo steps per atom and average over at least 5000mcs. Compare your results with the exact
result for the ground state energy given by E0 = 0.5. Estimate the equilibration time for your
calculation. What is a good initial configuration? Improve your results by using larger values
of N∆τ .

c. Find the mean energy, ⟨E⟩, of the harmonic oscillator at the temperature T determined by
β = N∆τ . Find ⟨E⟩ for β = 1, 2, and 3, and compare it with the exact result ⟨E⟩ = 1

2 coth(β/2).

d. Repeat the above calculations for the Morse potential V (x) = 2(1− e−x)2.

16.11 Projects

Many of the techniques described in this chapter can be extended to two-dimensional quantum
systems. The Complex2DFrame tool in the frames package is designed to show two-dimensional
complex scalar fields such as quantum wave functions. Listing 16.13 in Appendix A shows how
this class is used to show a two-dimensional Gaussian wave packet with a momentum boost.

Project 16.32. Separable systems in two dimensions

The shooting method is inappropriate for the calculation of eigenstates and eigenvalues in two
or more dimensions with arbitrary potential energy functions, V (r). However, the special case
of separable potentials can be reduced to several one-dimensional problems that can be solved
using the numerical methods described in this chapter. Many molecular modeling programs use
the Hartree-Fock self-consistent field approximation to model non-separable systems as a set of
one-dimensional problems. Recently, there has been significant progress motivated by a molecular
dynamics algorithm developed by Car and Parrinello.

Write a two-dimensional eigenstate class, Eigenstate2d, that calculates eigenstates and eigen-
values for a separable potential of the form:

V (x, y) = V1(x) + V2(y). (16.106)

CHAPTER 16. QUANTUM SYSTEMS 737

Test this class using the known analytic solutions for the two-dimensional rectangular box and
two-dimensional harmonic oscillator. Use this class to model the evolution of superposition states.
Under what conditions are there wave function revivals?

Project 16.33. Excited state wave functions using quantum Monte Carlo

Quantum Monte Carlo methods can be extended to compute the excited state wave functions
using a Gram-Schmidt procedure to insure that each excited state is orthogonal to all lower lying
states (see Roy et al.). A quantum Monte Carlo method is used to compute the ground state
wave function. A trial wave function for the first exited state is then selected and the ground
state component is subtracted from the trial wave function. This subtraction is repeated after
every iteration of the Monte Carlo algorithm. Because excited states decay with a time constant
e−(Ej−E0), the lowest remaining excited state dominates the remaining wave function. After the
first excited state is obtained, the second excited state is computed by subtracting both known
states from the trial wave function. This process is repeated to obtain additional wave functions.

Implement this procedure to find the first few excited state wave functions for the one-
dimensional harmonic oscillator. Then consider the one-dimensional double well oscillator

V (x) = −1

2
kx2 + a3x

3 + a4x
4, (16.107)

with k = 40, a3 = 1, and a4 = 1.

Project 16.34. Quantum Monte Carlo in two dimensions

The procedure described in Project 16.33 can be used to compute two-dimensional wave functions
(see Roy et al.).

a. Test your program using a separable two-dimensional double-well potential.

b. Find the first few excited states for the two-dimensional double-well potential

V (x, y) = −1

2
kxx

2 − 1

2
kyy

2 +
1

2
(axxx

4 + 2axyx
2y2 + ayyy

4), (16.108)

with kx = ky = 20 and axx = ayy = axy = 5. Repeat with kx = ky = 20 and axx = ayy = axy =
1.

Project 16.35. Evolution of a wave packet in two dimensions

Both the half-step and split operator algorithms can be extended to model the evolution of two-
dimensional systems with arbitrary potentials, V (x, y). (See Numerical Recipes for how the FFT
algorithm is extended to more dimensions.) Implement either algorithm and model a wave packet
scattering from a central barrier and a wave packet passing through a double slit.

A clever way to insure stability in the half-step algorithm is to use a boolean array to tag grid
locations where the solution becomes unstable and to set the wave function to zero at these grid
points.

double minV = −2/dt ;
double maxVx = 2/dt−2/(dx*dx) ;
double maxVy = 2/dt−2/(dy*dy) ;

CHAPTER 16. QUANTUM SYSTEMS 738

double maxV = Math . min (maxVx,maxVy) ;
for (int i = 0 , n = po t e n t i a l . l ength ; i <= n ; i++) {

for (int j = 0 , m = po t en t i a l [0] . l ength ; j <= m; j++) {
i f (p o t e n t i a l [i] [j] >= minV && po t en t i a l [i] [j] <= maxV) // s t a b l e

s t ab l e [i] [j] = true ; // s t a b l e
else

s t ab l e [i] [j] = fa l se ; // uns tab l e , s e t wave func t i on to zero
}

}
}

Project 16.36. Two particle system

Rubin Landau has studied the time dependence of two particles interacting in one dimension with
a potential that depends on their relative separation:

V (x1, x2) = V0e
−(x1−x2)

2/2α2

. (16.109)

Model a scattering experiment for particles having momentum p1 and p2 by assuming the following
(unnormalized) initial wave function

Ψ(x1, x2) = eip1x1 e−(x1−a)2/4w2

eip2x2 e−(x2−a)2/4w2

, (16.110)

where 2a is the separation and w is the variance in each particle’s position. Do the particles
bounce off of each other when the interaction is repulsive? What happens when the interaction is
attractive?

Appendix 16A: Visualizing Complex Functions

Complex functions are essential in quantum mechanics and the frames package contains classes
for displaying and analyzing these functions. Listing 16.12 uses a ComplexPlotFrame to display a
one-dimensional wave function.

Listing 16.12: The ComplexPlotFrameApp class displays a one-dimensional Gaussian wave packet
with a momentum boost.

package org . opensourcephys i c s . s i p . ch16 ;
import org . opensourcephys i c s . frames . ComplexPlotFrame ;

public class ComplexPlotFrameApp {
public stat ic void main (St r ing [] a rgs) {

ComplexPlotFrame frame = new ComplexPlotFrame ("x" , "Psi(x)" , "Complex function") ;
int n = 128 ;
double

xmin = −Math . PI , xmax = Math . PI ;
double

x = xmin , dx = (xmax−xmin)/n ;
double [] xdata = new double [n] ;
double [] zdata = new double [2*n] ; // r e a l and imaginary va l u e s a l t e r n a t e

CHAPTER 16. QUANTUM SYSTEMS 739

(a) Real and imaginary. (b) Amplitude and phase.

Figure 16.2: Two representations of complex wave functions. (The actual output is in color.)

int mode = 4 ; // t e s t f unc t i on i s eˆ(−x*x /4) e ˆ(i *mode*x) f o r x=[−pi , p i)
for (int i = 0 ; i<n ; i++) {

double a = Math . exp(−x*x /4) ;
zdata [2* i] = a*Math . cos (mode*x) ;
zdata [2* i +1] = a*Math . s i n (mode*x) ;
xdata [i] = x ;
x += dx ;

}
frame . append (xdata , zdata) ;
frame . s e tV i s i b l e (true) ;
frame . s e tDe fau l tC lo seOperat i on (javax . swing . JFrame .EXIT ON CLOSE) ;

}
}

Figure 16.2 shows two representations of a quantum wave function. The real and imaginary
representation displays the real and imaginary parts of the wave function Ψ(x) by drawing two
curves. In the amplitude and phase representation the vertical height represents the wave function
magnitude and the color indicates phase. Note that the complex phase is oscillating, indicating
that the wave function has a nonzero momentum expectation value, which is known as amomentum
boost.

Wave function visualizations can be selected at runtime using the Tools menu or they can be
selected programmatically using convert methods such as convertToPostView and convertToRe-

ImView. The Tools menu also allows the user to select a table view to examine the data being used
to draw the wave function and to display a phase legend that shows the color to phase relation.

A Complex2DFrame displays a two-dimensional complex scalar field such as a two-dimensional
wave function. We instantiate a Complex2DFrame and then pass to it a multi-dimensional array
containing the field’s real and imaginary components. Listing 16.13 shows how this class is used

CHAPTER 16. QUANTUM SYSTEMS 740

to show a two-dimensional Gaussian wave packet with a momentum boost.

Listing 16.13: The Complex2DFrameApp program displays a two-dimensional Gaussian wave packet
with a momentum boost.

package org . opensourcephys i c s . s i p . ch16 ;
import org . opensourcephys i c s . frames . Complex2DFrame ;

public class Complex2DFrameApp {
public stat ic void main (St r ing [] a rgs) {

Complex2DFrame frame = new Complex2DFrame("x" , "y" , "Complex field") ;
frame . setPreferredMinMax (−1.5 , 1 . 5 , −1.5 , 1 . 5) ;
double [] [] [] f i e l d = new double [2] [3 2] [3 2] ; // components o f f i e l d
frame . s e tA l l (f i e l d) ;
for (int i = 0 , nx = f i e l d [0] . l ength ; i<nx ; i++) {

double x = frame . indexToX (i) ;
for (int j = 0 , ny = f i e l d [0] [0] . l ength ; j<ny ; j++) {

double y = frame . indexToY (j) ;
double a = Math . exp(−4*(x*x+y*y)) ;
f i e l d [0] [i] [j] = a*Math . cos (5*x) ; // r e a l component
f i e l d [1] [i] [j] = a*Math . s i n (5*x) ; // complex component

}
}
frame . s e tA l l (f i e l d) ;
frame . s e tV i s i b l e (true) ;
frame . s e tDe fau l tC lo seOperat i on (javax . swing . JFrame .EXIT ON CLOSE) ;

}
}

The complex field is computed on a n row by m column grid and stored in an array with
dimensions 2 × m × n. The default visualization uses a grid in which every cell is colored using
brightness to show the complex number’s magnitude and color to show phase. Other visualizations
can be programmed or selected at runtime using the menu.

References and Suggestions for Further Reading
The ALPS project, <http://alps.comp-phys.org/>, has open source simulation programs for

strongly correlated quantum mechanical systems and C++ libraries for simplifying the de-
velopment of such code. Although most of the code is beyond the level of this text, this open
source project is another example of software for use in both research and education.

J. B. Anderson, “A random walk simulation of the Schrödinger equation: H+
3 ,” J. Chem. Phys.

63, 1499–1503 (1975); “Quantum chemistry by random walk. H 2P, H+
3 D3h

1A′
1, H2

3Σ+
u , H4

1Σ+
g , Be

1S,” J. Chem. Phys. 65, 4121–4127 (1976); “Quantum chemistry by random walk:
Higher accuracy,” J. Chem. Phys. 73, 3897–3899 (1980). These papers describe the random
walk method, extensions for improved accuracy, and applications to simple molecules.

G. Baym, Lectures on Quantum Mechanics, Westview Press (1990). A discussion of the Schrödinger
equation in imaginary time is given in Chapter 3.

CHAPTER 16. QUANTUM SYSTEMS 741

M. A. Belloni, W. Christian, and A. Cox, Physlet Quantum Physics, Prentice Hall (2006) This
book contains interactive exercises using Java applets to visualize quantum phenomena.

H. A. Bethe, Intermediate Quantum Mechanics, Westview Press (1997). Applications of quantum
mechanics to atomic systems are discussed.

Jay S. Bolemon, “Computer solutions to a realistic ‘one-dimensional’ Schrödinger equation,” Am.
J. Phys. 40, 1511 (1972).

Siegmund Brandt and Hans Dieter Dahmen, The Picture Book of Quantum Mechanics, third
edition, Springer-Verlag (2001); Siegmund Brandt, Hans Dieter Dahmen, and Tilo Stroh, In-
teractive Quantum Mechanics, Springer-Verlag (2003).These books show computer generated
pictures of quantum wave functions in different contexts.

R. Car and M. Parrinelli, “Unified approach for molecular dynamics and density-functional the-
ory,” Phys. Rev. Lett. 55, 2471 (1985).

David M. Ceperley, “Path integrals in the theory of condensed helium,” Rev. Mod. Phys. 67,
279–355 (1995).

David M. Ceperley and Berni J. Alder, “Quantum Monte Carlo,” Science 231, 555 (1986). A
survey of some of the applications of quantum Monte Carlo methods to physics and chemistry.

David Chandler and Peter G. Wolynes, “Exploiting the isomorphism between quantum theory
and classical statistical mechanics of polyatomic fluids,” J. Chem. Phys. 74 4078–4095 (1981).
The authors use path integral techniques to look at multiparticle quantum systems.

D. F. Coker and R. O. Watts, “Quantum simulation of systems with nodal surfaces,” Mol. Phys.
58, 1113–1123 (1986).

Jim Doll and David L. Freeman, “Monte Carlo methods in chemistry,” Computing in Science and
Engineering 1 (1), 22–32 (1994).

Robert M. Eisberg and Robert Resnick, Quantum Physics, second edition, John Wiley & Sons
(1985). See Appendix G for a discussion of the numerical solution of Schrödinger’s equation.

R. P. Feynman, “Simulating physics with computers,” Int. J. Theor. Phys. 21, 467–488 (1982).
A provocative discussion of the intrinsic difficulties of simulating quantum systems. See also
R. P. Feynman, Feynman Lectures on Computation, Westview Press (1996).

Richard P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, McGraw-Hill
(1965).

David J. Griffiths, Introduction to Quantum Mechanics, second edition, Prentice Hall (2005). An
excellent undergraduate text that discusses the virial theorem in several problems.

B. L. Hammond, W. A. Lester Jr., and P. J. Reynolds,Monte Carlo Methods in Ab Initio Quantum
Chemistry, World Scientific (1994). An excellent book on quantum Monte Carlo methods.

CHAPTER 16. QUANTUM SYSTEMS 742

Steven E. Koonin and Dawn C. Meredith, Computational Physics, Addison-Wesley (1990). Solu-
tions of the time-dependent Schrödinger equation are discussed in the context of parabolic
partial differential equations in Chapter 7. Chapter 8 discusses Green’s function Monte Carlo
methods.

Rubin Landau, “Two-particle Schrödinger equation animations of wavepacket-wavepacket scat-
tering,” Am. J. Phys. 68 (12), 1113–1119 (2000).

Michel Le Bellac, Fabrice Mortessagne, and G. George Batrouni, Equilibrium and Non-Equilibrium
Statistical Thermodynamics, Cambridge University Presss (2004). Chapter 7 of this graduate
level text discusses the world line algorithm for bosons and fermions on a lattice.

M. A. Lee and K. E. Schmidt, “Green’s function Monte Carlo,” Computers in Physics 6 (2), 192
(1992). A short and clear explanation of Green’s function Monte Carlo.

P. K. MacKeown, “Evaluation of Feynman path integrals by Monte Carlo methods,” Am. J. Phys.
53, 880—885 (1985). The author discusses projects suitable for an advanced undergraduate
course. Also see P. K. MacKeown and D. J. Newman, Computational Techniques in Physics,
Adam Hilger (1987).

Jean Potvin, “Computational quantum field theory. Part II: Lattice gauge theory,” Computers in
Physics 8, 170 (1994) and “Computational quantum field theory,” Computers in Physics 7,
149 (1993).

William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical
Recipes, second edition, Cambridge University Press (1992). The numerical solution of the
time-dependent Schrödinger equation is discussed in Chapter 19.

Peter J. Reynolds, David M. Ceperley, Berni J. Alder, and William A. Lester Jr., “Fixed-node
quantum Monte Carlo for molecules,” J. Chem. Phys. 77, 5593–5603 (1982). This paper
describes a random walk algorithm for use in molecular applications including importance
sampling and the treatment of Fermi statistics.

P. J. Reynolds, J. Tobochnik, and H. Gould, “Diffusion quantum Monte Carlo,” Computers in
Physics 4 (6), 882 (1990).

U. Rothlisberger, “15 Years of Car-Parrinello simulations in physics, chemistry and biology,” in
Computational Chemistry: Reviews of Current Trends, edited by Jerzy Leszczynski, World
Scientific (2001), Vol. 6.

Amlan K. Roy, Neetu Gupta, and B. M. Deb, “Time-dependent quantum mechanical calculation
of ground and excited states of anharmonic and double-well oscillators,” Phys. Rev A 65,
012109-1–7 (2001).

Amlan K. Roy, Ajit J. Thakkar, and B. M. Deb, “Low-lying states of two-dimensional double-well
potentials,” J. Phys. A 38, 2189–2199 (2005).

K. E. Schmidt, Parhat Niyaz, A. Vaught, and Michael A. Lee, “Green’s function Monte Carlo
method with exact imaginary-time propagation,” Phys. Rev. E 71, 016707-1–17 (2005).

CHAPTER 16. QUANTUM SYSTEMS 743

Bernd Thaller, Visual Quantum Mechanics: Selected Topics with Computer-Generated Anima-
tions of Quantum-Mechanical Phenomena, Telos (2000); Bernd Thaller, Advanced Visual
Quantum Mechanics, Springer (2005).

J. Tobochnik, H. Gould, and K. Mulder, “An introduction to quantum Monte Carlo,” Computers
in Physics 4 (4), 431 (1990). An explanation of the path integral method applied to one
particle.

P. B. Visscher, “A fast explicit algorithm for the time-dependent Schrödinger equation,” Com-
puters in Physics 5 (6), 596 (1991).

