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- more on Ising model

- Variational Monte Carlo
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Exercise

(@) Choose L=30,T=2, and initially spin=%| randomly. Calculating and plotting
the instantaneous values of the energy E/N and (together!) the
magnetization M/N per spin (averaged over the lattice) as a function of
Metropolis-MC steps, how much time (i.e. how many nequil MC steps) is it
necessary to equilibrate the system!?

Hint:
- Since initially spin=x1 randomly, E/N and M/N initially will be far from the
expected equilibrium average value.

First, set nequil=0 and plot instantaneous values of E/N and M/
Estimate nequil from that plot!!! Visualization is important!!!! ..,

Magnetization (System : 10%10)
ick:T=0.9T, Dashed:T=2T,

M

nequil of course depends on T and on the initial situation

Then, set nequil not zero and calculate the time average < E >/N and <M >/N;

increasing the total nmcs, the two quantities should converge...
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Exercise

+| randomly. ...

2, and initially spin=

30, T
Plot a snapshot of the spin pattern: does the system appear ordered or

disordered?

(a) Choose L

it should appear ordered...

p ‘ising-up.dat’ ps 3 pt 7,'ising-down.dat’ ps 3 pt 7

Plotting “ising-up.dat” and “ising-down.dat” which contain the coordinates of

spin up and down respectively, one should get something like that:
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Some results that you should obtain...
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1.0 ! Y e S e W N e A e S
o N ——

0.5 MIN — | ~

th r“* :

2.0 | | | | | | | | |
0 100 200 300 400 500 600 700 800 900 1000

L=30 Numero di Passi Monte Carlo

(a) Energia media e magnetizzazione per spin al variare del tempo (ossia
all’aumentare dei passi Monte Carlo svolti) per un sistema a temperatura
T =2.0.

Si noti che dopo circa 300 passi Monte Carlo il sistema sembra stabilizzarsi.
M. Dirindin, 2021
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0 100 200 300 400 500 600 700 800 900 1000
L=30 Numero di Passi Monte Carlo

Figura 3: Energia e magnetizzazione per spin per 10 valori diversi di seed.

Si noti come la maggior parte dei seed raggiunga 'equilibrio dopo circa 250 itera-
zioni, mentre un seed raggiunge 'equilibrio dopo appena 50 iterazioni ed un’altro
lo raggiunge dopo 1000 passi Monte Carlo.

M. Dirindin, 2021
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0.5

Magnetization (System | 10%10)

results for a smaller system:

Thick yT =09 T, Dashed :T=2T,

w

0 b

50 100 150 200
Monte Carlo steps per spins
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results for system of different size:

Trace: magnetization for 7' = 2.27.J/kg ~ T (10° sweeps)

O LMY
U TN ks

— =

<M>

#it/100

Computer simulations in statistical physics - HW 4 - WS 2006/07 - Nils Blimer (Univ. Mainz) 4 — A > 17
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How to do efficiently simulations as
a function of T?
® Sometimes EQUILIBRATION time is long...

® |DEA:for T’ close to T, choose as starting
point the equilibrated output of T

-0'4 | | | | | | | | | . _‘:;:;-A‘
T
» e ,:‘:**H
- o R
L - 4 * /‘/’J /"M

" - A
>4 *_,+
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-1.0 |- gl -
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-1.2 + e // =

1.4 P .
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’1.6 — ,'¢/ -

1.8 | / i
-2.0 L adpaes l | L ! L !

00 05 10 15 20 25 30 35 40 45 5.0
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Measuring physical quantities:
which errors!?

® necessary to give the ERROR ESTIMATE
corresponding to the measured physical
quantity !!!

® (see Tab. | of D.P. Landau, PRB 13,2997 (1976),
“Finite size behavior of the Ising square lattice”)

® do also BLOCKING (called “coarse grained
technique” in that paper)
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(here Knn=))

TABLE 1.
energy per spin for an .V

4x4

D.P. Landau, PRB 13,2997 (1976)

Comparison of Monte Carlo data and analytic values of the reduced internal
* 4 square lattice with p.b.c.

—_— - 00 ———_—

kT/K W,  (WUUY,* ob o’ ® (U/Upg ® o o'
1.087 0.99724  0.99747  0.00026  0.00026  0.99736  0.00026  0.00042
1.449 0.98006  0.97841  0.00076 0.00086  0.98089  0.00073  0.00137
1.811 0.92693  0.92740  0.00146  0.00208 0.92471  0.00150  0.00296
2.173 0.81921  0.81645 0.00236 0.00376 0.81467 0.00234  0.00487
2.536 0.67508  0.67557  0.00285  0.00446  0.67157  0.00283  0,00589
2.898 0.54069  0.54185  0.00290 0.00433  0.53222  0.00292  0.00583
3.260 043873  0.43728  0.00285 0.00399 043534  0.00277 0.00513
3.622 0.36635  0.36140  0.00260  0.00378  0.37079  0.00267 , 0.00446

* Run A was made by going[through the lattice in erder Run

"
.
E— w
——

reference spin randomly.
"¢ is the standard deviati

dard deviation obtained usi
the standard deviation which hare too small to account for the di
values are underlined.

choice of the
reference spin:

in order

.
““
.

*
.
)
.

.
e
e
.

randomly

.
.
[
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repancy with the analytic



Ising model: size problems

We cannot simulate an INFINITE system!

size effects with PBC on E(T):

-0.4 | 1 | |

Energia Media per Spin

e e | | |
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Temperatura
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Exercise

(a) Choose L=30,T=2, and initially spin=%1 randomly. ...

Calculate also c and ¥.




Ising model: size problems

We cannot simulate an INFINITE system!

4.0
Cy

30 o g

L =8and L =16

20F

1.0

0.0 ] ] ] ] |
1.5 2.0 2.5 3.0 3.5

The temperature dependence of the specific heat C' (per spin) of the Ising model
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Ising model: size problems

We cannot simulate an INFINITE system!

INTERFACE EFFECTS: example of energy (units of |) for
HALF UP/HALF DOWN configurations:

=2
L=4
=8
L=16
=20
=32

E=0 _ _

32 pairs, 4 of them with
. iwrong” intractions

E_- I E>= 32 +8 +8) /16 = -1

E=-1.5 t
2xLxL  2xL

E=-1.75

E=-1.8

E=-1.875

~ail}— | el | -l
- | - | -

- | - | i | -

ol | el | el | el

AL

A
“interface”

for an infinite system: E=-2

with PBC

We have a (“interface”) term proportional to I/L
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important monitoring E(t) and M(t) at the same time to identify possible
metastable states
IFStantaneus energy and Magretization per spn Tw2

oul k‘. — Sy ‘

0251 ‘ d ' 2
Moo, /)

%04

~1001
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more on size effects...
Magnetization (10° sweeps)
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Energy (10° sweeps)
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Magnetic susceptibility (10° sweeps)
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Magnetic susceptibility near T, (10° sweeps)
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Specific heat (10° sweeps)
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Specific heat near T, (10° sweeps)

oy kg/J® = LZ (<E®>-<E>?)/ (kg T?)
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extras:

® References

® More on finite size effects: finite
size analysis and critical exponents
Alternative dynamics

Other interactions

Other lattices

Other models
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A few references

Ising E 1925 Zeitschrift fur Physik 31 253—-258
Bethe H 1931 Zeitschrift fur Physik 71 205
Heisenberg W 1928 Zeitschrift fur Physik 49 205
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Universality and critical exponents

) Near T,., we can characterize the behavior of many physical quantities by power law
behavior . For example, we can
write m near T, as

m(T) ~ (T, — T)”, (17.22)

Where(ﬁ is a critical exponent)(not to be confused with the inverse temperature). Various thermo-
dynamic derivatives such as the susceptibility and heat capacity diverge at T.. We write

X~ |T =T, (17.23)

and
C~|T-T.]|“. (17.24)

We have assumed that y and C are characterized by the same critical exponents above and below
T..

Another measure of the magnetic fluctuations is the linear dimension (7T of a typical magnetic
domain. We expect the correlation length £(T) to be the order of a lattice spacing for T' > T..
Because the alignment of the spins becomes more correlated as T" approaches T, from above, £(T')

increases as T approaches T,.. We can characterize the divergent behavior of £(T") near T, by the
( critical exponent v: )

(T) ~ |T — T.| ™. (17.25)

From: Gould-Tobochnich 84



Universality and critical exponents

More precisely, the magnetisation follow a power law close to
the transition only approaching T. from smaller T:

M =0 T > 1T,

M~ |1—=T/T,|" T <T,

If we use the Reduced temperature : AT = (T — T.)/T.
C ~ |AT|™“
M ~ |AT|P for AT <0
~ AT|™7

X
& ~ |AT|7Y
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Universality and critical exponents

the critical exponents are not independent from each other, because of the
following scaling laws (e):

7= V(Q o 77)7
2=a+258+7,
vd =2 — «,
so it is only necessary to know two of them to determine the others.
For the 2D Ising model: 04 0
o] 0.125
Y 1.750
v 1

® Kerson Huang, Introduction to Statistical Physics (CRC Press)
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Universality and critical exponents

If the heat capacity goes like: C(T') o |T' —T.|™“

we could plot L a5 a function of T and make a fit,
C(T)

and similarly for the other quantities.

BUT: Because we can simulate only finite lattices, a direct fit
of the measured quantities does not yield good estimates

for the corresponding exponents Q, V, [3,and y => we have
to take into account the finite size of the system

=> finite size scaling
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Universality and critical exponents

The shift in the peak position of C and X with respect to the critical temperature
corresponding to the thermodynamic limit is described by: T.(L) — T.(cc0) o< L™

) ' T T T T T T T y T

| |

Lo 0.44 .
|

l |

|

|

I

0.43 -

.__,.......‘.-.---"-' faesnt - -._“"‘: . ) 041 i |

.
. -

.......

T T T T T T T T T
0.00 0.02 0.04 0.06 0.08 0.10
L—l

FIG. 1. Typical behavu?u‘r of a phy sical quantity A vs tem- pi@. 9. (Color online) Inverse of the critical temperature T,
perature close to the critical point for various system sizes.

s vs inverse of lattice size L™ for the 2D Ising model. The curve

Flg?re taken from Th11ssen " _ , . was fitted with a power law T, ' = Tc; — bL*Y ¥, and the
[Thijssen, Computational Physics (Cambridge University Press)] critical exponent v was determined. L1y

® From: E. Ibarra-Garcia-Padilla et al., European Journal of Physics 37(6):065103 DOI: 10.1088/0143-0807/37/6/065103
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Universality and critical exponents

(This is referred to percolation)

Because we can simulate only finite lattices, it is difficult to obtain estimates for the critical
exponents «, 3, and v by using the definitions (17.22)—(17.24) directly. We learned in Section 13.4,
we can do a finite size scaling analysis to extrapolate finite L results to L — oo. For example, from
Fig. 17.2 we see that the temperature at which C' exhibits a maximum becomes better defined for
larger lattices. This behavior provides a simple definition of the transition temperature 7,.(L) for
a finite system. According to finite size scaling theory, T.(L) scales as

T.(L) — To(L = 00) ~ aL ™", (17.27)

where a is a constant and v is defined in (17.25). The finite size of the lattice is important when
the correlation length

ET)~L~|T—-T.]|7". (17.28)
As in Section 13.4, we can set T = T, and consider the L-dependence of M, C', and y:
m(T) ~ (T, —T)° — L=P/" (17.29)
C(T) ~ |T —To| =% — LYV (17.30)
X(T) ~ |T —T.|~7 — LY. (17.31)

From: Gould-Tobochnich 89



Scaled magnetization vs unscaled T' (10° sweeps)
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Ising model: alternative dynamics

® in the SPIN FLIP dynamics the order parameter
is not conserved (M changes during evolution)

® alternative: NN spin exchange (Kawasaki dyn.)
(exchange two NN spins picked at random;
M is conserved; this is equivalent to LATTICE
GAS MODELS with fixed number of particles)

® another alternative: flip a cluster of spins (VWolff
dynamics)

see e.g.: https://mattbierbaum.github.io/ising.is
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https://mattbierbaum.github.io/ising.js

Ising model: Kawasaki dynamics

Fixed magnetization : change of thermodynamical en-
semble

No modification of the equilibrium properties

except phase separation




Addition of further interactions

@ Attractive (J>0) nearest-neighbor (NN) interaction only:
total energy of the system:

J
E = —5 anj
(27)

=> Trend to aggregation (diffusive behavior is limited to a
transient)

@ Add a repulsive (J<0) next-nearest-neighbor (NNN)
interaction: total energy of the system:

1
E = —5 Z Jz-jnmj
(27)
=> The behavior depends on the ratio R = JynyN/JINN

@ With finite NN and/or NNN interggtions, temperature plays a role
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Ising model:

other generalizations

® SPINS: XY, Heisenberg, Potts...

® | ATTICES: Square, Triangle, Cubic,
Honeycomb, Kagome....

® INTERACTIONS: Magn. Field, Antiferrom.,
Next Nearest Neighbor (NNN)....

Different behaviour according to the geometry and the kind of interactions.
Example: frustration in the triangular antiferromagnetic Ising model:

X w




T < T.

FIG. 15. (Color online) Behavior of the two dimensional Ising model (top) and XY model (bottom) at 7' < T,, T' = T, and
T > Te. For the Ising model, an 1 spin (s; = 1) is represented by red and a | spin (s; = —1) is represented by blue. For the
XY model, because every spin is determined by 6, so s; = (cosf,sin6), an angle of 27 is represented by red and an angle of
0 by blue. In the low-temperature phase, the Ising model exhibits spontaneous magnetization while in the XY model, vortex
buddies appear (characterized by points where a continuum from blue to red, or viceversa, circle the point. It is worth to notice
that these points are present by pairs with opposite circulation).
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Ferromagnetic
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With Spin exchange dynamics
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a collective excitation of the spin structure
in the lattice

Figure 1. (a) Magnon excitation and its evolution inside a ferromagnetic chain. In
the ground state all the spins are in parallel alignment within each other. A magnon
can be represented as a single reversed spin surrounded by two domain walls. It can
propagate along the chain, but the domain walls will stay bounded to each other.
(b) Same as (a) but for an antiferromagnetic chain, in the Ising limit. In the ground
state, the spins are in antiparallel alignment. An excitation is achieved by creating two
domain walls that separate two different AFM phases. Those two fractional excitations
can independently propagate along the chain.



