
SYNCHROTRON RADIATION 

Particles accelerated by a magnetic field B will radiate. For nonrelativistic 
velocities the complete nature of the radiation is rather simple and is called 
cyclotron radiation. The frequency of emission is simply the frequency of 
gyration in the magnetic field. 

However, for extreme relativistic particles the frequency spectrum is 
much more complex and can extend to many times the gyration frequency. 
This radiation is known as synchrotron radiation. 

6.1 TOTAL EMWIED POWER 

Let us start by finding the motion of a particle of mass m and charge q in a 
magnetic field using the correct relativistic equations [cf. Eqs. (4.84)]. 

z ( y m v ) =  d ;vxB 4 (6.la) 

(6.lb) d 
- ( ( y r n c 2 ) = q v * ~ = o .  dt 
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This last equation implies that y =constant or that IvI = constant. There- 
fore, it follows that 

dv 4 m y x  = -vxB.  
C 

Separating the velocity components along the field vII and in a plane 
normal to the field vI we have 

dv 
- -v, xB. d"ll -=o, I- 4 

dt ymc dt (6.3) 

It follows that vII =constant, and, since the total IvI =constant, also IvL 1 = 
constant. The solution to this equation is clearly uniform circular motion 
of the projected motion on the normal plane, since the acceleration in this 
plane is normal to the velocity and of constant magnitude. The combina- 
tion of this circular motion and the uniform motion along the field is a 
helical motion of the particle (Fig. 6.1). The frequency of the rotation, or 
gyration, is 

The acceleration is perpendicular to the velocity, with magnitude a ,  = 
w B v I ,  so that the total emitted radiation is, [cf. Eq. (4.92)]. 

2q2 q2B2 p = - y  - 
3 2  y m c  2 2 2 v : >  

(6.5a) 

or 

2 
p=-r;cp:y232. 3 (6.5b) 

For an isotropic distribution of velocities it is necessary to average this 
formula over all angles for a given speed P. Let a be the pitch angle, which 
is the angle between field and velocity. Then we obtain 

( P: ) = 4n P 2  Jsin'u dS2 = - 2P , 
3 

and the result 

P = ( + )  2 ricp 2 2  y B 2 , 



~~~ 
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which may be written 

4 
3 

P = - OTC/32 &J,. 

Here u T = 8 r r i / 3  is the Thomson cross section, and U, is the magnetic 
energy density, U, = B 2 / 8 n .  

6.2 SPECTRUM OF SYNCHROTRON RADIATION: 
A QUALITATIVE DISCUSSION 

The spectrum of synchrotron radiation must be related to the detailed 
variation of the electric field as seen by an observer. Because of beaming 
effects the emitted radiation fields appear to be concentrated in a narrow 
set of directions about the particle’s velocity. Since the velocity and 
acceleration are perpendicular, the appropriate diagram is like the one in 
Fig. 4.1 Id. 

The observer will see a pulse of radiation confined to a time interval 
much smaller than the gyration period. The spectrum will thus be spread 
over a much broader region than one of order we/2r .  This is an essential 
feature of synchrotron radiation. 

We can find orders of magnitude by reference to Fig. 6.2. The observer 
will see the pulse from points 1 and 2 along the particle’s path, where these 
points are such that the cone of emission of angular width -l/y includes 
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Figurn 6.2 Emission cones at variouS points of an accelerated particle's 
trajectory. 

the direction of observation. The distance As along the path can be 
computed from the radius of curvature of the path, a = As/AB. 

From the geometry we have A0 = 2/y,  so that As = 2 a / y .  But the radius 
of curvature of the path follows from the equation of motion 

AV 4 ym-  = - v x B ,  
A t  c 

Since (Av( = v A 0  and As = v At, we have 

A 0  qBsina 
As ymcv ' 

wB sin a ' 

-=- 

V a = -  

(6.8a) 

(6.8b) 

Note that this differs by a factor sina from the radius of the circle of the 
projected motion in a plane normal to the field. Thus A s  is given by 

2u 
yw, sin a 

As = (6.8~) 

The times t, and t, at which the particle passes points 1 and 2 are such 
that A s  = u(t,  - t , )  so that 

2 
y o B  sin a ' 

t , -  t ,x 

Let t f  and tt be the arrival times of radiation at the point of observation 
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from points 1 and 2.  The difference 12” - t;’ is less than t , -  t ,  by an 
amount As/c,  which is the time for the radiation to move a distance As.  
Thus we have 

A t A  = 1: - = 2 (1-4). 
yw, sin (Y 

(6. I Oa) 

I t  should be noted that the factor ( 1  - v / c )  is the same one that enters the 
Doppler effect [cf. 34.11. Since y>>l. we have 

so that 

(6.10b) 
- I  

A t ” ~ ( y ~ ~ , s i n a )  . 

Therefore, the width of the observed pulses is smaller than the gyration 
period by a factor y3.  The pulse is shown in Fig. 6.3. From our general 
discussion of spectra associated with particular pulses, 02.3, we expect that 
the spectrum will be fairly broad, cutting off at frequencies like l / A t A .  If 
we define a critical frequency 

a,. E - 3 3  y -w ,  sina (6.1 la) 
2 

or 

3 3  v c =  - y  w,sina, 
47 

f 

(6.1 lb) 

Figure 6.3 
radiation 

Time-dependence of the electric fiehi in u pulse of synchrotron 
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then we expect the spectrum to extend to something of order wc before 
falling away. We can actually derive quite a lot about the spectrum, simply 
using the fact that the electric field is a function of 0 solely through the 
combination ye, (see, e.g., $4.8) where B is a polar angle about the direction 
of motion. This is a manifestation of the beaming effect. Let us write 

a t l a  F(Y@), (6.12) 

where t here refers to time measured in the observer's frame. We set the 
zero of time and the path length s to be when the pulse is centered on the 
observer. Using arguments similar to those used to find As, we find B--,s/u 
and t % ( s / u ) ( l -  u / c ) .  Then the relationship of B to t is found to be 

Therefore, we write the time dependence of the electric field as 

The proportionality constant here is not yet known, and it may depend on 
any physical parameters except time t .  This is still sufficient for us to 
derive the general dependence of the spectrum on w.  The Fourier trans- 
form of the electric field is 

,!?(a) a J g(w, t )  e i'"dt. (6.15a) 
- w  

Changing variables of integration to [-act, we have 

,!?(,)a J w  g([)eiwE"+d[. (6.15b) 

The spectrum dW/dw& is proportional to the square of I?(,) [cf. Eqs. 
(2.33) and (3.11a)l. Integrating this over solid angle and dividing by the 
orbital period, both independent of frequency, then gives for the time- 
averaged power per unit frequency, [cf. Eq. (2.34)], 

--m 

-= dW T - ' - E P ( W ) = C * F  dW 
dt do dw 

(6.16) 

where F is a dimensionless function and C, is a constant of proportional- 
ity. We may now evaluate C ,  by the simple trick of comparing the total 
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power as evaluated by the integral over w to the previous result in Eq. 
(6.5): 

P = i m P ( w ) d w =  C , i m F (  z ) d w = w c C , i  m F(x)&, (6.17a) 

where we have set xrw/w, .  We do not know what F(x)dx is until we 

specify F(x).  However, we can regard its nondimensional value as arbi- 
trary, merely setting a convention for the normalization of F(x). We can 
still find the dependence of the constant C, on all the physical parameters. 
From our previous discussion, we have 

s 

2q4B2y2B2sin2u 

3m2c3 
P =  , 

and 

3y’qBsinu 
2mc w, = 

(6.17b) 

(6.17~) 

We thus conclude that for the highly relativistic case ( /3= I), the power per 
unit frequency emitted by each electron is 

(6.18) 

The choice fl / 2 ~  for the nondimensional constant has been made to 
anticipate the conventional choice for the normalization of F, discussed 
below. If the power per frequency interval dv is desired, one can use the 
relation P(v)  =2nP(w). 

6.3 SPECTRAL INDEX FOR POWER-LAW ELECTRON 
DISTRIBUTION 

From the formula for P(w) given above, it is clear that no factor of y 
appears, except for that contained in wc. From this fact alone it is possible 
to derive an extremely important result concerning synchrotron spectra. 
Often the spectrum can be approximated by a power law over a limited 
range of frequency. When this is so, one defines the spectral index as the 
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constant s in the expression 

P( o) a o - '. (6.19) 

This is the negative slope on a log P(o)  - logo plot. Often the spectra of 
astronomical radiation has a spectral index that is constant over a fairly 
wide range of frequencies: for example, the Rayleigh-Jeans portion of the 
blackbody law has s = - 2. 

An analogous result sometimes holds for the particle distribution law of 
relativistic electrons. Often the number density of particles with energies 
between E and E + dE (or y and y + dy)  can be approximately expressed in 
the form 

N(E)dE=CE-PdE,  E l  < E < E 2 ,  (6.20a) 

or 

N(Y)dY=CY-PdY, Y l < Y < Y 2 .  (6.20b) 

The quantity C can vary with pitch angle and the Ike. The total power 
radiated per unit volume per unit frequency by such a distribution is given 
by the integral of N ( y ) d y  times the single particle radiation formula over 
all energies or y. Thus, we have 

P , , , ( W ) = C ~ ~ ~ P ( W ) ~ - ~ ~ ~ U  (6.2 la) 
71 

Let us change variables of integration to x -o/oc, noting oc a y2;  

P,,,(o) ~ o - ~ - ' ) / ' ~ ~ ~ F ( ~ ) X ( p - ~ ~ / ~ d x .  (6.21 b) 
I 

The limits xI and x2 correspond to the limits y ,  and y2 and depend on w. 
However, if the energy limits are sufficiently wide we can approximate 
x,=O, x2=w, so that the integral is approximately constant. In that case, 
we have 

P,,,(o) a w - @ -  ' ) I2 (6.22a) 

so that the spectral index s is related to the particle distribution indexp by 

P-1 s =  - 
2 .  

(6.22b) 



Spectrum and Pohrization of Synchrotron Radbtion: A Derailed Discupsion 175 

Let us summarize the results of this simplified treatment of synchrotron 
radiation: We have shown that 

1. The angular distribution from a single radiating particle Lies close 
(within l / y )  to the cone with half-angle equal to the pitch angle. 

2. The single-particle spectrum extends up to somethmg of the order of a 
critical frequency wc. More precisely, the spectrum is a function of 
w / w ,  alone. 

3. For power law distribution of particle energies with index p over a 
sufficiently broad energy range, the spectral index of the radiation is 
s = (p - 1)/2. 

6.4 SPECTRUM AND POLARIZATION OF SYNCHROTRON 
RADIATION: A DETAILED DISCUSSION 

Consider the orbital trajectory in Fig. 6.4, where the origin of the coordi- 
nates is the location of the particle at the origin of retarded time t’=0, and 
a is the radius of curvature of the trajectory. The coordinate system has 
been chosen so that the particle has velocity v along the x axis at time 
t ’ = O ;  tl is a unit vector along they axis in the orbital (x -y )  plane, and 

Figure 6 4  Geometry for pohnzation of synchrotron mdbtion. A t  t =  0, the 
particle wlocity is along the x axis, and a is the mdiw of curooture of the 
tmjectov. 
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ell = n x cL . Using Fig. 6.4, we have 

(6.23) 

where we have set I@[= 1. This gives the first factor in Eq. (3.13) for 
dW/dwdO. For the second factor in that equation, expiw[t’-n.r(t’)/c], 
we note that 

(6.24) 

where we have expanded the sine and cosine functions for small argu- 
ments, used the approximation (1  - u/c)m 1 /2y2, and set i) = c elsewhere. 
Note how the argument of the exponential in Eq. (6.24) is large and the 
integral is small unless ~ 8 5 1 ,  cyt’ /as l ,  in accordance with our qualita- 
tive discussion in 6.2 above. 

An expression for the spectrum in the two polarizations states, that is, 
the intensity along cII and intensity along cL,  may now be obtained from 
Eq. (3.13) and Eqs. (6.23) and (6.24) above. Expanding the sine and cosine 
functions again in Eq. (6.23), we obtain 

(6.25a) 

where 

By’= 1 + y%’. 

Now, making the changes of variables 

(6.26a) 

(6.26b) 

wa8; 
q=- 

3cy3 ’ 
(6.26~) 
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Eqs. (6.25) become 

where little error is made in extending the limits of integration from - 00 

to m. The integrals in Eqs. (6.27a) and (6.27b) are functions only of the 
parameter q. Since most of the radiation occurs at angles 8-0, q can be 
written as 

o q = q ( B = O ) =  -, 
2% 

(6.28) 

where we have used Eqs. (6.8b) and (6.11a). Thus the frequency depen- 
dence of the spectrum depends on w only through w / w c ,  as found in our 
qualitative discussion. It should also be clear that the angular dependence 
uses 9 only through the combination y9. 

To make further progress, we note that the integrals in Eq. (6.27) may be 
expressed in terms of the modified Bessel functions of 1/3 and 2/3 order, 
for example, formulas: 10.4.26, 10.4.31, and 10.4.32 of Abramovitz and 
Stegun (1 965). Therefore we can write 

(6.29a) 

(6.29b) 

These formulas can now be integrated over solid angle to give the energy 
per frequency range radiated by the particle per complete orbit in the 
projected normal plane. During one such orbit the emitted radiation is 
almost completely confined to the solid angle shown shaded in Fig. 6.5, 
which lies within an angle l / y  of a cone of half-angle a. Thus it is 
permissible to take the element of solid angle to be d&? = 277 sina d9, and we 
can write 

9:K: ( q )  d9, 
dw 

dWI1 - 2q2w2a2sina 

d o  3vc3y2 00 
/_m gY'B 2K 5 ( q) d9. -- 

(6.30a) 

(6.30b) 
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Figurn 6 5  Synchrotron emission fmm a part& with pitch angle a. Radiation 
is confined to the shaded solid angle. 

The infinite limits on the integral are convenient and permissible, because 
the integrand is concentrated to small values of A0 about a, of order l / y .  
The above integrals can be reduced further (see Westfold, 1959 for details), 
and we can write 

where 

(6.3 la) 

(6.3 1 b) 

(6.3 lc) 

and, again x = w / w , .  
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To convert this to emitted power per frequency we divide by the orbital 
period of the charge, T=2n/w,, 

The total emitted power per frequency is the sum of these: 

fi q3B sina 

2amc2 
P(w)  = 

(6.32a) 

(6.32b) 

(6.33) 

in agreement with our previous Eq. (6.18). The function F(x)  is plotted in 
Fig. 6.6. Asymptotic forms for small and large values of x are: 

x>> 1. 

(6.34a) 

(6.34b) 

To obtain frequency-integrated emission, or emission from a power-law 
distribution of electrons, it is useful to have expressions for integrals over 
the F and G functions. From Eq. 11.4.22 of Abramowitz and Stegun (1965) 

I 
I I I 

0 0.29 1 2 3 s 4 0 0.29 1 2 3 s 4 

Figure 46 Function describing the total power spectrum of synchtron emis- 
sion. Here x=o/o,. (Taken from Cinzburg, V. and Synnmtskii, S. l%S, Ann 
Rev. Asttvn. Astrophys., 3, 29%) 



one may derive the following relations: 

i m x ’ F ( x ) d x =  - 2 ” + ’  r( + 3)r( f + +) (6.35a) 
P+2 

(6.35b) 

where r ( y )  is the gamma function of argument y .  
For a power-law distribution of electrons, Eq. (6.20b), it can be shown 

from Eqs. (6.33) and (6.35a) that the total power per unit volume per unit 
frequency, Ptot(w), is 

(6.36) 

6.5 POLARIZATION OF SYNCHROTRON RADIATION 

We can also compute the polarization for synchrotron radiation. The first 
point to notice is that the radiation from a single charge will be elliptically 
polarized, the sense of the polarization (right or left handed) being de- 
termined by whether the observed line of sight lies just inside or just 
outside of the cone of maximal radiation (see Fig. 6.5). However, for any 
reasonable distribution of particles that varies smoothly with pitch angle, 
the elliptical component will cancel out, as emission cones will contribute 
equally from both sides of the line of sight. Thus the radiation will be 
partially linearly polarized, and we can completely characterize the radia- 
tion by its powers per unit frequency Pl,(o) and P J w ) ,  in directions 
parallel and perpendicular to the projection of the magnetic field on the 
plane of the sky (see Fig. 6.7). From Eqs. (2.57), (6.32a), and (6.32b) we 
obtain the degree of linear polarization for particles of a single energy y: 

(6.37) 

This polarization is rather high; the polarization of the frequency in- 
tegrated radiation is 75% (see Problem 6.5b). 
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Projection of magnetic 

% 
observer 

Figure 4 7  Decomposition of synchrotron pohrization uectors on the p k  of 
the sky. 

For particles with a power law distribution of energies, Eq. (6.20), the 
degree of polarization can be shown to be (see Problem 6.5a) 

(6.38) 

6.6 TRANSITION FROM CYCLOTRON TO SYNCHROTRON 
EMISSION 

It is interesting to follow the development of the typical synchrotron 
spectrum as the electron’s energy is varied from the nonrelativistic through 
the highly relativistic regimes. Let us consider both the electric field at the 
observation point and the associated spectrum of radiation. For low 
energies the electric field components vary sinusoidally with the same 
frequency as the gyration in the magnetic field, and the spectrum consists 
of a single line, as shown in Figs. 6.8a and 6.8b (see Problem 3.2). 

When v /  c increases, higher harmonics of the fundamental frequency, 
wB, begin to contribute. It should be clear that the general spectrum, in 
fact, must be a superposition of contributions at integer multiples of a,, 
since there is periodicity in time intervals T=27r/ws. Problem 3.7 demon- 
strates the general property that a circulating charge produces radiation at 
harmonics of the fundamental and that increasing harmonics contribute at 
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( i l l  

Figutv 48a 
magnetic fi&i (cyclotron radiation}. 

Time dependence of electric field fmm  slow^ mooing partick in a 

I 
V)) 

Figure 48b Power spectmm for a. 

a strength proportional to increasing powers of u / c  for u/c<<l. For 
example, at slightly relativistic velocities, Fig. 6.8 becomes Fig. 6.9. Here 
we have adopted the convention that the electric field is positive as the 
particle approaches the observer. We see that the positive phase of the 
electric field has become somewhat sharper and more intense relative to 
the negative phase (Doppler effect). There is now a substantial amount of 
radiation at the first harmonic of a, (i.e., 2~0,). 

Finally, for very relativistic velocities, u-C, we have Fig. 6.10. The 
originally sinusoidal form of E ( t )  has now become a series of sharp pulses, 
which are repeated at time intervals 2m/a,. The spectrum now involves a 
great number of harmonics, the envelope of which approaches the form of 
the function F(x).  As soon as the frequency resolution becomes large with 
respect to wB, or if other physical broadening mechanisms fill in the spaces 
between the lines, we approach the results derived earlier. One such 
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Figiin? 6% 
wfoci@ in a magnetic jieU 

Time depednce of electric field from a particle of intemediate 

( h )  

Figiin? 69b Power spectrum for a 

physical broadening mechanism occurs for a distribution of particle en- 
ergies; then the gyration frequency o, is proportional to l / y ,  so that the 
spectra of the particles do not fall on the same lines. Another effect that 
will cause the spectrum to become continuous is that emission from 
different parts of the emitting region may have different values and 
directions for the magnetic field, so that the harmonics fall at different 
places in the observed spectrum. 

The electric field received by the observer from a distribution of par- 
ticles consists of a random superposition of many pulses of the kind 
described here. The net result is a spectrum that is simply the sum of the 
spectra from the individual pulses (see Problem 3.6). 
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t . . ( r )  + 

bJ 

Figrrre 6lOa 
in a magnetic field (synchrotron radiation). 

Time depmrdence of electric fwiV from a q & ' y  mooing parti& 

Fipw 6 106 Power spectrum for a. 

6.7 DISTINCTION BETWEEN RECEIVED AND EMITTED 
POWER 

In about 1968 (e.g., Pacholczyk, 1970; Ginzburg and Syrovatshi, 1969), it 
was noticed that a proper distinction between received and emitted power 
had not been made. (In looking at references before then check your 
formulas carefully.) The problem is that the received pulses are not at the 
frequency wB but at an appropriately Doppler-shifted frequency, because 
of the progressive motion of the particle toward the observer. This can be 
seen clearly in Fig. 6.11. If T= 27r/wB is the orbital period of the projected 
motion, then time-delay effects (cf. 94.1), will give a period between the 
arrival of pulses TA satisfying 

2a . 
X-sin'cr. 

*B 
(6.39) 



Distinction between Receiwd and Emitted Power 185 

r R  

Figurn 6.11 
mwing toward the obsenwr. 

Doppler shyt of synchmtnm radiation emitted by a parncle 

The fundamental observed frequency is thus wB/sin2a rather than wB. This 
leads to two modifications to the preceding theory, neither of which is 
serious, fortunately: 

1. The first is that the spacing of the harmonics is w,/sin2a not wB. For 
extreme relativistic particles this is not important, because one sees a 
continuum rather than the harmonic structure. In deriving the expres- 
sion for the pulse width At, and consequently for the critical frequency 
w,, we did take the Doppler compression of the radiation properly into 
account. Thus the continuum radiation is still a function F(w/w,). 

2. The second comes from the fact that we found the emitted power by 
dividing the energy by the period T of the gyration. This is correct, but 
the received power must be obtained by dividing the energy by T,. 
Thus, we have 

pe 
sin2 a 

P r = - .  (6.40) 

The question arises, should we include the sin2& factor in determining 
the received power? The answer depends on the physical case. Usually one 
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observes a region fairly localized in space with only moderate net velocity 
toward the receiver. Then any particle that is progressing toward the 
receiver at one time will at a later time be moving away (and thus not 
contributing to the power). The average power emitted and received under 
these circumstances will be the same, because the total number of emitted 
and received pulses must be the same in the long run (see Problem 6.3). 
Even over short intervals this will hold when there is a stationary distribu- 
tion of particles. 

We conclude then that for the usual situation encountered in astro- 
physics one should use the expression for the emitted power to give the 
proper observed power. Thus the “corrections” due to helical motion are 
not important for most cases of interest. 

6.8 SYNCHROTRON SELF-ABSORPTION 

Synchrotron emission is accompanied by absorption, in which a photon 
interacts with a charge in a magnetic field and is absorbed, giving up its 
energy to the charge. Another process that can occur is stimulated emis- 
sion or negative absorption, in which a particle is induced to emit more 
strongly into a direction and at a frequency where photons already are 
present. These processes can be interrelated by means of the Einstein 
coefficients. In our previous discussion of the Einstein coefficients (0 1.6) 
we treated transitions between discrete states, and we must generalize that 
discussion now to include continuum states. This is easily done by recog- 
nizing that the states of an emitting particle are simply the free particle 
states, defined by its momentum, position, and possibly its internal state. 
According to the statistical mechanics there is one quantum state 
associated with the translational degrees of freedom of the particle within a 
volume of phase space of magnitude h3. Thus we break up the continuous 
classical phase space into elements of size h3, and consider transitions 
between these states as being between discrete states, for which our 
previous discussion applies. 

A further modification of our previous results is necessary, because for a 
given energy of a photon hv there are many possible transitions possible 
between states differing in energy by an amount hv. This means that, in the 
formula for the absorption coefficient given in Eq. (1.74), we must sum 
over all upper states 2 and lower states 1: 

(6.41) 
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The profile function +21(v) is essentially a &function that restricts the 
summations to those states differing by an energy hv = E2 - E l ;  it will drop 
out of the final formulas. We have assumed that the emission and absorp- 
tion are isotropic [as we did for Eq. (1.74)]. For synchrotron emission this 
requires that the magnetic field be tangled and have no net duection, and 
that the particle distributions also be isotropic. 

It is now our task to reduce Eq. (6.41) to a form depending only on the 
previously derived formula for synchrotron emission (6.33). It is more 
convenient here to write the emission in terms of the frequency Y rather 
than w, so that we use P(u, E2)=2nP(w).  We have also explicitly written 
the argument E,, the energy of the radiating electron. In terms of the 
Einstein coefficients we have 

(6.42) 

where we have used one of the Einstein relations (1.7lb). (Since we are 
dealing with elementary states, the statistical weights are all unity.) 

The parts of the absorption coefficient (6.41) due to stimulated emission 
can be now written in terms of P(v,E2):  

- hu - C2 
- z c n(E2)B21+21= 3 c n(E2)P(v ,E2) .  (6.43) 

477 E ,  E2 8 n h ~  E~ 

The true absorption part can be written 

Here we have used the Einstein relation B I Z =  B21 .  Also we have made use 
of the confinuous nature of the problem by moving n(E,)  from under the 
summation sign and replacing it by n(E2 - hv). This is permissible because 
~$,~(v) acts essentially like a S function, enforcing the energy relation 
El  = E,- hv. Therefore, we have 

(6.45) 

Let us introduce the isotropic electron distribution function f( p )  by 
f(p)d$=number of electrons/volume with momenta in d$ about p .  
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According to statistical mechanics, the number of quantum states/volume 
range d$ is simply ijh-3d$, where ij is the internal statistical weight of 
the electron (= 2 for spin = 1 / 2  particles). The electron density per quan- 
tum state is thus ( h 3 / & ) f ( p ) .  Therefore, we can make the replacements 

Then Eq. (6.45) becomes 

(6.46) 

where p: is the momentum corresponding to energy E2-hv.  Before 
specializing this formula further, let us check that it yields the correct 
result for a thermal distribution of particles, that is 

We note that 

= f ( p 2 ) ( e h U l k T -  I 1. 
Thus the absorption coefficient is 

But the integral here simply represents the total power per volume per 
frequency range, which is 47rjv for isotropic emission. Recognizing the 
formula for B J T )  this can be written 

which is the correct result for thermal emission (Ktrchhoff's Law). 
Because the electron distribution is isotropic it is convenient to use the 

energy rather than the momentum to describe the distribution function, 
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that is, N ( E ) ,  as in Eq. (6.20). We shall also assume the extreme relativistic 
relation E =pc. Then from the relation 

N (  E ) d E  = f ( p)47rp2dp (6.48) 

we obtain 

a, = - C2 / d E  P ( Y ,  E )  E 2  (6.49) 
8nhv3 

where we now have simply written E instead of E2. 
We now assume that hv<<E. This is, in fact, a necessary condition for 

the application of classical electrodynamics, so is already an implicit 
restriction on our formula for P(u,E).  Expanding to first order in hv we 
obtain 

(6.50) 

Let us again look at the case of a thermal distribution, which for 
ultrarelativistic particles is 

N ( E ) = K E 2 e - E / k T .  (6.5 1) 

This leads to the result 

which is 
expected, 

Kirchhoff‘s law in the Rayleigh-Jeans regime. This is to be 
because of the assumption hv<< E. 

For a power law distribution of particles, Eq. (6.20), we have 

and the absorption coefficient (6.50) can be written 

(6.52) 

It is straightforward to show, using Eqs. (6.33) and (6.35a), that the integral 
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gives 

(6.53) 

The source function can be found from 

(6.54) 

using Eq. (6.53). A simple way of deriving this latter result is to note that 
S, can be written as S, a v2E where E is a mean particle energy [cf. Eqs. 
(6.52) and (6.54). The appropriate value for E is the energy of those 
electrons whose critical frequency equals v, that is, E2a vc = v, so that one 
obtains the proportionality given in Eq. (6.54). It is of some interest that 
the source function is a power law with an index - $, independent of the 
value of p .  It should be particularly noted that this index is not equal to 
- 2, the Rayleigh-Jeans value, because the emission is nonthennal. 

For optically thin synchrotron emission, the observed intensity is pro- 
portional to the emission function, while for optically thick emission it is 
proportional to the source function. Since the emission and source func- 
tions for a nonthermal power law electron distribution are proportional to 
v - ( ~ - ’ ) / ~  and v 5 / 2 ,  respectively, [cf. eqs. (6.22a) and (6.54)] we see that the 
optically thick region occurs at low frequencies and produces a low- 
frequency cutoff of the spectrum (see Fig. 6.12). 

log v 

Figuw 6 1 2  Synchrotron spectrum from a power-law distribution of electrons. 
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6.9 THE IMPOSSIBILITY OF A SYNCHROTRON MASER IN 
VACUUM 

It is possible to prove that the absorption coefficient is positive for an 
arbitrary distribution of particle energes N ( E ) .  That is, if we attempted to 
cause a population inversion by increasing N ( E )  at a certain energy E,, so 
that emission from E, to E,-hv was a maser transition, we would 
inevitably be making a still stronger positive absorption somewhere else 
that would more than compensate. To show this analytically we can 
integrate Eq. (6.50) by parts, noting that N ( E ) P ( v , E )  vanishes for low and 
high energies: 

."=-I-- '' N ( E )  [ E 2 P ( v , E ) ] d E .  
8rv2 E' d E  

For any fixed v, 

E2P( V ,  E ) a x - IF( x) = J -K;  (?))&. 
X 

This is clearly a monotonically decreasing function of x ,  since K;(q)  is 
positive. Therefore, E2P(v ,  E )  is a monotonically increasing function of E, 
and a, is positive. 

We actually should also look at the absorption coefficients for specific 
polarization states to complete the proof of impossibility of masers. For the 
two states of polarization 

P( v ,E)  a F ( x )  -+ G(x). 

Since x-  'G(x) = K f ( x ) ,  which decreases monotonically with x, we need 
only consider the polarization state in the parallel direction. By use of Eq. 
10.1 -22 of Abramowitz and Stegun (1965), we obtain the identity 

which again is clearly monotonically decreasing with x .  
Although synchrotron masers cannot exist in vacuum, it is possible to 

show that in a plasma, where the index of refraction is not unity, such 
synchrotron maser emission is possible. 
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PROBLEMS 

6.1-An ultrarelativistic electron emits synchrotron radiation. Show that 
its energy decreases with time according to 

2 e 4 ~ :  
y = yo( 1 + Ayot) - I ,  A = - , 

3 m 3 2  

Here yo is the initial value of y and B ,  = Bsina. Show that the time for 
the electron to lose half its energy is 

5.1 x lo8 t ; = ( A  yo) - ’ = 
YOB: * 

How does one reconcile the decrease of y here with the result of constant y 
implied by Eqs. (6. I)? 

6.2-A region of space contains relativistic electrons and magnetic 
fields. Let a typical linear scale of this region be 1. Suppose the region is 
compressed (by passage of a shock wave, perhaps). Assume that the 
compression is the same in all directions. We want to see what effect this 
compression has on various properties of the electrons and magnetic field. 

a. Show that the magnetic field satisfies B a 1 -*. 
b. If the compression is slow, show that the momentum of an electron 

satisfies p a  1 - I ,  and that magnetic flux through electron orbits is 
approximately conserved. 

that the critical frequency 
v, a 1 - 4  and that the half-life for the electron t i  a Is. (This shows that 
moderate compression can profoundly effect observed emission.) 

c. Show that the synchrotron emission 

6.3-Ultrarelativistic electrons are emitting synchrotron radiation in a 
fairly uniform magnetic field. The observer’s line of sight makes an angle a 
with respect to B. (See Fig. 6.13). 

The electrons are confined to the region between points 1 and 2 by 
constrictions in the magnetic field, which reflect the electrons back and 
forth along the field lines while maintaining their pitch angles. Show that a 
given electron, while radiating continually in its own frame, produces 
observable radiation only for a fraction tsin’a of the time. 



R 

Observer 

Figwe 613 Synchrotron emission from ekcmns cm@ed between positions 1 
and 2. 

6.4-The spectrum shown in Fig. 6.14 is observed from a point source of 
unknown distance d .  A model for this source is a spherical mass of radius 
R that is emitting synchrotron radiation in a magnetic field of strength B. 
The space between us and the source is uniformly filled with a thermal 
bath of hydrogen that emits and absorbs mainly by bound-free transitions, 
and it is believed that the hydrogen bath is unimportant compared to the 
synchrotron source at  frequencies where the former is optically thin. The 
synchrotron source function can be written as 

S,=A(ergcm-2 s - '  Hz-') ( - B", ) - 'I2( y2. 
The absorption coefficient for synchrotron radiation is 

and that for bound-free transitions is 
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log .‘-,(ergs ’ crn Hz l )  

Figute 414 Observed spectrum f i n s  a point source. 

where A ,  B,, yo, C and D are constants a n d p  is the power law index for 
the assumed power law distribution of relativistic electrons in the synchro- 
tron source. 

a. Find the size of the source R and the magnetic field strength B in 
terms of the solid angle L? = n(R  2 / d 2 )  subtended by the source and the 
constants A ,  B,, Y,, C,  D. 

b. Now using D and Y,, in addition to the previous constants, find the 
solid angle of the source and its distance. 

6.5 

a. Derive the linear polarization for a power-law distribution of electrons, 

b. Show that the linear polarization for the frequency-integrated synchro- 

N ( y )  = C y - P ,  emitting synchrotron radiation, Eq. (6.38). 

tron emission of particles of the same y is 75%. 
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