The South Pole Telescope (SPT) cluster
survey and its cosmological implications




Some Outstanding Questions

What is the nature of Dark Matter? '
What is Dark Energy?

How does gravity behave on large
scales? |

What the sum of the neutrino masses?



Geometry and Contents of the Universe

® General consensus Is that
several independent
cosmological probes point
towards a consistent model of
flat LCDM

® A model where ~70% of the
energy density is “dark energy”
~25% is “dark matter” and the
rest is “normal matter” is
consistent with all available data

® Understanding the root cause of
the cosmic acceleration is the
primary focus of observational
cosmology today



Geometry and Contents of the Universe

Dominant source of
cosmological information is
coming from primary CMB
fluctuations at z~1100
Few <20 tensions are -
present when combining |
CMB with local probes,
e.g.. .
®* H,(Riess et al. 2016)
® Cosmic shear (KIDS,
CFHTLens, DES)

® Clusters (e.g., Planck
15)




What do we mean by tensions?

® Is a model appropriate to describe the data?
* Goodness of the fit test.

® For a model M with parameters 0, different data-
sets/experiments should provide consistent
posterior distributions of 6



Consistency of data-sets

« Compare blue and red marginalized |
distributions to compute consistency

However..

2 0 2 4 25 00 25

m P2




Consistency of data-sets

B reference

] I Compare blue and red marginalized |
I consisten . . . .
distributions to compute consistency

However..

* Projections and marginalized
distributions are often misleading!!
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Consistency of data-sets

B reference
I in tension
I consistent
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Mapping into Principal
Components of prior

KL (KD) s o(KL)

145 051 140 043
084 051 032 043

B reference
I in tension
I consistent

Surprise spots
“hidden” Tension




The example of flathess

® For example considering flatness:
[€2,/<0.005 (Planck++15)
® Also arelated A; 20 tension

between Planck TT + low TEB
and Lensing constraints

® Consistency with non-CMB data?

® In curved LCDM there is 8o
surprise when adding H,

* Planck prefers curved Universe at
2.70

® In curved LCDM model >30
surprises exist between Planck TT
+ low TEB and BAO, SNe, H, and

CMB lensing
® We focus on Galaxy Cluster as 4349 55 61 67 73 43 49 55 61 67 73
Cosmological probes H, H,

Grandis+ 16



Galaxy Clusters Are Powerful
Cosmological Tools

* Sensitive to both geometry and growth of structures
e Complementary to geometrical probes as CMB, BAO, SNe
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® Same distribution at redshift zero 0
e Completely different redshift evolution Growth  Redshift

Redshift distribution is sensitive to distance-redshift
relation and rate of structure growth

Credit: Joe Mohr



Have a theory prediction for
the Halo Abundances

Find Galaxy Clusters
Obtain redshifts (distance)
Mass proxies

- Scaling relations  Astrophysics 5
: Malmquist bias o
® Eddington bias
® Selection

Mass [Mo ]
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Cluster Surveys Provide a Rich Source of Information

Halo Redshift Distribution N _ v

Sensitive to volume-redshift relation and Az dzdQ
halo abundance evolution

(Z) n( Z) Press & Schechter 72

Growth

Geometry

Halo Abundance Evolution

Depends on the amplitude and shape of
the power spectrum of density fluctuations

Can be studied directly. in N-body
simulations; simple “cosmology
independent” fitting formulae exist

e.g. Sheth & Tormen 99, Jenkins+01, Warren+05,
Tinker+08, Watson+13, Bocquet+16, Despali+16
Bbttom line: surveys measure
Distances

Characteristics of initial perturbations
Growth rate of density perturbations

But you must know the mass selection of
your survey!
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Cluster Surveys Provide a Rich Source of Information

Halo Redshift Distribution aN(2 _

Sensitive to volume-redshift relation and azoQ dZdQ
halo abundance evolution

(Z) n( Z) Press & Schechter 72

Halo Abundance Evolution

Depends on the amplitude and shape of
the power spectrum of density fluctuations

Can be studied directly. in N-body
simulations; simple “cosmology
independent” fitting formulae exist

e.g. Sheth & Tormen 99, Jenkins+01, Warren+05,
Tinker+08, Watson+13, Bocquet+16, etc

Bottom line: surveys measure

Distances Bocquet+16
Characteristics of initial perturbations Hydro MF
Growth rate of density perturbations : -

_ Exponential sensitivity
But you must know the mass selection of o

your SU rveyl MZOO, mean/MiE‘



Bocquet+16

For massive cluster surveys
like Planck and SPT there is
no significant impact of
baryon physics on the MF

Of greater importance is the
difference between the Tinker
and the Bocquet mass
functions!
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What Are Galaxy Clusters?

Galaxy clusters are the most massive,
collapsed structures in the universe. They
contain galaxies, hot ionized gas (107-8K)
and dark matter.
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In typical structure formation scenarios,
low mass clusters emerge in significant
numbers at z~2-3 '
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Clusters are good probes, because they
are massive and “easy” to detect through

their:

7488 7496 7404 7492 7490 7488 150 155 16.0 16.5 170 175 18.0

Bleem+ 15  RA-«2000)

* Light from galaxies

o Ratio of luminosities
in different bands




What Are Galaxy Clusters?

Galaxy clusters are the most massive, SPT-CLJ0205
collapsed structures in the universe. They

contain galaxies, hot ionized gas (107-8K)

and dark matter.

In typical structure formation scenarios,
low mass clusters emerge in S|gn|f|cant .

numbers at z~2-3
2 arcmin

Clusters are good probes, because they
are massive and “easy” to detect through
their: »

* Light from galaxies
* X-ray emission
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What Are Galaxy Clusters?

Galaxy clusters are the most massive, _ p - "
collapsed structures in the universe. They SPT-CL J2344-4243: The "Phoenix Cluster

contain galaxies, hot ionized gas (107-8K) EEYIl]EeEW 4
and dark matter.

Oftical
2=0.596

In typical structure formation scenarios,
low mass clusters emerge in significant
numbers at z~2-3

Clusters are good-probes, because they
are massive and “easy” to detect through
their:

* X-ray emission
* Light from galaxies
* Sunyaev-Zel’dovich Effect




The South Pole
Telescope (SPT)

10-meter
submm wave telescope

100 150 220 GHz and
1.6 1.2 1.0 arcmin resolution

2007: SPT-SZ 7
960 detectors (UCB) &

100,150,220 GHz

2012: SPTpol
1600 detectors
100,150 GHz
+Polarization

2016: SPT-3G s

16,000 detectors Bgg

100,150, 220 GHz ’
+Polarization
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counting house
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The South Pole Telescope Collaboration
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SPT Survey

The SPT Surveys
5000 deg?

Obs. Area 95GHz 150 220

(uK-  (uK- (uk-
Years (deg?) arcmin) arcmin) arcmin)
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SPT Survey

The SPT Surveys
5000 deg?

Complete overlap with DES survey
Saro+15, +16
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Angular Scale
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Clusters and the Sunyaev-Zel’dovich Effect
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Adapted from L. Van Speybroeck Sunyaev & Zel’dovich 1970, 1972

Spectral Distortion of CMB — redshift independent!
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T(n) —To B / G )ABT g = Clohy,

Where: y. = (kpor/m.c?) [n T.dl , G(x) = xcoth(x/2)-4 and x=hVv/kT

If the Universe expands adiabatically we have:
T(z) = To(1 + 2) v(z) = vo(l + 2)

= hv(z)/kT(2) l: huvo /KTy = xo

Absorption line Measurements
+ Muller et al. (2013)
SZE Meosurements

" RedShift independent N~ + Luzzi et al. (2009)
Allows to test adiabatic § e o 0 (2019)

expansion of the Universe
Saro+14




SZE Signature of Galaxy Clusters

Unigue spectrum

14
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First “Blind” SZ detection : 2008!

150 GHz
“Raw”

150 GHz
filtered

90 GHz
filtered

220 GHz
filtered

0517-5430

0547-5345

0509-5342 0528-5300

Staniszewski et al. 2009



Finding a Cluster in SPT Maps

Unique signature helps provide pure sample

(Instrumental+

| CMBIPSK)
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Matched
Filter

S/N=6.3

B(k)S(|k])
B(k)QNastro(lkD + Nnoise(k)
= ATy(1+16]*/62)~"

* Matched-filter multi-frequency cluster
finder (Melin et al. 2006)
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Finding a Cluster in SPT Maps
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Confirmation of Galaxy Population:

® Over the broad redshift range of the sample, we use optical and
NIR imaging to probe for the galaxy population ( 0+)
2344-4243 (20.62

Red Sequence
\  redshift

\ =175

Multiple-facility Imaging Campaign [

for Cluster Confirmation B\ L \
2.2’ m MPG/ESO | NE \,‘I‘

10 Gyr ago ~
Only ~3 Gyr after Big Bang
1.70-1.85-..(0.12)

Y IR SR B R
200 205 21.0 216 220 225 230
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SPT-SZ Sample

Song+12, Bleem+15

* 2500 de'g2 sample

® 516at&>4.5 : SPT-SZ 2500 deg® X
ROSAT-AIl sk
® 387 at&>h.0 PIanck-DSR¥=
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Bleem+15 ACT
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® High z subsample
e ~150(80)>0.8
® ~70(40) atz>1
e Maxz_ . =1.47
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Bayliss+13 _ _ _ _ _
® Highest phot-z Redshift
Strazzullo+

e (Clean sample with M.,,>3x10%* M_to z~1.8



e . Virgo Cluster

ROSAT PSPC

> 0.4 keV, smoothed

MPE

All-Sky-Survey
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Multi-wavelength Observations:
Mass Calibration

® Multi-wavelength mass - Gemini S
calibration campaign,
Including: |

X-ray with
. — Chandra
- XMM

CHANDRA

X-RAY OBSERVATORY




Multi-wavelength Observations:
Mass Calibration

® Multi-wavelength N Gemini S
mass calibration |
campaign, including:

e X-ray with :
- Chandra
— XMM

CHANDRA

X-RAY OBSERVATORY

: .Weak lensing from:
- Magellan (0.3 <z < 0.6)
- HST (z > 0.6)
——DES iy




Multi-wavelength Observations:
Mass Calibration

®* Multi-wavelength mass - Gemini S
calibration campaign, ‘
Including:

X-ray with
- Chandra
S XMM "
.Weak lensing from: ' CHANDRA
~~ Magellan (0.3<2<0.6) X-RAY OBSERVATORY
-~ HST (z>0.6)
i RHES

Dynarﬁical masses from
- Gemini (z < 0.8)
- VLT (z>0.8)
- Magellan (z > 0.8)




SPT Cluster Cosmology: ACDM -

de Haan+16

® With pure sample, model for selection, and
calibration, we can test cosmology:

SPTe, +H, +BBN ® 387 SPT clusters
SPT.; +f,  +H,+BBN ) :

- o
WLG (RASS+f,_+H, +BBN) Mass calibration
Planck+WP e 82X-rayY,s

e WL prior on Y ,-mass

® 15 parameters
® 6 cosmological
® 4 SZ mass-obs
® 4 X-ray Y, mass-obs
® .1 Correlated Scatter
®* Tension?

® Insignificant in ACDM
® |nsignificant in wCDM

SPT Cluster Cosmology Constraints in good agreement with other probes
within ACDM and wCDM models

SPT-SZ: w=-1.28+/-0.31 SPT-SZ++: w=-1.023+/-0.042




® Clusters break degeneracies
In other =  data-sets.
Combination of  Clusters,
CMB, geometric probes:

w = -1.023 +/- 0.042

CMB strong degeneracy 0,-

2m , so even modest o, can
Improve constraints

SPT Cluster Cosmology: Extensions
de Haan+16

N H,+BAO+SNe

: SPT +H,+BBN

. Planck+WP

. SPT¢+Planck+WP+H;+BAO+SNe

e

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05

0y

— Planck+WP

—  SPT +Planck+WP

— Planck+WP+BAO

—  SPT. +Planck+WP+BAO




SPT Cluster Cosmology

® With pure sample, model for selection, and
calibration, we can test cosmology:

SPTcl (SPT-SZ+WL+Yy)

oS

SPTcl + Planck
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Bocquet+18

‘ II ’Iil!l!l BEEENGT
ﬂﬂﬂﬂ:lﬂ -

® 387 SPT clusters ® 22 parameters
® Mass calibration

e 82X-rayVY.,s

e 32WL



Future: More & More calibration

SPT Mass Calibration Ongoing
Direct mass calibration of clusters

® Dynamical masses:

[
with dispersions
Jeans analysis

® Magnification masses:

® Shear masses:

L Magellan
HST imaging

® Schrabback+18:HST
VLT imaging

DES imaging

DES Megacam

SPT-SZ 2500 deg® ®
ROSAT-AIll sky O
Planck-2015 €

ACT
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Lensed-Unlensed

On cluster
Off cluster
Combined off cluster
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o
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3

» A ~few uK “dimple” in » A 3.10 detection of CMB
the CMB caused by lensing using ~500 clusters
lensing of a ~10% measured by SPT-SZ

solar mass cluster Baxter et al. 2015, ApJ, 806, 247

See also: Planck Collab. XXIV, 2016 A&A 594, A24 Madhavacheril et al. PRL 114, 15.



Future: More & I\/Iore_ clusters
Planck & SPT

(uK-arcmin)

Planck 45 ) P'Oan

SPT 17
o SPT

ACT

Redshift z

* As of today ~ 95% of SZE detected clusters by either Planck or SPT
« Cosmological samples almost equal number: 439 (Planck) vs 377 (SPT)




SPT-3G (Projected) ¢
SPTpol (Projected;
XSPT-SZ 2500 deg” X

Planck m

eRosita

1.0

Redshift

Deep CMB data also enables CMB cluster
lensing as a competitive mass calibration
tool for cluster DE science: SPT-3G: a(M)
~ 3%! CMB-S4: o(M) < ~0.1%!

Especially promising tool for cluster
masses atz>1

Future: More & More clusters

South Pole
SPT-SZ/Pol: Nclus ~ 1000
SPT-3G: Nclust ~ 10000

Chile
CCAT-prime
AdvACT
Simon’s array

Simons’s observatory

CMB S4;
Nclust ~ 100,000+



Summary

SPT has found hundreds of massive galaxy clusters
spanning a redshift range 0.05 < z< 1.7.

Clean, mass-limited selection leads to a fantastic
sample for cosmological and astrophysical studies.

Cosmological analysis consistent with other cluster
studies & CMB Cosmology

Better mass calibration required to tighten constraints
(and work'is ongoing!)

(Near) future will provide huge samples of clusters with
multi-A observations (astrophysics & cosmology)
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