
CHAPTER 7. RANDOM PROCESSES 234

Problem 7.27. Example of least squares fit

a. Write a program to find the least squares fit for a set of data. As a check on your program,
compute the most probable values of m and b for the data shown in Table 7.2.

b. Modify the random walk program so that steps of length 1 and 2 are taken with equal probability.
Use at least 10000 trials and do a least squares fit to !x2 as done in the text. Is your most
probable estimate for ν closer to ν = 1/2?

For simple random walk problems the relation !x2 = aNν holds for all N . However, in many
random walk problems a power law relation between !x2 and N holds only asymptotically for
large N , and hence we should use only the larger values of N to estimate the slope. Also, because
we are finding the best fit for the logarithm of the independent variable N , we need to give equal
weight to all intervals of lnN . In the above example, we used N = 8, 16, 32, and 64, so that the
values of lnN are equally spaced.

7.7 Applications to Polymers

Random walk models play an important role in polymer physics (cf. de Gennes). A polymer consists
of N repeat units (monomers) with N >> 1 (N → 103 – 105). For example, polyethylene can be
represented as · · ·−CH2−CH2−CH2− · · · . The detailed structure of the polymer is important for
many practical applications. For example, if we wish to improve the fabrication of rubber, a good
understanding of the local motions of the monomers in the rubber chain is essential. However, if
we are interested in the global properties of the polymer, the details of the chain structure can be
ignored.

Let us consider a familiar example of a polymer chain in a good solvent: a noodle in warm
water. A short time after we place a noodle in warm water, the noodle becomes flexible, and it
neither collapses into a little ball or becomes fully stretched. Instead, it adopts a random structure
as shown schematically in Figure 7.6. If we do not add too many noodles, we can say that the
noodles behave as a dilute solution of polymer chains in a good solvent. The dilute nature of the
solution implies that we can ignore entanglement e”ects of the noodles and consider each noodle
individually. The presence of a good solvent implies that the polymers can move freely and adopt
many di”erent configurations.

A fundamental geometrical property that characterizes a polymer in a good solvent is the
mean square end-to-end distance 〈R2

N 〉, where N is the number of monomers. (For simplicity,
we will frequently write R2 in the following.) For a dilute solution of polymer chains in a good
solvent, it is known that the asymptotic dependence of R2 is given by (7.12) with ν ≈ 0.5874 in
three dimensions. If we were to ignore the interactions of the monomers, the simple random walk
model would yield ν = 1/2, independent of the dimension and symmetry of the lattice. Because
this result for ν does not agree with experiment, we know that we are overlooking an important
physical feature of polymers.

We now discuss a random walk that incorporates the global features of dilute linear polymers
in solution. We already have introduced a model of a polymer chain consisting of straight line seg-
ments of the same size joined together at random angles (see Problem 7.13). A further idealization

Gould-Tobochnich - III ed (csm) - Ch 7



CHAPTER 7. RANDOM PROCESSES 235

(a) (b)

Figure 7.6: (a) Schematic illustration of a linear polymer in a good solvent. (b) Example of the
corresponding self-avoiding walk on a square lattice.

is to place the polymer chain on a lattice (see Figure 7.6). A more realistic model of linear polymers
accounts for its most important physical feature, that is, two monomers cannot occupy the same
spatial position. This constraint is known as the excluded volume condition, which is ignored in a
simple random walk. A well known lattice model for a linear polymer chain that incorporates this
constraint is known as the self-avoiding walk (SAW). This model consists of the set of all N step
walks starting from the origin subject to the global constraint that no lattice site can be visited
more than once in each walk; this constraint accounts for the excluded volume condition.

Self-avoiding walks have many applications, such as the physics of magnetic materials and
the study of phase transitions, and they are of interest as purely mathematical objects. Many
of the obvious questions have resisted rigorous analysis, and exact enumeration and Monte Carlo
simulation have played an important role in our current understanding. The result for ν in two
dimensions for the self-avoiding walk is known to be exactly ν = 3/4. The proportionality constant
in (7.12) depends on the structure of the monomers and on the solvent. In contrast, the exponent
ν is independent of these details and depends only on the spatial dimension.

We consider Monte Carlo simulations of the self-avoiding walk in two dimensions in Prob-
lems 7.28–7.30. Another algorithm for the self-avoiding walk is considered in Project 7.41.

Problem 7.28. The two-dimensional self-avoiding walk

Consider the self-avoiding walk on the square lattice. Choose an arbitrary site as the origin and
assume that the first step is “up.” The walks generated by the three other possible initial directions
only di”er by a rotation of the whole lattice and do not have to be considered explicitly. The second
step can be in three rather than four possible directions because of the constraint that the walk
cannot return to the origin. To obtain unbiased results, we generate a random number to choose



CHAPTER 7. RANDOM PROCESSES 236

1

2

3

4

(a)

1 4

5

6

7

(b)

1

2

3

w4 = 2/3

(c)

1 4

5

w6 = 1/3

2 3 2 3

Figure 7.7: Examples of self-avoiding walks on a square lattice. The origin is denoted by a filled
circle. (a) A N = 3 walk. The fourth step shown is forbidden. (b) A N = 7 walk that leads to a
self-intersection at the next step; the weight of the N = 8 walk is zero. (c) Two examples of the
weights of walks in the enrichment method.

one of the three directions. Successive steps are generated in the same way. Unfortunately, the walk
will very likely not continue indefinitely. To obtain unbiased results, we must choose at random
one of the three steps, even though one or more of these steps might lead to a self-intersection. If
the next step does lead to a self-intersection, the walk must be terminated to keep the statistics
unbiased. An example of a three step walk is shown in Figure 7.7a. The next step leads to a
self-intersection and violates the constraint. In this case we must start a new walk at the origin.

a. Write a program that implements this algorithm and record the fraction f(N) of successful
attempts at constructing polymer chains with N total monomers. Represent the lattice as a
array so that you can record the sites that already have been visited. What is the qualitative
dependence of f(N) on N? What is the maximum value of N that you can reasonably consider?

b. Determine the mean square end-to-end distance 〈R2
N 〉 for values of N that you can reasonably

consider with this sampling method.

The disadvantage of the straightforward sampling method in Problem 7.28 is that it becomes
very inefficient for long chains, that is, the fraction of successful attempts decreases exponentially.
To overcome this attrition, several “enrichment” techniques have been developed. We first discuss
a relatively simple algorithm proposed by Rosenbluth and Rosenbluth in which each walk of N
steps is associated with a weighting function w(N). Because the first step to the north is always
possible, we have w(1) = 1. In order that all allowed configurations of a given N are counted
equally, the weights w(N) for N > 1 are determined according to the following possibilities:

1. All three possible steps violate the self-intersection constraint (see Figure 7.7b). The walk is
terminated with a weight w(N) = 0, and a new walk is generated at the origin.

2. All three steps are possible and w(N) = w(N − 1).

3. Onlym steps are possible with 1 ≤ m < 3 (see Figure 7.7c). In this case w(N) = (m/3)w(N−
1), and one of the m possible steps is chosen at random.



CHAPTER 7. RANDOM PROCESSES 237

The desired unbiased value of 〈R2〉 is obtained by weighting R2
i , the value of R2 obtained in

the ith trial, by the value of wi(N), the weight found for this trial. Hence we write

〈R2〉 =
∑

i wi(N)R2
i∑

i wi(N)
, (7.46)

where the sum is over all trials.

Problem 7.29. Rosenbluth and Rosenbluth enrichment method

Incorporate the Rosenbluth method into your Monte Carlo program and compute R2 for N = 4,
8, 16, and 32. Estimate the exponent ν from a log-log plot of R2 versus N . Can you distinguish
your estimate for ν from its random walk value ν = 1/2?

The Rosenbluth and Rosenbluth procedure is not particularly efficient because many walks
still terminate, and thus we do not obtain many walkers for large N . Grassberger improved this
algorithm by increasing the population of walkers with high weights and reducing the population
of walkers with low weights. The idea is that if w(N) for a given trial is above a certain threshold,
we add a new walker and give the new and old walker half of the original weight. If w(N) is below
a certain threshold, then we eliminate half of the walkers with weights below this threshold (for
example, every second walker) and double the weights of the remaining half. It is a good idea to
adjust the thresholds as the simulation runs in order to maintain a relatively constant number of
walkers.

More recently Prellberg and Krawczyk further improved the Rosenbluth and Rosenbluth en-
richment method so that there is no need to provide a threshold value. After each step the average
weight of the walkers, 〈w(N)〉 is computed for a given trial and the ratio r = w(N)/〈w(N)〉 is
used to determine whether to add walkers (enrichment) or eliminate walkers (pruning). If r > 1,
then c = min(r,m) copies of the walker are made each with weight w(N)/c. If r < 1, then remove
this walker with probability 1− r. This algorithm leads to an approximately constant number of
walkers and is related to the Wang-landau method which we will discuss in Problem 16.30.

Another enrichment algorithms is the “reptation” method (see Wall and Mandel). For sim-
plicity, consider a model polymer chain in which all bond angles are ±90→. As an example of this
model, the five independent N = 5 polymer chains are shown in Figure 7.8. (Other chains di”er
only by a rotation or a reflection.) The reptation method can be stated as follows:

1. Choose a chain at random and remove the tail link.

2. Attempt to add a link to the head of the chain. There is a maximum of two directions in
which the new head link can be added.

3. If the attempt violates the self-intersection constraint, return to the original chain and inter-
change the head and tail. Include the chain in the statistical sample.

The above steps are repeated many times to obtain an estimate of R2.

As an example of the reptation method, consider chain a of Figure 7.8. A new link can be
added in two directions (see Figure 7.9a), so that on the average we find, a → 1

2c+
1
2d. In contrast,

a link can be added to chain b in only one direction, and we obtain b → 1
2e+

1
2b, where the tail and



CHAPTER 7. RANDOM PROCESSES 238

(a) (b) (c)

(d) (e)

Figure 7.8: The five independent possible walks of N = 5 steps on a square lattice with ±90→ bond
angles. The tail and head of each walk are denoted by a circle and arrow respectively.

head of chain b have been interchanged (see Figure 7.9b). Confirm that c → 1
2e+

1
2a, d → 1

2c+
1
2d,

and e → 1
2a+

1
2b, and that all five chains are equally probable. That is, the transformations in the

reptation method preserve the proper statistical weights of the chains without attrition. There is
just one problem: unless we begin with a double ended “cul-de-sac” configuration such as shown in
Figure 7.10, we will never obtain such a configuration using the above transformation. Hence, the
reptation method introduces a small statistical bias, and the calculated mean end-to-end distance
will be slightly larger than if all configurations were considered. However, the probability of such
trapped configurations is very small, and the bias can be neglected for most purposes.

∗Problem 7.30. The reptation method

a. Adopt the ±90→ bond angle restriction and calculate by hand the exact value of 〈R2〉 for N = 5.
Then write a Monte Carlo program that implements the reptation method. Generate one walk
of N = 5 and use the reptation method to generate a statistical sample of chains. As a check
on your program, compute 〈R2〉 for N = 5 and compare your result with the exact result. Then
extend your Monte Carlo computations of 〈R2〉 to larger N .

b. Modify the reptation model so that the bond angle also can be 180→. This modification leads to
a maximum of three directions for a new bond. Compare your results with those from part (a).

In principle, the dynamics of a polymer chain undergoing collisions with solvent molecules can
be simulated by using a molecular dynamics method. However, in practice only relatively small
chains can be simulated in this way. An alternative approach is to use a Monte Carlo model that
simplifies the e”ect of the random collisions of the solvent molecules with the atoms of the chain.
Most of these models (cf. Verdier and Stockmayer) consider the chain to be composed of beads



CHAPTER 7. RANDOM PROCESSES 239

(a) (c) (d)

(b) (e) (b)

+

+

Figure 7.9: The possible transformations of chains a and b. One of the two possible transformations
of chain b violates the self-intersection restriction and the head and tail are interchanged.

Figure 7.10: Example of a double cul-de-sac configuration for the self-avoiding walk that cannot
be obtained by the reptation method.

connected by bonds and restrict the positions of the beads to the sites of a lattice. For simplicity,
we assume that the bond angles can be either ±90→ or 180→. The idea is to begin with an allowed
configuration of N beads (N − 1 bonds). A possible starting configuration can be generated by
taking successive steps in the positive y direction and positive x directions. The dynamics of the
Verdier-Stockmayer algorithm is summarized by the following steps.

1. Select at random a bead (occupied site) on the polymer chain. If the bead is not an end
site, then the bead can move to a nearest neighbor site of another bead if this site is empty
and if the new angle between adjacent bonds is either ±90→ or 180→. For example, bead 4 in
Figure 7.11 can move to position 4′ while bead 3 cannot move if selected. That is, a selected
bead can move to a diagonally opposite unoccupied site only if the two bonds to which it is
attached are mutually perpendicular.

2. If the selected bead is an end site, move it to one of two (maximum) possible unoccupied sites
so that the bond to which it is connected changes its orientation by ±90→ (see Figure 7.11).



CHAPTER 7. RANDOM PROCESSES 240

1

1''

2

1' 4'

3

5

4

6

7

8'

7'

8

Figure 7.11: Examples of possible moves of the simple polymer dynamics model considered in
Problem 7.31. For this configuration beads 2, 3, 5, and 6 cannot move, while beads 1, 4, 7, and
8 can move to the positions shown if they are selected. Only one bead can move at a time. This
figure is adopted from the article by Verdier and Stockmayer.

3. If the selected bead cannot move, retain the previous configuration.

The physical quantities of interest include 〈R2〉 and the mean square displacement of the
center of mass of the chain 〈r2〉 = 〈x2〉 − 〈x〉2 + 〈y2〉 − 〈y〉2, where x and y are the coordinates of
the center of mass. The unit of time is the number of Monte Carlo steps per bead; in one Monte
Carlo step per bead each bead has one chance on the average to move to a di”erent site.

Another efficient method for simulating the dynamics of a polymer chain is the bond fluctua-
tion model (see Carmesin and Kremer).

Problem 7.31. The dynamics of polymers in a dilute solution

a. Consider a two-dimensional lattice and compute 〈R2〉 and 〈r2〉 for various values of N . How do
these quantities depend on N? (The first published results for three dimensions were limited to
32 Monte Carlo steps per bead for N = 8, 16, and 32 and only 8 Monte Carlo steps per bead for
N = 64.) Also compute the probability density P (R) that the end-to-end distance is R. How
does this probability compare to a Gaussian distribution?

b.∗ Two configurations are strongly correlated if they di”er by only the position of one bead. Hence,
it would be a waste of computer time to measure the end-to-end distance and the position of
the center of mass after every single move. Ideally, we wish to compute these quantities for
configurations that are approximately statistically independent. Because we do not know a
priori the mean number of Monte Carlo steps per bead needed to obtain configurations that are
statistically independent, it is a good idea to estimate this time in our preliminary calculations.
The correlation time, τ , is the time needed to obtain statistically independent configurations
and can be obtained by computing the equilibrium averaged time-autocorrelation function for
a chain of fixed N :

C(t) =
〈R2(t′ + t)R2(t′)〉 − 〈R2〉2

〈R4〉 − 〈R2〉2 . (7.47)

C(t) is defined so that C(t = 0) = 1 and C(t) = 0 if the configurations are not correlated.
Because the configurations will become uncorrelated if the time t between the configurations


