
Chapter 15

Complexity

We introduce cellular automata models, neural networks, genetic algorithms, and explore the
concepts of self-organization and complexity.

15.1 Cellular Automata

Part of the fascination of physics is that it allows us in many cases to reduce natural phenomena
to a few simple laws. It is perhaps even more fascinating to think about how a few simple laws
can produce the enormously rich behavior that we see in nature. In this chapter we will discuss
several models that illustrate some of the new ideas that are emerging from the study of “complex
systems.”

The first class of models we discuss are known as cellular automata. Cellular automata were
originally introduced by von Neumann and Ulam in 1948 as an idealization of biological self-
reproduction, and are examples of discrete dynamical systems that can be simulated exactly on a
digital computer. A cellular automaton can be thought of as a checkerboard with colored squares
(the cells). Each cell changes its color at the tick of an external clock according to a rule based on
the present configuration (microstate) of the cells in its neighborhood.

More formally, cellular automata are mathematical idealizations of dynamical systems in which
space and time are discrete and the quantities of interest have a finite set of discrete values that
are updated according to a local rule. The important characteristics of cellular automata include
the following:

1. Space is discrete, and there is a regular array of sites (cells). Each site has a finite set of
values.

2. Time is discrete, and the value of each site is updated in a sequence of discrete time steps.

3. The rule for the new value of a site depends only on the values of a local neighborhood of
sites near it.

518

mp
The Ising model cellular automata is Problem 15.5, but you may need to read previous pages



CHAPTER 15. COMPLEXITY 519

t:

t + 1: 0

000

1

001

0

010

1

011

1

100

0

101

1

110

0

111

Figure 15.1: Example of a local rule for the time evolution of a one-dimensional cellular automaton.
The variable at each site can have values 0 or 1. The top row shows the 23 = 8 possible combinations
of three sites. The bottom row gives the value of the central site at the next time step. This rule is
termed 01011010 in binary notation (see the second row), the modulo-two rule, or rule 90. Note that
90 is the base ten (decimal) equivalent of the binary number 01011010, that is, 90 = 21+23+24+26.

4. The variables at each site are updated simultaneously (“synchronously”) based on the values
of the variables at the previous time step.

Because the original motivation for studying cellular automata was their biological aspects,
the lattice sites frequently are referred to as cells. More recently, cellular automata have been
applied to a wide variety of physical systems ranging from fluids to galaxies. We will refer to sites
rather then cells, except when we are explicitly discussing biological systems.

We first consider one-dimensional cellular automata with the neighborhood of a given site
assumed to be the site itself and the sites immediately to the left and right of it. Each site also
is assumed to have two states (a Boolean automata). An example of such a rule is illustrated in
Fig. 15.1, where we see that a rule can be labeled by the binary representation of the update for each
of the eight possible neighborhoods and by the base ten equivalent of the binary representation.
Because any eight digit binary number specifies an one-dimensional cellular automata, there are
28 = 256 possible rules.

Program ca1 takes as input the decimal representation of the rule and produces the rule matrix
(array update). This array is used to update each site on the lattice using periodic boundary
conditions. On a single processor computer, it is necessary to use an additional array so that the
state of each site can be updated using the previous values of the sites in its local neighborhood.
The state of the sites as a function of time is shown on the screen with time running downwards.

PROGRAM ca1
! one-dimensional Boolean cellular automata
DIM update(0 to 7),site(0 to 501)
CALL setrule(update())
CALL initial(site(),L,tmax,#2)
CALL iterate(site(),L,update(),tmax,#2)
END

SUB setrule(update())
INPUT prompt "rule number = ": rule
OPEN #1: screen 0,0.5,0.2,0.8
SET BACKGROUND COLOR "black"
SET COLOR "white"
FOR i = 7 to 0 step -1



CHAPTER 15. COMPLEXITY 520

LET update(i) = int(rule/2^i) ! find binary representation
LET rule = rule - update(i)*2^i
LET bit2 = int(i/4)
LET bit1 = int((i - 4*bit2)/2)
LET bit0 = i - 4*bit2 - 2*bit1
! show possible neighborhoods
PRINT using "#": bit2,bit1,bit0;
PRINT " ";

NEXT i
PRINT
FOR i = 7 to 0 step -1

PRINT using "##": update(i); ! print rules
PRINT " ";

NEXT i
CLOSE #1

END SUB

SUB initial(site(),L,tmax,#2)
RANDOMIZE
OPEN #2: screen 0.5,1,0.1,0.9
ASK PIXELS px,py
SET WINDOW 1,px,py,1
SET COLOR "yellow"
LET L = 2*int(px/8) - 8
LET tmax = L
LET site(L/2) = 1 ! center site
BOX AREA 1+2*L,2*L+4,1,4 ! each site 4 x 4 pixels

END SUB

SUB iterate(site(),L,update(),tmax,#2)
! update lattice
! need to introduce additional array, sitenew, to temporarily
! store values of newly updated sites
DIM sitenew(0 to 501)
FOR t = 1 to tmax

FOR i = 1 to L
LET index = 4*site(i-1) + 2*site(i) + site(i+1)
LET sitenew(i) = update(index)
IF sitenew(i) = 1 then BOX AREA 1+i*4,i*4+4,1+t*4,t*4+4

NEXT i
MAT site = sitenew
LET site(0) = site(L) ! periodic boundary conditions
LET site(L+1) = site(1)

NEXT t
END SUB



CHAPTER 15. COMPLEXITY 521

The properties of all 256 one-dimensional cellular automata have been cataloged (see Wolfram).
We explore some of the properties of one-dimensional cellular automata in Problems 15.1 and 15.2.
Problem 15.1. One-dimensional cellular automata

a. Use Program ca1 and rule 90 shown in Fig. 15.1. This rule also is known as the “modulo-two”
rule, because the value of a site at step t + 1 is the sum modulo 2 of its two neighbors at step t.
Choose the initial configuration to be a single nonzero site (seed) at the midpoint of the lattice.
It is sufficient to consider the time evolution for approximately twenty steps. Is the resulting
pattern of nonzero sites self-similar? If so, characterize the pattern by a fractal dimension.

b. Consider the properties of a rule for which the value of a site at step t + 1 is the sum modulo 2
of the values of its neighbors plus its own value at step t. This rule is termed rule 10010110 or
rule 150 = 21 + 22 + 24 + 27. Start with a single seed site.

c. Choose a random initial configuration for which the independent probability for each site to
have the value 1 is 50%; otherwise, the value of a site is 0. Consider the time evolution of rule
90, rule 150, rule 18 = 21 + 24 (00010010), rule 73 = 20 + 23 + 26 (01001001), and rule 136
(10001000). How sensitive are the patterns that are formed to changes in the initial conditions?
Does the nature of the patterns depend on the use or nonuse of periodic boundary conditions?

Because the dynamical behavior of many of the 256 one-dimensional Boolean cellular au-
tomata is uninteresting, we also consider one-dimensional Boolean cellular automata with larger
neighborhoods. The larger neighborhood implies that there are many more possible update rules,
and it is convenient to place some reasonable restrictions on the rules. First, we assume that the
rules are symmetric, for example, the neighborhood 100 produces the same value for the central
site as 001. We also assume that the zero neighborhood 000 yields 0 for the central site, and that
the value of the central site depends only on the sum of the values of the sites in the neighborhood,
for example, 011 produces the same value for the central site as 101 (Wolfram 1984).

A simple way of coding the rules that is consistent with these requirements is as follows. Call
the size of the neighborhood z if the neighborhood includes 2z + 1 sites. Each rule is labeled by∑

m am 2m, where am = 1 if the central cell is 1 when the sum of all values in the neighborhood
equals m; else am = 0. As an example, take z = 2 and suppose that the central site equals one
when two or four sites are unity. This rule is labeled by 22 + 24 = 20.
Problem 15.2. More one-dimensional cellular automata

a. Modify Program ca1 so that it incorporates the possible rules discussed in the text for a neigh-
borhood of 2z + 1 sites. How many possible rules are there for z = 1? Choose z = 1 and a
random initial configuration, and determine if the long time behavior for each rule belongs to
one of the following classes:

(a) A homogeneous state where every site is either 0 or 1. An example is rule 8.
(b) A pattern consisting of separate stable or periodic regions. An example is rule 4.
(c) A chaotic, aperiodic pattern. An example is rule 10.
(d) A set of complex, localized structures that may not live forever. There are no examples

for z = 1.



CHAPTER 15. COMPLEXITY 522

(a) (b)

Figure 15.2: (a) The local neighborhood of a site is given by the sum of its eight neighbors. (b)
Examples of initial configurations for the Game of Life, some of which lead to interesting patterns.
Live cells are shaded.

b. Modify your program so that z = 2. Wolfram (1984) claims that rules 20 and 52 are the only
examples of complex behavior (class 4). Describe how the behavior of these two rules differs
from the behavior of the other rules. Determine the fraction of the rules belonging to the four
classes.

c. Repeat part (b) for z = 3.

d. Assume that sites can have three values, 0, 1, and 2. Classify the behavior of the possible rules
for the case z = 1.

The results of Problem 15.2 suggest that an important feature of cellular automata is their
capability for “self-organization.” In particular, the class of complex localized structures is distinct
from regular as well as aperiodic structures. This intermediate structure is the focus of complexity
theory whose goal is to explain complex phenomena in nature.

One-dimensional models are too limited to study the complexity of nature, and we now con-
sider several two-dimensional models. The philosophy is the same except that the neighborhood
contains more sites. Program ca2 sets up the rule matrix and updates sites using the eight neighbor
sites shown in Fig. 15.2a. There are now 29 = 512 possible configurations for the eight neighbors
and the center site, and 2512 possible rules. Clearly, we cannot go through all these rules in any
systematic fashion as we did for one-dimensional cellular automata. For this reason, we will set up
our rule matrix based on other considerations.

The rule matrix incorporated in Program ca2 implements the best known two-dimensional
cellular automata model: the Game of Life. This model, invented in 1970 by the mathematician
John Conway, produces many fascinating patterns. The rules of the game are simple. For each cell
determine the sum of the values of its four nearest and four next-nearest neighbors (see Fig. 15.2a).
A “live” cell (value 1) remains alive only if this sum equals 2 or 3. If the sum is greater than 3,
the cell will “die” (become 0) at the next time step due to overcrowding. If the sum is less than 2,
the cell will die due to isolation. A dead cell will come to life only if the sum equals 3.

PROGRAM ca2
LIBRARY "csgraphics"
DIM update(0 to 511),cell(50,50)
CALL setrule(update(),L)
LET flag$ = ""
DO



CHAPTER 15. COMPLEXITY 523

CALL initial(cell(,),L)
DO

CALL iterate(cell(,),update(),L)
IF key input then

GET KEY k
IF (k = ord("s")) or (k = ord("S")) then

LET flag$ = "stop"
END IF

END IF
LOOP UNTIL k <> 0
LET k = 0

LOOP until flag$ = "stop"
END

SUB setrule(update(),L)
! rule for Game of Life
FOR i = 0 to 511

LET update(i) = 0
NEXT i
! three neighbors alive
FOR nn1 = 0 to 5

FOR nn2 = nn1+1 to 6
FOR nn3 = nn2+1 to 7

LET index = 2^nn1 + 2^nn2 + 2^nn3
LET update(index) = 1 ! center dead
LET update(index+256) = 1 ! center alive

NEXT nn3
NEXT nn2

NEXT nn1
! two neighbors and center alive
FOR nn1 = 0 to 6

FOR nn2 = nn1+1 to 7
LET index = 256 + 2^nn1 + 2^nn2
LET update(index) = 1

NEXT nn2
NEXT nn1
SET BACKGROUND COLOR "black"
SET COLOR "white"
INPUT prompt "lattice size = ": L
CALL compute_aspect_ratio(L,xwin,ywin)
SET WINDOW -0.2*xwin,1.2*xwin,-0.2*ywin,1.2*ywin

END SUB

SUB initial(cell(,),L)
FOR i = 1 to L

FOR j = 1 to L



CHAPTER 15. COMPLEXITY 524

LET cell(i,j) = 0
SET COLOR "yellow"
BOX AREA i,i+1,j,j+1
SET COLOR "black"
BOX LINES i,i+1,j,j+1

NEXT j
NEXT i
SET CURSOR 1,1
! click on cell to change its state or outside of lattice
! to update cells
SET COLOR "white"
PRINT "click on cell to toggle or outside of lattice to continue."
DO

GET POINT x,y
IF x > 1 and x < L and y > 1 and y < L then

LET i = truncate(x,0)
LET j = truncate(y,0)
IF cell(i,j) = 0 then

SET COLOR "black"
BOX AREA i,i+1,j,j+1
LET cell(i,j) = 1

ELSE
SET COLOR "yellow"
BOX AREA i,i+1,j,j+1
LET cell(i,j) = 0
SET COLOR "black"
BOX LINES i,i+1,j,j+1

END IF
END IF

LOOP until x < 1 or x > L or y < 1 or y > L
SET CURSOR 1,1
SET COLOR "white"
PRINT "Hit any key for new lattice, ’s’ to stop";
PRINT " "

END SUB

SUB iterate(cell(,),update(),L)
DIM cellnew(50,50)
FOR i = 1 to L

FOR j = 1 to L
CALL neighborhood(cell(,),i,j,sum,L)
LET cellnew(i,j) = update(sum)
IF cell(i,j) = 1 and cellnew(i,j) = 0 then

SET COLOR "yellow"
BOX AREA i,i+1,j,j+1
SET COLOR "black"



CHAPTER 15. COMPLEXITY 525

BOX LINES i,i+1,j,j+1
ELSE IF cell(i,j) = 0 and cellnew(i,j) = 1 then

SET COLOR "black"
BOX AREA i,i+1,j,j+1

END IF
NEXT j

NEXT i
MAT cell = cellnew

END SUB

SUB neighborhood(cell(,),i,j,sum,L)
LET ip = i + 1
LET im = i - 1
LET jp = j + 1
LET jm = j - 1
IF i = 1 then

LET im = L
ELSE IF i = L then

LET ip = 1
END IF
IF j = 1 then

LET jm = L
ELSE IF j = L then

LET jp = 1
END IF
LET sum = cell(i,jp) + 2*cell(i,jm) + 4*cell(im,j)
LET sum = sum + 8*cell(ip,j)+ 16*cell(ip,jp) + 32*cell(ip,jm)
LET sum = sum + 64*cell(im,jp) + 128*cell(im,jm) + 256*cell(i,j)

END SUB

Program ca2 allows the user to use any update rule by changing SUB setrule. Program ca2 has
not been optimized for the Game of Life and is written so that it can be easily modified for any
cellular automata rule.
Problem 15.3. The Game of Life

a. Program ca2 allows the user to determine the initial configuration interactively. Choose several
initial configurations with a small number of live cells and investigate the different types of
patterns that emerge. Some suggested initial configurations are shown in Fig. 15.2b. Does it
matter whether you use fixed or periodic boundary conditions?

b. Modify Program ca2 so that each cell is initially alive with a 50% probability. What types of
patterns typically result after a long time? What happens for 20% live cells? What happens
for 70% live cells?

c. Assume that each cell is initially alive with probability p. Given that the density of live cells at
time t is ρ(t), what is ρ(t + 1), the expected density at time t + 1? Do the simulation and plot
ρ(t + 1) versus ρ(t). If p = 0.5, what is the steady-state density of live cells?



CHAPTER 15. COMPLEXITY 526

d. As we found in part (b), the system will develop structure even if each cell is randomly populated
at t = 0. One measure of the increasing order in the system has been introduced by Schulman
and Seiden and is analogous to the entropy in statistical mechanics. The idea is to divide the
L×L system into boxes of linear dimension b and determine ni, the number of live cells in the
ith box. The quantity S is given by

S =
1
L2

log2

(L/b)2∏

i=1

(
b2

ni

)
. (15.1)

The argument of the logarithm in (15.1) is the total number of microscopic states associated
with a given sequence of ni. Roughly speaking, S measures the extent to which live cells are
correlated. Determine S as a function of time starting from a 50% random configuration. First
consider L = 50 and b = 2, 3, 4, and 5. Average over at least ten separate runs. Describe how
the behavior of the entropy depends on the level of “coarse graining” determined by the value
of b. Does S decrease monotonically with time? Does it reach an equilibrium value? Increase
L and the number of independent runs, and repeat your averages.

The Game of Life is an example of a universal computing machine. That is, we can set up
an initial configuration of live cells to represent any possible program and any set of input data,
run the Game of Life, and in some region of the lattice the output data will appear. The proof of
this result (see Berlekamp et al.) involves showing how various configurations of cells represent the
components of a computer including wires, storage, and the fundamental components of a CPU
— the digital logic gates that perform and, or, and other logical and arithmetic operations.
Problem 15.4. Other two-dimensional cellular automata

a. Consider a Boolean automaton with each site labeled by 1 (“on”) and 0 (“off”). We adopt an
update rule such that the value of each site at time t + 1 is determined by the vote of its four
nearest neighbors (on a square lattice) at time t. The update rule is that a site becomes on if 2,
3, or 4 of its four neighbors are on. Consider initial configurations for which 1-sites occur with
probability p and 0-sites occur with probability 1−p. Because the voting rule favors the growth
of 1-sites, it is interesting to begin with a minority of 1-sites. Choose p = 0.1 and determine
what happens to isolated 1-sites. How do they grow initially? For what shape (convex or
concave) does a cluster of 1-sites stop growing? What happens to clusters of 1-sites such as
those shown in Fig. 15.3? (If necessary, create such a configuration.) Show that for p = 0.1,
the system eventually freezes in a pattern made of 1-site rectangular islands in a sea of 0-sites.
What happens for p = 0.14? Can you define a “critical density” pc at which the behavior of
the system changes? Consider square lattices with linear dimension L = 128 and L = 256 (see
Vichniac).

b. Suppose that the update rule is determined by the sum of the center cell and its eight nearest
and next-nearest neighbors. If this sum equals 4 or more, then the center site equals 1 at
the next time step (see Vichniac). This rule also favors the growth of 1-sites and leads to a
phenomenon similar to that found in part (a). Consider an initial configuration for which 1-sites
occur with probability p and 0-sites occur with probability 1 − p. Choose L = 128 and show
that for p = 0.2, the system eventually freezes. What is the shape of the 1-clusters? Show
that if a single 0-site is changed to a 1-site at the surface of the largest 1-cluster, the cluster of



CHAPTER 15. COMPLEXITY 527

Figure 15.3: What is the evolution of these clusters using the rule discussed in Problem 15.4a. The
shaded squares correspond to the 1-sites.

1-sites grows. What is the eventual state of the system? What is the behavior of the system for
p = 0.3? Is it possible to define a “critical density” pc such that for p ≥ pc, the growth of the
1-clusters continues until all sites change to the 1-state? Consider larger values of L and show
that the value of pc appears to be insensitive to the value of L. What is your estimated value
of pc in the limit of an infinite lattice?

c. There is one problem with the conclusions that you were able to reach in parts (a) and (b) —
they are incorrect! The finite lattice results are misleading and pc is zero in the limit of an
infinite lattice. The probability of any configuration of 1-sites is unity for an infinite lattice.
That is, somewhere in the lattice there is a “critical cluster” that will grow indefinitely until all
sites in the lattice change to the 1-state. The moral of the story is, “Do not trust a simulation
without a theory” (a paraphrase of a quote usually attributed to Eddington).

∗Problem 15.5. Ising model cellular automata

a. One of the most frequently studied models in statistical physics is the Ising model. In this
model each cell has two states si that are labeled by ±1 instead of 0 and 1. The energy is given
by

E = −J
N∑

i,j=nn(i)

sisj . (15.2)

The notation j = nn(i) indicates that j is a nearest neighbor of i. If we think of si as representing
the magnetic moment or spin at cell i, then the Ising model can be understood as a model of
magnetism with J being the strength of the interaction between nearest neighbor spins. For
J > 0, the lowest energy state occurs when all the spins are either all up (si = +1) or all down
(si = −1). The magnetization m per spin is given by

m =
1
N

N∑

i=1

si. (15.3)

Monte Carlo algorithms for the simulation of the Ising model are discussed in Chapters ?? and
??.



CHAPTER 15. COMPLEXITY 528

In the cellular automata implementation of the Ising model, the energy of the entire lattice is
fixed, and a spin may flip only if the energy of the lattice does not change. Such a situation
occurs if a spin has two up neighbors and two down neighbors. Hence the update rule is to flip
the spin at i, that is, si → −si, if it has precisely two up neighbors; otherwise do not change
si. But because we want to update all sites simultaneously, we have a problem. That is, if two
neighboring spins have opposite signs and each has a total of two up neighbors, then flipping
both spins would change the total energy. Why? The trick is to divide the lattice into two
kinds of sites corresponding to the red and black squares of a checkerboard. First we update
simultaneously all the red squares (hence keeping their neighbors, the black squares fixed), and
then we update simultaneously all the black squares. Implement this cellular automata update
of the Ising model by modifying Program ca2 and write a subroutine to compute the mean
magnetization per spin and the total energy per spin E/N . (The latter should not change
with time.) The average is over the different configurations generated by the cellular automata
updates. Use periodic boundary conditions.

b. Compute the mean magnetization as a function of E/N for a square lattice with L = 20. One
way to generate an initial configuration is to let each spin be up with probability p. Allow
the system to “equilibrate” before accumulating values of the magnetization. Does the mean
magnetization change from being close to zero to being close to unity as E/N is lowered? If such
a qualitative change occurs, we say that there is a phase transition. To improve your results,
average over many different initial configurations with the same value of E/N and determine the
dependence of the mean magnetization on E/N . Because the same value of p will occasionally
lead to different initial energies, write a subroutine that flips spins until the desired energy is
obtained.

c. Repeat part (b) for a 40 × 40 lattice. Do your qualitative conclusions change?

d. One difficulty with the cellular automata version of the Ising model is that it is not ergodic,
that is, there are configurations with the same energy that cannot be reached for a given initial
condition. In Chapter ?? we will see how to avoid this problem using Monte Carlo methods.
Here we might allow the total energy E0 to vary a little, say ±nJ , where n is an integer. During
a run we can periodically flip a spin at random such that the total energy is in the range E0±nJ .
Try this method for different values of n. Do your results for the mean magnetization change
significantly?

Program ca1 and ca2 are inefficient due in part to the limitations imposed by the True BASIC
language which does not have bit manipulation capability. The smallest element of computer
memory contains a bit, which is a 0 or a 1. A byte is the size of memory needed to hold a single
character, for example, a letter or a digit. More precisely, a byte is eight bits. Because there are
28 = 256 possible arrangements of 1’s and 0’s in a byte, a byte can represent the ASCII character
set, including all upper and lower case letters, numerals, punctuation, and other control characters
such as a line feed. A computer word is usually two, four, or eight bytes, and is the unit of storage
that can be accessed simultaneously and moved back and forth from the central processing unit
(CPU) to various storage devices. If we could manipulate bits directly, then we could represent
each site in a Boolean cellular automaton by a bit and update a whole word of sites (32 sites on a
32 bit machine) simultaneously. This type of update is a simple example of parallel processing on
a single processor machine.


