
Exercises Lecture VII

Monte Carlo numerical Integration

Metropolis method to generate random numbers

1. Monte Carlo method: acceptance-rejection

Using the acceptance-rejection method, calculate I =
∫ 1

0

√
1− x2dx (no-

tice that π = 4I). The numerical estimate of the integral is Fn =
ns

n
where ns is the number of points under the curve f(x) =

√
1− x2, and

n the total number of points generated. An example is given in pi.f90.
Estimate the error associated, i.e. the difference between Fn and the true
value. Discuss the dependence of the error on n.
(Notice that many points are needed to see the n−1/2 behavior, which can
be hidden by stochastic fluctuations; it is easier to see it by averaging
over many results (obtained from random numbers sequences with differ-
ent seeds))

1

2. Monte Carlo method:
generic sample mean and importance sampling

(a) Write a code to compute the numerical estimate Fn of I =
∫ 1

0
e−x2

dx =
√
π
2 erf(1) ≈ 0.746824 with the MC sample mean method using a set
{xi} of n random points uniformly distributed in [0,1]:

Fn =
1

n

n∑
i=1

f(xi)

(b) Write a code (a different one, or, better, a unique code with an
option) to compute Fn using the importance sampling with a set
{xi} of points generated according to the distribution p(x) = Ae−x

(Notice that erf is an intrinsic fortran function; useful to compare the
numerical result with the true value). Remind that in the importance
sampling approach:∫ b

a

f(x)dx =

〈
f(x)

p(x)

〉∫ b

a

p(x)dx ≈ 1

n

n∑
i=1

f(xi)

p(xi)

∫ b

a

p(x)dx = Fn

with p(x) which approximates the behaviour of f(x), and the average
is calculated over the random points {xi} with distribution p(x).
Notes: pay attention to:
- the normalization of p(x);
- the exponential distribution: expdev provides random numbers x

distributed in [0,+∞[; here we need x in [0,1] . . .

(c) Compare the efficiency of the two sampling methods (uniform and
importance sampling) for the estimate of the integral by calculating
the following quantities: Fn, σn = (< f2

i > − < fi >
2)1/2, σn/

√
n,

where fi = f(xi) in the first case, and fi = f(xi)
p(xi)

∫ b

a
p(x)dx in the

second case (make a log-log plot of the error as a function of n: what
do you see?).

2

3. Monte Carlo method – sample mean (generic); error analysis
using the “average of the averages” and the “block average”
NOTE: THIS EXERCISE IS VERY IMPORTANT !!!

(a) Write a code to estimate the same integral of previous exercise, π =

4I with I =
∫ 1

0

√
1− x2dx, using the MC method of sample mean

with uniformly distributed random points. Evaluate the error ∆n =
Fn − I for n=102, 103, 104: it should have a 1/

√
n behaviour.

(b) Choose in particulat n = 104 and consider the corresponding error
∆n. Calculate σ2

n =< f2 > − < f >2. You should recognize that
σn CANNOT BE CONSIDERED A GOOD ESTIMATE OF THE
ERROR (it’s much larger than the actual error. . .)

(c) In order to improve the error estimate, apply the following two dif-
ferent methods of variance reduction: 1) “average of the averages”:
do m =10 runs with n points each, and consider the average of the
averages and its standard deviation:

σ2
m =< M2 > − < M >2

where

< M >=
1

m

m∑
α=1

Mα e < M2 >=
1

m

m∑
α=1

M2
α

and Mα is the average of each run. You should recognize that σm is
a good estimate of the error associated to each measurement (=each
run) and σm ≈ σn/

√
n is the error associated to the average over the

different runs.

(d) 2) Divide now the n = 10, 000 points into 10 subsets. Consider the
averages fs within the individual subsets and the standard deviation
if the average over the subsets:

σ2
s =< f2

s > − < fs >
2 .

You should notice that σs/
√
s ≈ σm.

3

4. Random numbers with gaussian distribution:
Metropolis algorithm

Here we use the Metropolis algorithm to generate points with the dis-
tribution P (x) = e−x2/(2σ2) . The algorithm is implemented for instance
in the code gauss metropolis.f90. We consider σ = 1, but the sugges-
tion is to write the code for a generic σ.

(a) Start from x0=0 and choose δ=5σ to be the maximum displacement
for each step. Execute runs with n=100, 1000, 10000, 100000 points,
make an histogram of the points generated and compare it with the
gaussian distribution. For which n the agreement is satisfactory?

(b) Choose n which gives a satisfactory result. For σ fixed, change the
step size δ (i.e., change the ratio δ/σ). Determine qualitatively the
dependence of the acceptance ratio on δ/σ. Make a plot. How to
choose δ/σ in order to accept from ≈ 1/3 to ≈ 1/2 of trial changes?

(c) By varying n in a more refined way (e.g. from 100 to 10000 with steps
of 100), compare the first moments of the distribution obtained nu-
merically with the exact ones analytically calculated with the Gaus-
sian. In particular, focus on the second moment and make a plot of
the difference “exact variance - numerical variance” as a function of
n.

(d) For fixed σ = 1 and δ=5σ, determine qualitatively the equilibration
time (i.e. the number of steps necessary to equilibrate the system);
a possible criterion is that the numerical estimate of ⟨x2⟩ − ⟨x⟩2 is
close enough to σ2, say within 5%.

4

!--

! pi.f90: Calculates pi using MC

Program pi

Implicit none

integer, dimension(:), allocatable :: seed

real, dimension(2) :: rnd

Real :: area, x, y

Integer :: i, max, pigr, sizer

call random_seed(sizer)

allocate(seed(sizer)

print*,’ enter max number of points=’

read*, max

print*,’ enter seed (or type /) >’

read*, seed

call random_seed(put=seed)

! open data file, initializations

Open(7, File=’pigr.dat’, Status=’Replace’)

pigr=0

! points generated within a square of side 2

! count how many fall within the circle x*x+y*y <= 1;

Do i=1, max

call random_number(rnd)

x = rnd(1)*2-1

y = rnd(2)*2-1

If ((x*x + y*y) <= 1) then

pigr = pigr+1

Endif

area = 4.0 * pigr/Real(i)

if (mod(i,10)==0) Write(7,*) i, abs(acos(-1.)-area) !write every 10 points

end do

Close(7)

Stop ’data saved in pigr.dat ’

End program pi

5

!--

! gauss_metropolis.f90

!

! METROPOLIS generation of random numbers with a Gaussian distribution

! P(x) = exp(-x**2/(2*sigma**2))/sqrt(2*pi*sigma**2)

program gauss_metropolis

implicit none

integer, parameter :: dp=selected_real_kind(13)

integer :: i,n,ibin,maxbin,m

real(kind=dp):: sigma,rnd,delta,x0,deltahisto

real(kind=dp):: x,x1,x2,x3,x4,xp,expx,expxp,w,acc

real, dimension(:), allocatable :: histog

character(len=13), save :: format1 = "(a7,2x,2f9.5)"

print*,’ insert n, sigma, x0, delta, maxbin >’

read*, n, sigma,x0,delta,maxbin

allocate(histog(-maxbin/2:maxbin/2))

histog = 0.

deltahisto = 10.*sigma/maxbin ! histogram over a range of 10*sigma

acc = 0.0_dp

x = x0

x1 = 0.0_dp

x2 = 0.0_dp

x3 = 0.0_dp

x4 = 0.0_dp

do i=1,n

x1 = x1 + x

x2 = x2 + x**2

x3 = x3 + x**3

x4 = x4 + x**4

!ccccccccccccccccccccccccccccccc

expx = - x**2 /(2*sigma**2) !

call random_number(rnd) !

xp = x + delta * (rnd-0.5_dp) !

expxp = - xp**2 /(2*sigma**2) ! metropolis

w = exp (expxp-expx) ! algorithm

call random_number(rnd) !

if (w > rnd) then !

x = xp !

!ccccccccccccccccccccccccccccccc

acc=acc+1.0_dp

endif

ibin = nint(x/deltahisto)

if (abs(ibin) < maxbin/2) histog(ibin) = histog(ibin) + 1

6

enddo

write(unit=*,fmt=*)"# n, x0, delta = ",n,x0,delta

write(unit=*,fmt=*)"# acceptance ratio = ",acc/n

write(unit=*,fmt=*)"# Results (simulation vs. exact results):"

write(unit=*,fmt=format1)"# <x> = ",x1/n,0.0_dp

write(unit=*,fmt=format1)"# <x^2>= ",x2/n,sigma**2

write(unit=*,fmt=format1)"# var2 = ",x2/n-(x1/n)**2,sigma**2

write(unit=*,fmt=format1)"# <x^3>= ",x3/n,0.0_dp

write(unit=*,fmt=format1)"# <x^4>= ",x4/n,3.0_dp*sigma**4

open(1,file=’gauss_metropolis.dat’,status=’replace’)

write(unit=1,fmt=*)"# n, x0, delta = ",n,x0,delta

do ibin = -maxbin/2 , maxbin/2

write(1,*)ibin*deltahisto, histog(ibin)/real(n)/deltahisto

end do

close(1)

deallocate(histog)

end program gauss_metropolis

7

