FPGA Tutorial on DE1 Board

9.9

R

Using Quartus II V13.0

Marsi 2014 - University of TRIESTE

Tutorial FPGA n.2

Realizzazione di un circuito logico gerarchico su DE1

Descrizione: Si realizzi un semplice cronometro digitale su DE1 con possibilità di start, stop, reset tramite pulsanti e visualizzazione del tempo sul dislay LED a 7 segmenti.

Scopo: Familiarizzare con sistemi digitali più complessi ed apprendere l'uso di strumenti di progettazione e di debugging più evoluti.

Apprendimento previsto:

- Sviluppo di un sistema gerarchico
- Utilizzo dei BUS
- Progetto di macchine a stati finiti
- Analisi delle criticità temporali di un circuito
- Impostazione di vincoli temporali

Procedimento:

Si inizi un nuovo progetto per Ciclone II - EP2C20F484C7N

Realizzazione gerarchica Verilog- Schematico

Si predisponga un modulo verilog per la realizzazione di un contatore sincrono mod10 (0...9) comprensivo di segnali di enable, reset e riporto.

```
module count10
(
       input clk, enable, reset,
       output reg clk out,
       output reg [3:0] count
);
       always @ (posedge clk or posedge reset)
       begin
               if (reset)
                      count <= 0;
               else if (enable == 1'b1)
               begin
                       if (count < 9)
                           begin
                              count <= count + 1;</pre>
                              clk out <= 1'b0;
                           end
                       else
                           begin
                             count <= 0;
                            clk out <= 1'b1;
                           end
               end
       end
```

endmodule

- Si salvi il file con lo stesso nome del modulo (es. count10.v)
- Lo si predisponga come "top level entity"

- Si definisca un opportuno file di stimoli
- Si simuli a livello funzionale
- Si verifichi il corretto funzionamento

9			Simulation Waveform Editor - [tutorial2.sim.vwf (Read-Only)]	- 🗆 🗡
File	Edit View	Simulation Hel	p 🖗 Search altera.	com 🚯
	🔍 💥 🕹	$\stackrel{*}{\vdash} \stackrel{Z}{=} \rangle \overline{\underline{L}} \rangle$	匯 器 XE XE XE Ke 🛤 🔳 曝	
Maste	r Time Bar: 0	ps	Pointer: 28.74 ns Interval: 28.74 ns Start: 0 ps End: 1.0 us	
	Name	Value at	0 ps 80.0 ns 160.0 ns 240.0 ns 320.0 ns 400.0 ns 480.0 ns 560.0 ns 640.0 ns 720.0 ns 800.0 ns 880.0 ns 9	60.0 ns
	Hume	0 ps	D D6	
in_	clk	в 0		.vvvv
<u>in</u>	enable	B 0		
in	reset	B 0		
out	ck_out	B 0		
8	4 count	B 0000	0000 X00X00XX00XX00XX00XX00XX00XX00XX00	
out	coun	B 0		
gut	coun	B 0		
out	coun	B 0		
295	coun	B 0		
<				→
			0%	00:00:00

Si noti inoltre che il modulo appena realizzato oltre a generare i quattro bit di conteggio genera un ulteriore segnale (clk_out) che avrà una periodo 10 volte superiore al clock in ingresso ed un duty cycle di 0.1. Questo segnale, utilizzato in seguito per alimentare contatori per le cifre più significativa (decine, centinaia, migliaia) sarà in seguito oggetto di un'approfondita analisi temporale.

Si predisponga il modulo appena realizzato per essere impiegato a livello gerarchico superiore in uno schematic editor:

Nella finestra del "project Navigator"

Right click sul file > Create symbol file for current file

- Si crei ora un nuovo schematico
- Tra le porte logiche disponibili vi sarà anche un blocco rappresentante il modulo verilog appena realizzato
- Realizzare uno schematico per un contatore in base 10 a 4 cifre (0 ... 9999)
- Si utilizzino dei bus per rappresentare le 4 cifre.
- Per trasferire i valori sui pin d'uscita non è necessario tracciare un collegamento esplicito, ma basta che il pin d'uscita e la "net" ad esso associata abbiano lo stesso nome
- Si noti che nello schematico il nome convenzionale per i bus è: nome_bus [n1 ..n0] ove nome_bus [n1] rappresenta il bit più significativo, mentre nome_bus [n0] è il meno significativo (es: D[3..0], a[9..2]) notare che D[3..0] e D[0..3] sono entrambe rappresentazioni lecite, ma mentre nel primo caso il bit più significativo è D[3], nel secondo è D[0]

• Si salvi lo schematico

- Lo si predisponga come "top level entity"
- Si definisca un nuovo opportuno file di stimoli
- Si simuli a livello funzionale
- Si verifichi il corretto funzionamento

			Simulation Waveform Editor - [tutorial2.sim.vwf (Read-Only)] – 🗖	
File	Edit View	Simulation Hel	p 🔻 Search altera.com	•
	1 💥 😂	א <u>ב</u> אב אב א	毎 駿 ½C ½ ½ № № № 📾 👪	
Maste	er Time Bar: 0	ps	Pointer: 3.85 us Interval: 3.85 us Start: 0 ps End: 0 ps	
	Name	Value at 0 ps	0 ps 2.56 us 5.12 us 7.68 us 10.24 us 12.8 us 15.36 us 17.92 us 20.48 us 23.04 us 25.6 us 28.16 us 30.72 us 33.28 0 ps	us
in_	dk	в 0		
뙁	⊳ d 1	U 0		
뙁	⊳ d2	U 0		**
뙁	⊳ d 3	U 0	0 \1 \2 \3 \4 \5 \6 \7 \8 \9 \0 \1 \2 \3 \4 \5 \6 \7 \8 \9 \0 \1 \2 \3 \4 \5 \6 \7 \8 \9 \0 \1 \2 \3 \4 \5 \6 \7 \8 \9 \0	
쐉	⊳ d 4	U 0	0 X 1 X 2 X	3
in_	ena	В 0		-
in_	res	В 0		4
<			> < 0% 00:0	> V 0:00

Realizzazione gerarchica Verilog- Verilog

Predisporre ora un modulo Verilog per la conversione da binario a display a sette segmenti (realizzabile tramite una semplice LUT) con uscita sincronizzata su un opportuno segnale di clock.

```
module SEG7_LUT
                     (clk,oSEG,iDIG);
input clk;
input [3:0] iDIG;
output [6:0] oSEG;
             [6:0]
                   oSEG;
req
always @(negedge clk)
      case(iDIG)
              4'h1: oSEG = 7'b1111001;
                                        // ---t----
              4'h2: oSEG = 7'b0100100; // |
                                                4'h3: oSEG = 7'b0110000;
                                        // lt rt
              4'h4: oSEG = 7'b0011001;
                                         // |
                                                  4'h5: oSEG = 7'b0010010;
                                         // ---m----
                                         // |
              4'h6: oSEG = 7'b0000010;
                                                  // lb rb
              4'h7: oSEG = 7'b1111000;
              4'h8: oSEG = 7'b0000000;
                                        // |
                                                  4'h9: oSEG = 7'b0011000;
                                        // ---b----
              4'ha: oSEG = 7'b0001000;
              4'hb: oSEG = 7'b0000011;
              4'hc: oSEG = 7'b1000110;
              4'hd: oSEG = 7'b0100001;
              4'he: oSEG = 7'b0000110;
              4'hf: oSEG = 7'b0001110;
              4'h0: oSEG = 7'b1000000;
             endcase
end
```

endmodule

Si noti che in Verilog i BUS prendono il nome di nome [n1:n0] ove nome [n1] è il bit più significativo mentre nome [n0] è il meno significativo. Si noti ancora che il modulo viene attivato sul fronte negativo del clock. La rappresentazione appena adottata è una rappresentazione "comportamentale" del modulo in oggetto, essa infatti ne descrive il funzionamento ma NON fornisce dettagli sull'architettura (in fase di sintesi si potrebbe utilizzare una LUT, ma volendo anche una realizzazione attraverso porte logiche potrebbe servire allo scopo).

Predisporre ora un modulo Verilog per l'integrazione di 4 dei moduli precedenti in una sola unità. Questa a differenza della precedente è una rappresentazione "strutturale" [1]. Essa infatti evidenzia l'architettura del modulo. Vi sono infatti istanziati 4 blocchi identici (denominati rispettivamente u0, u1, u2,u3) ai quali sono collegati opportunamente i vari segnali di ingresso e di uscita.

```
module SEG7_LUT_4 (oSEG0,oSEG1,oSEG2,oSEG3,iDIG,clk );
input clk;
input [15:0] iDIG;
output [6:0] oSEG0,oSEG1,oSEG2,oSEG3;
SEG7_LUT u0 (clk,oSEG0,iDIG[3:0]);
SEG7_LUT u1 (clk,oSEG1,iDIG[7:4]);
SEG7_LUT u2 (clk,oSEG2,iDIG[11:8]);
SEG7_LUT u3 (clk,oSEG3,iDIG[15:12]);
endmodule
```

Generare il simbolo corrispondente a questo secondo modulo.

Definizione di una FSM (finite state machine)[2-5]

Si voglia realizzare ora una macchina a stati finiti con un solo pulsante in ingresso che generi gli opportuni segnali per il contatore di start – stop – reset secondo questa specifica sequenza.

File > New
State machine file

- Aggiungere alle porte di default (clk, reset) le porte "key" come ingresso e le porte "ena" e "res_out" come uscita (Cliccare col tasto destro all'interno delle schede "Input Table" ed "Output Table"
- Tracciare quindi un grafo degli stati simile a quello riportato in figura (da esso si evince che vi sono tre stati principali (start, count, stop), ma la transizione dall'uno all'altro avviene attraverso una duplice azione: key passa prima al valore alto e successivamente ritorna al valore basso, pertanto per rendere stabile ogni stato si sono dovuti aggiungere gli stati intermedi state2, state4 e state6. Inoltre negli stati principali verranno definiti i valori da assegnare ai segnali d'uscita.

- Definire le transizioni tra i vari stati (doppio click sul ramo)
- Definire le uscite dei vari stati (doppio click sullo stato)
 - o Attivare l'uscita "ena" nello stato "count" e disattivarla nello stato "stop"
 - o Attivare la linea "res_out" allo stato start e disattivarla negli altri

Nota: le varie schede nella finestra "State Table" riassumono il funzionamento completo della macchina.

St	ate Table					
	Output Port	Output Value	In State	Additional Conditions	Output State	
1	ena	0	stop		Current dodk cyde	
2	ena	0	start		Current dock cycle	
3	ena	1	count		Current dodk cyde	
4	res_out	0	stop		Current dock cycle	
5	res_out	1	start		Current dock cycle	
6	res out	0	count		Current dock cyde	
<						>

- Generare il file Verilog HDL che descriva il grafo usando l'opportuno pulsante
- Verificare la correttezza del file sia tramite analisi sintattica che mediante simulazione funzionale Prestare molta attenzione al risultato perché non sempre coincide col risultato sperato (ad esempio si può notare che a seguito di un reset esterno entrambe le uscite "ena" e "res_out" assumono il valore basso ... se ciò non dovesse rispondere alle nostre specifiche si può eventualmente modificare a mano il file verilog HDL appena generato.
 - Importare il file Verilog rappresentante la macchina a stati finiti nel proprio progetto
 - Settare tale file come Top-level entity
 - o Generare un opportuno file di stimoli
 - o Verificare il corretto funzionamento della macchina a stati finiti appena realizzata

8					Si	mulation W	aveform E	ditor - [tutor	ial2.sim.vw	f (Read-Onl	y)]					×
File	Edit View	Simulation Hel	р 🐬											Search alter	a.com	٠
	🔉 🔍 🗶 ·	Ŋ Ț, Z XĪ >	H INV XC	X X X X X	R. R. 70	₫ 5%										
Ma	aster Time Bar: 0 ps I Pointer: 3.23 ns Interval: 3.23 ns Start: End:															
	Name	Value at 0 ps	0 ps 0 ps	80.0 ns	160.0 ns	240.0 ns	320.0 ns	400.0 ns	480.0 ns	560.0 ns	640.0 ns	720.0 ns	800.0 ns	880.0 ns	960.0 ns	^
in	dock	В 0	ГЛ	ww	ww	JUUU		ww	JUUU		JUJU		ww	ллл	w	
in	key	В 0														
iB	reset	В 0			1									7		
읟	t ena	B 0							ــــــــــــــــــــــــــــــــــــــ							
읟	res_out	B 1												_		
<		3	<												>	~
														0%	6 00:00:0	0

Notare in particolare che sebbene il funzionamento risulti corretto negli stati principali, non avendo definito le uscite negli stati intermedi, in esse queste ultime assumono funzionamenti diversi (ad esempio l'attivazione del conteggio avviene solo quando il tasto viene rilasciato, mentre lo stop del conteggio avviene nella fase di pressione del tasto e l'azzeramento del conteggio nuovamente quando il tasto sarà rilasciato). Ove il funzionamento non risultasse quello desiderato si può tornare a modificare la macchina a stati finiti o nella sua versione grafica oppure agendo direttamente sul file HDL agendo sugli stati dove le uscite non sono state definite.

• Generare il simbolo grafico associato alla macchina a stati finiti (FSM) appena realizzata

Definizione del sistema completo

A questo punto abbiamo definito tutti i blocchi che realizzano il nostro sistema:

- Una macchina a stati finiti che con un solo ingresso (key) genera ciclicamente i segnali di attivazione del conteggio, stop del conteggio e azzeramento del medesimo.
- Un contatore in codice BCD a 4 cifre che incrementa il suo valore ad ogni fronte positivo del clock
- Un visualizzatore delle cifre per display a sette segmenti che "congela" la cifra da visualizzare ad ogni fronte negativo del clock.

Si realizzi pertanto uno schematico che riunisca tutti i blocchi finora sviluppati con gli opportuni collegamenti.

Si consiglia, cliccando col tasto destro sui vari blocchi e scegliendo "properties" di assegnare a ciascun blocco un nome mnemonico che aiuti in futuro a distinguere i segnali che fanno riferimento al medesimo. Nell'immagine riportata si son scelti ad esempio i nomi (fsm, display, unita, decine, centinaia, migliaia)

Utilizzo dell' analizzatore "Time Quest Timing Analyzer" [6,7,8]

Sebbene evidentemente il funzionamento di questo dispositivo, utilizzerà successivamente una frequenza di lavoro di qualche decina di Hertz (onde rendere visibile il conteggio sui display), per studiarne il funzionamento temporale in condizioni più critiche supponiamo di volerlo far funzionare a 100 MHz. Si voglia pertanto verificare se esso possa funzionare correttamente a questa frequenza [9-10].

- Si definisca lo schematico completo appena realizzato come "Top Level Entity" (ctr-Shift-J)
- Si esegua una compilazione completa (ctr-L)
- Si attivi il tool "Time Quest Timing Analyzer"

```
Tools > Time Quest Timing Analyzer
```

Si crei ora una nuova Netlist

Netlist > Create Timing Netlist

Si faccia riferimento al modello post-fit in versione pessimistica (Slow-corner)

> OK

Si definiscano ora le specifiche richieste dal clock del sistema

Constraints > Create Clock

Da notare che la finestra interattiva che si apre serve sostanzialmente solo a definire le specifiche del comando "tcl" e che in futuro, con un po' di pratica, esso potrà essere scritto direttamente senza ricorrere all'interfaccia grafica.

Si fissino quindi le specifiche. In particolare:

- Si dia un nome mnemonico al clock (può essere il nome dello stesso segnale di clock)
- Si definisca il periodo in 10 ns
- Si associ questo vincolo al segnale presente nel piedino d'ingresso denominato "clk"
 - Per quest'ultimo passo si faccia click sul tasto "..."
 - Nella finestra che appare, sfruttando eventalmente opportuni filtri
 - Si scelga "Get_ports"
 - List

• Si aggiunga nella lista di selezione il segnale clk

	0 Name Finder ×
	Collection: get_ports
Create Clock × Clock name: master ck	Collection: get_ports ▼ Filter: * Options □ Case-insensitive
Falling: ns 0.00 5.00 10.00	clk pin name1
Targets: [get_ports (dk)]	~L/DS91p/nCEO~
SDC command: create_dock -name master clk -period 10.000 [get_ports {clk}]	SDC command: [get_ports {clk}]
Run Cancel Help	OK Cancel Help

> OK

> RUN

Tutta la procedura all'atto pratico si traduce nella generazione del comando tcl:

tcl> create_clock -name clk -period 10.000 [get_ports {clk}]

A questo punto siccome i diversi clock che pilotano i contatori dedicati alle cifre più significative sono generati in cascata ciascuno dal precedente (con un periodo 10 volte superiore ed un duty cycle pari a 0,1), bisogna passare questa informazione al nostro analizzatore.

Constraints > Create Generated Clock

Nella finestra che segue si va pertanto a specificare che il clock che entra nel contatore delle decine è generato attraverso il clock del contatore delle unità, che esso è 10x più lento e con un duty cycle di 0,1. Per fare questo bisogna trovare nella liste (...), attraverso eventuali filtri, i segnali coinvolti (sia come **source** che come **target**). Per questo scopo è stato utile dare un nome riconoscibile alle varie istanziazioni dei blocchi nello schematico

0		Name Finder ×
Collection: Options Case Hiera Comp	get_registers Filter: insensitive rchical atibility mode	*out*
Matches	t es found	1 selected name
count10 count10 count10	::centinaia dk_out :decine dk_out :unita dk_out	<pre>count10:unita(dk_out >>> <<</pre>
SDC comma	and: [get_registers {count10:ur	ita dk_out}] OK Cancel Help

0		Create Gene	erated Clock								
Clock name:	dk_01										
Source:	[get_ports {dk]	8]									
Relationship to source											
Based	on frequency										
Divide	by: 10	Phase:									
Multiply	y by:	Offset:									
Duty c	yde: 0.1										
O Based	on waveform										
Edge li	st:										
Edge s	hift list:	ns	ns	ns							
Invert	waveform										
Targets: [get_registers {count10:unita dk_out}]											
SDC comman	d: et_ports {dk] -divide_by 10 -duty		count10:unita ck_out}]							
			Run Can	cel Help							

Corrispondente al comando tcl:

tcl> create_generated_clock -name clk_01 -source [get_ports {clk}] divide_by 10 -duty_cycle 0.1 [get_registers {count10:unita|clk_out}]

e proseguire analogamente anche per gli altri 2 clock generati rispettivamente dal blocco che effettua il conteggio delle decine e delle centinaia tenendo conto che tali clock vengono generati dai clock precedenti.

```
tcl> create_generated_clock -name clk_001 -source [get_registers
{count10:unita|clk_out}] -divide_by 10 -duty_cycle 0.1 [get_registers
{count10:decine|clk_out}]
```

tcl> create_generated_clock -name clk_0001 -source [get_registers
{count10:decine|clk_out}] -divide_by 10 -duty_cycle 0.1 [get_registers
{count10:centinaia|clk_out}]

Aggiornare la Netlist

Netlist > Update Timing Netlist

E generare il report relative alle temporizzazioni

Reports > Custom Report > Report Timing

Scegliere

- Analysis Type: Setup
- Number of Path: 100
- Click on "Report Timing"

La finestra che appare illustra i dettagli dei vari percorsi ordinati da più lento verso il più veloce e se questi rispettano i vincoli (seppur minimi che abbiamo fornito). Si nota in particolare che alcuni di questi risultano scritti in rosso, mentre altri sono in nero: i primi sono quelli che NON rispettano i vincoli, infatti si può notare nella scheda waveform, relativa a qualcuno di questi percorsi come il segnale arrivi in ritardo rispetto il fronte di clock (di discesa) che dovrebbe campionarlo). In verità il sistema tiene conto di tutti i ritardi coinvolti nel percorso, sia quelli dei dati che quelli relativi ad entrambi i segnali di clock (quello che

"lancia" il conteggio e quello che "congela" il risultato sul display). I risultati possono essere numericamente diversi e si differenziano in base a come è stato realizzato il piazzamento della logica all'interno dell'FPGA.

Rep	ort Timing														
Con	nmand Info	Summary	of Paths												
	Slack	Fro	m Node		To Node	Launch Clock	Latch C	Cloc	k	Relationsh	ip C	lock Skew	Da	ta Delay	
25	-0.690	count10:migli	aia count[3]	SEG7_LUT_4	4:display SEG7_LUT:u3 oSEG[4]	clk_0001	clk			5.000	-4.7	57	0.971	L	
26	-0.687	count10:migli	aia count[3]	SEG7_LUT_4	4:display SEG7_LUT:u3 oSEG[0]	clk_0001	clk			5.000	-4.7	57	0.968	3	
27	-0.686	count10:migli	aia[count[3]	SEG7_LUT_4	4:display SEG7_LUT:u3 oSEG[3]	clk_0001	clk			5.000	-4.7	57	0.967	,	
28	-0.685	count10:migli	aia count[3]	SEG7_LUT_4	4:display SEG7_LUT:u3 oSEG[1]	clk_0001	dk			5.000	-4.7	57	0.966	5	
29	0.033	count10:cent	tinaia count[1]	SEG7_LUT_4	4:display SEG7_LUT:u2 oSEG[1]	clk_001	clk			5.000	-3.3	99	1.606	5	
30	0.038	count10:cent	tinaia count[1]	SEG7_LUT_4	4:display SEG7_LUT:u2 oSEG[5]	clk_001	clk			5.000	-3.3	99	1.601	L	
31	0.039	count10:cent	tinaia count[1]	SEG7_LUT_4	4:display SEG7_LUT:u2 oSEG[2]	clk_001	dk			5.000	-3.3	99	1.600)	
32	0.040	count10:cent	tinaia count[1]	SEG7_LUT_4	4:display SEG7_LUT:u2 oSEG[3]	clk_001	dk			5.000	-3.3	99	1.599)	
L00	0.000			0003.007	i larer ur el erelet		I			5 000					
Path	#27: Setu	ıp slack is -0	.686 (VIOLATI	D)					Path	1 #27: Setup	slack is	-0.686 (VI	OLATE)	
Pat	h Summary	Statistics	Data Path	Waveform					Pat	th Summary	Statistic	s Data I	Path	Waveform]
								1 [Prope	erty			Value	
									1	From Node		count10:n	nioliaia lo	ount[3]	
	-0.7	715 ns							2	To Node		SEG7_LUT	_4:displ	ay SEG7_LUT	I:u3 oSEG[3]
		Launch					^		3	Launch Cloc	k	clk_0001			
Laur	nch Clock	Luanch							4	Latch Clock		clk (INVER	TED)		
				EAua					5	Data Arrival	Time	8.582			
Setu	up Relatio	nship		0.0 ns					6	Data Requir	ed Time	7.896			
									7	Slack		-0.686 (VI	IOLATED))	
Late	ch Clock				Latch										
		_													
Det															
Data	a HLLIAI														
					7 615 no										
Cloc	sk Delay														
Data	a Delay					0.96	7 ns								
	-						¥	JI							

Lanciando altre tipologie di analisi (ad esempio Hold) si può notare come vi siano anche altre criticità inerenti la sincronizzazione tra la macchina a stati finiti ed i contatori di decine e centinaia

Rep	ort Timing										
Co	nmand Info	Summary of Paths									
	Slack	From Node	To Node	Launch Clock	Latch Clock	Relatio	onship	Clock S	ew D	ata Delay	
1	-2.645	fsm:fsm fstate.count	count10:migliaia count[1]	dk	dk_0001	0.000		4.761	2.40)2	
2	-2.645	fsm:fsm fstate.count	count10:migliaia count[2]	dk	dk_0001	0.000		4.761	2.40)2	
3	-2.645	fsm:fsm fstate.count	count10:migliaia count[0]	clk	dk_0001	0.000		4.761	2.40)2	
4	-2.645	fsm:fsm fstate.count	count10:migliaia count[3]	dk	dk_0001	0.000		4.761	2.40)2	
5	-0.028	fsm:fsm fstate.count	count10:centinaia count[2]	dk	dk_001	0.000		3.409	3.66	57	
6	-0.028	fsm:fsm fstate.count	count10:centinaia count[3]	dk	dk_001	0.000		3.409	3.66	57	
7	-0.028	fsm:fsm fstate.count	count10:centinaia count[1]	dk	dk_001	0.000		3.409	3.66	57	
8	-0.028	fsm:fsm fstate.count	count10:centinaia count[0]	dk	dk_001	0.000		3.409	3.66	57	
9	0.445	fsm:fsm fstate.state4	fsm:fsm fstate.state4	dk	dk	0.000		0.000	0.73	31	
10	0.445	fsm:fsm fstate.stop	fsm:fsm fstate.stop	dk	dk	0.000		0.000	0.73	31	
11	0.445	fsm:fsm fstate.state6	fsm:fsm fstate.state6	dk	clk	0.000		0.000	0.73	31	
Patl	1 #1: Hold :	slack is -2.645 (VIOLATED)					Path	#1: Hold sla	nck is -2.64	45 (VIOLATED))
Pat	h Summary	Statistics Data Path	Waveform				Path	Summary	Statistics	Data Path	Waveform
			L					Prope	rty	Value	2
							1	From Node		fsm:fsm fstate.o	count
-1.93	8 ns						2	To Node		count10:migliaia	count[1]
		aunch				^	3	Launch Cloc	c	clk	
Lau	nch Clock•						4	Latch Clock		dk_0001	
		0.0 ps					5	Data Arrival	Time	5.256	
Ho1	d Relation	ship 🎽					6	Data Require	ed Time	7.901	
							7	Slack		-2.645 (VIOLATE	ED)
Lat	ch Clock	Latch									
		_									
Dat.	a Arrival			V							
]											
	sk Dalau	2. 8 54 ns									

In questo caso è il segnale che esce dalla macchina a stati finiti (ena) a rischiare di commutare prima di essere stato acquisito correttamente da contatori di centinaia e migliaia.

Una comoda utilità può essere quella di localizzare il path o gli elementi coinvolti in tali malfunzionamenti nelle varie viste del circuito. Per fare ciò basta cliccare col tasto destro sull'elemento coinvolto e scegliere

- Locate oppure Locate Path
- E scegliere successivamente la vista nella quale localizzarlo

Soffermarsi in particolare sulle varie viste del medesimo circuito:

- Design File vista relativa ai file sorgenti
- RTL Viewer vista a livello RTL (il punto di partenza per la sintesi)
- Tecnology Map Viewer Vista in base ad uno schematico basato sulla mappatura su FPGA
- Chip Planner Vista in base all'occupazione di risorse su FPGA
- Pin Planner Utile per modificare i pin di I/O per migliorare le prestazioni
- Assignment Editor Utile per assegnare, modificare I vincoli realizzativi

Bisogna notare inoltre che le informazioni sulle diverse frequenze di clock che sono state appena definite hanno una validità duplice: da un lato servono a verificare se il sistema rispetta le specifiche, ma da un altro canto, esse possono essere passate Quartus per cercare di "forzare" il sistema in fase di sintesi, mapping e routing a rispettare tali vincoli.

Per fare ciò

- Si salvi il file di vincoli (Doppio click nella finestra Tasks su: "Write SDC File".)
- Importare il fale appena salvato all'interno dei file del progetto di Quartus

Quartus utilizzerà i vincoli imposti per cercare una realizzazione che li soddisfi ed eventualmente indicherà nei reports se tali vincoli non dovessero essere rispettati.

Considerazioni

I malfunzionamenti evidenziati sono sostanzialmente legati all'architettura stessa del circuito, infatti non è mai una buona idea utilizzare circuiti che rigenerino un segnale di sincronismo attraverso funzioni logiche, perché così facendo si creano disallineamenti nel clock (clock skew) [9,10] e sebbene attraverso vincoli costruttivi si potrebbe limitare almeno in parte il malfunzionamento, la strategia migliore dovrebbe essere quella di ridisegnare il sistema facendo in modo che ogni contatore sia alimentato dal medesimo clock e che il conteggio venga eventualmente fermato o riattivato attraverso il segnale di enable.

Una soluzione al problema esposto potrebbe essere la seguente:

Questa architettura non dovrebbe più creare problemi dal punto di vista del disallineamento del clock in quanto tutti i blocchi risultano sincronizzati sullo stesso segnale ed inoltre non vi è alcun elemento di ritardo nella propagazione del clock.

Per contro il conteggio in questo caso risulta affetto da un altro problema, ovvero la commutazione del contatore a livello più altro avviene in ritardo di un ciclo di clock rispetto quello più basso, pertanto il passaggio da 09 a 10 in realtà avviene erroneamente in due cicli 09 - 00 - 10. Oltre al fatto che il segnale di clk_out dovrebbe venir rivisto in modo che la sua durata sia esattamente uguale ad un singolo periodo del clock di ingresso. Ovviare a questi inconvenienti richiede di modificare più profondamente il progetto.

Modifica dei Vincoli realizzativi.

Si deve però ora, all'atto pratico, tener presente che il più basso valore del clock della scheda DE1 è a 24 MHz. Qualora si utilizzasse direttamente questo clock per effettuare il conteggio esso sarebbe talmente rapido che i display a 7 segmenti apparirebbero sempre illuminati. Si dovrà pertanto predisporre un ulteriore blocco utile per ridurre a valori più ragionevoli la frequenza di conteggio.

Un ulteriore vantaggio nella riduzione della frequenza di conteggio sta nel fatto che, nonostante le problematiche finora viste (relative ad una frequenza a 100MHz), Il circuito dovrebbe funzionare correttamente se la sua frequenza di lavoro venisse abbassata sufficientemente. Si può infatti verificare con lo strumento "Time Quest Timing Analyzer" che, già abbassando la frequenza di lavoro già di un fattore 10 le problematiche legate ai tempi di setup non sono più presenti.

Per fare ciò basta aprire il file di vincoli e modificare la riga

```
create_clock -name {clk} -period 10.000 -waveform {0.000 5.000} [get_ports {clk}]
```

in

create_clock -name {clk} -period 100.000 -waveform {0.000 50.000} [get_ports {clk}]

si salvi, si ricompili quindi il progetto e quindi si rilanci il "Time quest Timing analyzer"

eseguire poi di seguito

> Create Timing Netlist
> Read SDC File
> Upadte Timing netlist
> Report Timing

Si Noterà dai reports che permangono solo le problematiche legate ai tempi di Hold, ma per come si susseguono i segnali in uscita dalla macchina a stati finiti, questi effetti solo in casi rarissimi potrebbero produrre un malfunzionamento rilevabile.

Comunque, un'altra strada percorribile per migliorare anche questo aspetto è quella di imporre opportune metodologie in fase di Sintesi per far rientrare il circuito nei vincoli richiesti:

```
Assignments > Settings (ctrl-Shift-E)
Fitter Settings
(set - Optimize hold timing)
Choose item - All Path
```

Si può ora verificare (attraverso il TQTA oppure tramite i reports) che tutti i vincoli risultano rispettati.

Realizzazione fisica su scheda DE1.

Si voglia adottare una frequenza di conteggio pari a 100 Hz, così da poter impiegare il sistema per conteggiare fino i centesimi di secondo, si dovrà pertanto ridurre la frequenza del clock della scheda fino a raggiungere la frequenza di conteggio desiderata

Il riduttore di frequenza può essere così descritto in Verilog HDL:

```
module freq_rid
#(parameter WIDTH=64)
(
       input clk.
       output reg [WIDTH-1:0] count,
       output reg clk div
);
        always @ (posedge clk)
        begin
             if (count<240000)
                 begin
                        count <= count + 1;</pre>
                        clk_div <=1'b0;</pre>
                        end
                 else
                    begin
                        count <=0;
                        clk div <=1'b1;</pre>
                       end
        end
endmodule
```

Una simulazione di questo blocco sarebbe quanto mai problematica, si dovrebbe infatti estendere per 240.000 cicli di clock prima di vedere l'uscita "clk_div" commutare. Eventualmente si può simulare modificando il limite di conteggio.

• Appena realizzato anche questo blocco, generare il "symbol" corrispondente.

Giunti a questo punto si può definire il sistema completo via schematico

- Si apra un nuovo schematico
- Utilizzando i blocchi costituiti in precedenza si realizzi uno schema simile a quello riportato in figura

- Si assegni un nome opportuno ai vari bus onde garantire la correttezza dei collegamenti tra le varie unità
- Si assegnino dei nomi opportuni ai piedini di ingresso e di uscita in modo che essi siano rispecchiati da un eventuale file di vincoli
- Si importi un file di vincoli ove siano specificati nel dettaglio le posizioni degli swithes, del clock, dei display a sette segmenti e dei led (per comodità le posizioni di alcuni dispositivi di I/O sono qui di seguito elencate) [11-13] un file con questi vincoli è peraltro disponibile sulla pagina web del corso.

SW[0],PIN_L22	LEDR[2], PIN_U19	HEX0[0],PIN_J2	HEX2[4],PIN_E3
SW[1],PIN_L21	LEDR[3], PIN_Y19	HEX0[1],PIN_J1	HEX2[5],PIN_E4
SW[2],PIN_M22	LEDR[4], PIN_T18	HEX0[2],PIN_H2	HEX2[6],PIN_D3
SW[3], PIN_V12	LEDR[5], PIN_V19	HEX0[3],PIN_H1	HEX3[0],PIN_F4
SW[4], PIN_W12	LEDR[6], PIN_Y18	HEX0[4],PIN_F2	HEX3[1],PIN_D5
SW[5],PIN_U12	LEDR[7], PIN_U18	HEX0[5],PIN_F1	HEX3[2],PIN_D6
SW[6],PIN_U11	LEDR[8], PIN_R18	HEX0[6],PIN_E2	HEX3[3],PIN_J4
SW[7],PIN_M2	LEDR[9], PIN_R17	HEX1[0],PIN_E1	HEX3[4],PIN_L8
SW[8],PIN_M1		HEX1[1],PIN_H6	HEX3[5],PIN_F3
SW[9], PIN_L2	LEDG[0],PIN_U22	HEX1[2],PIN_H5	HEX3[6],PIN_D4
	LEDG[1],PIN_U21	HEX1[3],PIN_H4	
KEY[0],PIN_R22	LEDG[2], PIN_V22	HEX1[4],PIN_G3	CLOCK_27,PIN_D12
KEY[1], PIN_R21	LEDG[3], PIN_V21	HEX1[5],PIN_D2	CLOCK_24, PIN_A12
KEY[2], PIN_T22	LEDG[4],PIN_W22	HEX1[6],PIN_D1	CLOCK_50,PIN_L1
KEY[3],PIN_T21	LEDG[5],PIN_W21	HEX2[0],PIN_G5	EXT_CLOCK, PIN_M21
	LEDG[6],PIN_Y22	HEX2[1],PIN_G6	
LEDR[0], PIN_R20	LEDG[7],PIN_Y21	HEX2[2],PIN_C2	
LEDR[1], PIN_R19		HEX2[3], PIN_C1	

Si noti che entrambi i pulsanti KEY[0] e KEY[1] sono di default nello stato alto, mentre vanno nello stato basso quando premuti. Di congruenza con la macchina a stati finiti realizzata, si dovranno introdurre due invertitori in serie ai rispettivi piedini.

- Si salvi lo schematico
- Si definisca quest'ultimo come Top-Level-Entity
- Si compili l'intero sistema
- Si verifichino il layout del sistema ed i reports
- Si operi il download della bitstream così generata su scheda DE1.

• Si verifichi il corretto funzionamento su scheda.

Per una corretta analisi temporale del nuovo sistema bisogna ovviamente generare un nuovo file di vincoli che rispecchi il funzionamento del circuito.

Ulteriore approfondimento sui vincoli realizzativi

Il progetto finora seguito non ha visto ancora l'imposizione di vincoli sui percorsi, fatta eccezione per la definizione delle frequenze di clock, e per la posizione dei piedini di I/O e pertanto il risultato ottenuto non ha seguito particolari strategie di ottimizzazione.

Si può notare ad esempio attraverso il TQTA – Report Paths che il ritardo di propagazione tra KEY[0] e LEDR[0] di circa 16 ns

1	mand Info	Sumn	nary of Pa	ths								
Delay From Node To					т	o Node						
	16.083	KEY[0]		LE	EDG[0]							
	13.958	KEY[0]		LE	EDR[0]							
	10.009	KEY[0]		-	ount10:uni	aldk out						
	10.009	KEY[0]			ount10:uni	talcount[2]						
	10.009	KEY[0]		-	ount10:uni	talcount[3]						
	10.009	KEY[0]		-	ount10:uni	talcount[0]						
th	#1: Delay	is 16.08	3		_				Pat	h #1: Delay i	5 16.083	
at	n Summary	Statis	tics D	ata Path					Pa	th Summary	Statistics	Data Path
	Tot	al	Incr	RF	Type	Fanout	Location	Element		Property	Value	
	▲ 16.08	3	16.083					data path	1	From Node	KEY[0]	
			0.000			1	PIN_R22	KEY[0]	2	To Node	LEDG[0]	
	0.	.000									10.000	
	0.	.000 .864	0.864	RR	CELL	8	IOC_X50_Y10_N1	KEY[0] combout	13	Delay	10.000	
	0. 0. 7.	.000 .864 .903	0.864 7.039	RR RR	CELL IC	8	IOC_X50_Y10_N1 LCCOMB_X2_Y21_N26	KEY[0] combout fsm ena~0 dataa	3	Delay	16.085	
	0. 0. 7. 8.	.000 .864 .903 .448	0.864 7.039 0.545	RR RR RR	CELL IC CELL	8 1 20	IOC_X50_Y10_N1 LCCOMB_X2_Y21_N26 LCCOMB_X2_Y21_N26	KEY[0] combout fsm ena~0 dataa fsm ena~0 combout	3	Delay	16.083	
	0. 0. 7. 8.	.000 .864 .903 .448 3.233	0.864 7.039 0.545 4.785	RR RR RR RR	CELL IC CELL IC	8 1 20 1	IOC_X50_Y10_N1 LCCOMB_X2_Y21_N26 LCCOMB_X2_Y21_N26 IOC_X50_Y7_N0	KEY[0] combout fsm ena~0 dataa fsm ena~0 combout LEDG[0] datain	3	Delay	10.085	

Si può peraltro evidenziare nelle varie viste dove si localizza tale ritardo e da cosa è generato (chip Planner)

Si può ora, sempre tramite lo strumento TQTA, provare ad imporre ad esempio il vincolo che questo ritardo non sia superiore a 8ns.

Constraints > Set Maximum Delay

Ö	Set Minimum Delay	×
From:	[get_ports {KEY[0]}]	
Through:		
To:	[get_ports {LEDG[0]}]	
Delay value:	8ns ns	
SDC command:	set_min_delay -from [get_ports {KEY[0]}] -to [get_ports {LEDG[0]}] 8ns	
	Run Cancel H	Help .::

Nota i vincoli vanno messi con oculatezza, mettere dei vincoli irraggiungibili rischia di non consentire al sistema di trovare una soluzione accettabile.

Update Timing Netlist Write SDC File

Il file di vincoli così salvato viene a far parte dei files di progetto di Quartus (se così non fosse importare il file appena salvato tra I files di progetto e ricompilare con Quartus.

Localizzando ora attraverso il TQTA il medesimo path

Command Info		Sum	Summary of Paths									
ĺ	Delay	From Node		To Node								
	5.737	KEY[0]		LEDG[0]								
	5.333	KEY[0]		LEDR[0]								
th #1: Delay is 5.737								Path #1: Delay is 5.737				
ath Summary		Stat	SUCS	Data Path						un Summary	Statistics	Data Pat
	Tota	al	Incr	RF	Туре	Fanout	Location	Element		Property	Value	
	₫ 5.737		5.737					data path	1	From Node	KEY[0]	_
		000	0.000			1	PIN_R22	KEY[0]	2	To Node	LEDG[0]	
	0.		0.004	RR	CELL	8	IOC_X50_Y10_N1	KEY[0] combout	3	Delay	5.737	
	0.	864	0.864	TXIX								
	0. 0. 1.	864 684	0.864	RR	IC	1	LCCOMB_X49_Y10_N18	fsm ena~0 datac				
	0. 0. 1. 2.	864 684 003	0.864 0.820 0.319	RR	IC CELL	1 20	LCCOMB_X49_Y10_N18 LCCOMB_X49_Y10_N18	fsm ena~0 datac fsm ena~0 combout				
	0. 0. 1. 2.	864 684 003 887	0.864 0.820 0.319 0.884	RR RR RR	IC CELL IC	1 20 1	LCCOMB_X49_Y10_N18 LCCOMB_X49_Y10_N18 IOC_X50_Y7_N0	fsm ena~0 datac fsm ena~0 combout LEDG[0] datain				

si nota che il sistema ha scelto una diversa dislocazione di blocchi logici pur di garantire le specifiche richieste.

In verità l'uso corretto dello strumento TQTA dovrebbe essere iterativo:

- Si compila il progetto
- Si esegue una prima analisi post-map (ovvero senza informazioni sui ritardi di interconnessione
- Si fissano i vincoli
- Si ricompila il progetto
- Si esegue un'analisi post-fitting
- Si analizzano i veri report
- Si modificano le parti critiche e si ricomincia

Bibliografia

[1] David Harris: "Structural Design with Verilog"

http://classes.soe.ucsc.edu/cmpe100/Winter03/Resources/verilog.pdf

[2] "Tutorial: Modeling and Testing Finite State Machines (FSM)"

<u>http://courses.cs.tamu.edu/rabi/cpsc617/Assignments/Assignments%202013/Tutorial%20Three%20Cycle%</u> 20High%20Timer.pdf

[3] CSE 20221: Logic Design "Verilog FSM Design Example"

<u>http://www.eece.hw.ac.uk/teaching/ee3_project_11_12/Verilog_resources/FSM%20Design%20Example%2</u> <u>Owith%20Verilog.pdf</u>

[4] "Finite State Machine Simulation"

http://lyle.smu.edu/~jgd/ee2381/007/labs/fsm_007.pdf

[5] Clifford E. Cummings "**The Fundamentals of Efficient Synthesizable Finite State Machine**" http://www.sunburst-design.com/papers/CummingsICU2002 FSMFundamentals.pdf

[6] Altera Corporation: "**TimeQuest Timing Analyzer - Quick Start Tutorial**" <u>http://www.altera.com/literature/ug/ug_tg_tutorial.pdf</u>

[7] Altera Corporation: "Quartus II TimeQuest Timing Analyzer Cookbook" <u>http://www.altera.com/literature/manual/mnl_timequest_cookbook.pdf</u>

[8] Altera Corporation: "**The Quartus II TimeQuest Timing Analyzer**" <u>http://www.altera.com/literature/hb/qts/qts_qii53018.pdf</u>

[9] Kahng, A.B., Lienig, J., Markov, I.L., Hu, J: "VLSI Physical Design: From Graph Partitioning to Timing Closure"- Springer - ISBN 978-90-481-9591-6 (cap.8 available on-line)

[10] Altera Corporation: "AN 584: Timing Closure Methodology for Advanced FPGA Designs" <u>http://www.altera.com/literature/an/an584.pdf</u>

[11] Altera Corporation: "**DE1 Development and Education Board - User Manual**" <u>https://www.terasic.com.tw/attachment/archive/83/DE1_UserManual_v1018.pdf</u>

[12] Altera Corporation: **"Cyclone II FPGA Starter Development Board -Reference Manual**" <u>http://www.altera.com/literature/manual/mnl_cii_starter_board_rm.pdf</u>

[13] Richard Lokken "**DE1 Board**" <u>http://ecampus.matc.edu/lokkenr/elctec-131/labs/de1%20board%20pin%20list%20rev%20aa.pdf</u>